Algebraic Number Theory
 Problem Sheet \#7

Problem 25

Let d be a non-zero integer $\not \equiv 1 \bmod 4, p$ a prime not dividing d, and x an integer with $x^{2} \equiv d \bmod p$. Show that the ideal generated by the elements p and $x+\sqrt{d}$ in the ring $\mathbb{Z}[\sqrt{d}]$ is equal to the lattice generated by p and $x+\sqrt{d}$, i.e.

$$
\mathbb{Z}[\sqrt{d}] \cdot p+\mathbb{Z}[\sqrt{d}] \cdot(x+\sqrt{d})=\mathbb{Z} \cdot p+\mathbb{Z} \cdot(x+\sqrt{d}) .
$$

Problem 26

In the ring $\mathbb{Z}[\sqrt{10}]$ consider the ideals $\mathfrak{a}:=(2,4+\sqrt{10})$ and $\mathfrak{b}:=(3,4+\sqrt{10})$.
a) Prove that \mathfrak{a} and \mathfrak{b} are not principal ideals.
b) Calculate \mathfrak{a}^{2} and $\mathfrak{a b}$ and show that they are principal ideals.
c) Prove that \mathfrak{a} and \mathfrak{b} belong to the same ideal class and determine a $\lambda \in \mathbb{Q}(\sqrt{10})$ such that $\mathfrak{b}=\lambda \mathfrak{a}$.

Problem 27

Let Λ be a lattice in the quadratic number field $K=\mathbb{Q}(\sqrt{d})$, i.e. $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$, where $\omega_{1}, \omega_{2} \in K$ are linearly independent over \mathbb{Q}. Define

$$
R:=\{z \in K: z \Lambda \subset \Lambda\} .
$$

a) Show that R is a subring of the ring \mathfrak{o}_{K} and that Λ is a fractional ideal of R.
b) Give an example for each of the cases $R=\mathfrak{o}_{K}$ and $R \neq \mathfrak{o}_{K}$.

Problem 28

A lattice $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2} \subset \mathbb{C},\left(\omega_{1}, \omega_{2} \in \mathbb{C}\right.$ linearly independent over $\left.\mathbb{R}\right)$, is said to have complex multiplication if there exists a non-real complex number $z \in \mathbb{C} \backslash \mathbb{R}$ with $z \Lambda \subset \Lambda$.

Show that Λ has complex multiplication if and only if $\tau:=\omega_{1} / \omega_{2}$ belongs to an imaginary quadratic number field.

