Algebraic Number Theory Problem Sheet #8

Problem 29

- a) Prove that $K = \mathbb{Q}(\sqrt{-43})$ has class number 1.
- b) Determine a generator of the ideal

$$\mathfrak{a} = \left(17, \frac{29 + \sqrt{-43}}{2}\right)_{\mathbb{Z}} \subset \mathfrak{o}_K$$

Problem 30

Prove that $K := \mathbb{Q}(\sqrt{-23})$ has class number 3 and determine three ideals $\mathfrak{a}_i \subset \mathfrak{o}_K$, i = 1, 2, 3, which represent all ideal classes.

Problem 31

Let K be a quadratic number field with discriminant D. Consider two ideals

$$\mathbf{a}_i = \left(a_i, \frac{b_i + \sqrt{D}}{2}\right)_{\mathbb{Z}} \subset \mathbf{o}_K, \qquad i = 1, 2,$$

where $a_i, b_i \in \mathbb{Z}$, $a_i > 0$ and $4a_i \mid b_i^2 - D$.

Suppose $gcd(a_1, a_2) = 1$ and $ua_1 + va_2 = 1$, $u, v \in \mathbb{Z}$. Show that

$$\mathfrak{a}_1\mathfrak{a}_2 = \left(a_1a_2, \frac{(ua_1b_2 + va_2b_1) + \sqrt{D}}{2}\right)_{\mathbb{Z}}$$

Problem 32

Let $\mathfrak{a}_1, \mathfrak{a}_2 \subset \mathfrak{o}_K$ be two ideals as in the previous problem. In the general case, let $\alpha := \gcd(a_1, a_2, (b_1 + b_2)/2)$. Why is $b_1 + b_2$ even? Prove that

$$\mathfrak{a}_1\mathfrak{a}_2 = \alpha \left(a_3, \frac{b_3 + \sqrt{D}}{2}\right)_{\mathbb{Z}}$$

for some integers a_3, b_3 with $4a_3 \mid b_3^2 - D$. Determine these integers.

Due: Tuesday, December 21, 2004, 14:10 h