Algebraic Number Theory Problem Sheet #6

Problem 21

Calculate the values of the following periodic continued fractions:

$$x = \operatorname{cfrac}(1,\overline{1}),$$

$$y = \operatorname{cfrac}(0,\overline{1,2,3,4}).$$

Hint: x satisfies the equation $x = 1 + \frac{1}{x}$. Find a similar equation for y.

Problem 22

Calculate the continued fraction expansions of $\sqrt{n^2 + 1}$ and $\sqrt{n^2 - 1}$, where n is a positive integer (n > 1 in the second case).

Problem 23

Let u_k/v_k and u_{k+1}/v_{k+1} be two consecutive convergents of the continued fraction expansion of an irrational number $\theta \in \mathbb{R} \setminus \mathbb{Q}$. Show that at least one of them satisfies the estimate

$$\left|\theta - \frac{u_i}{v_i}\right| < \frac{1}{2v_i^2}, \qquad i = k \text{ or } k+1.$$

Problem 24

Let \mathfrak{o}_K be the ring of integers in a real quadratic number field K.

a) Complete the prove given in the course for the structure of the group of units in \mathfrak{o}_K by showing:

There exists a $\delta > 0$ such that for every unit $u \in \mathfrak{o}_K^*$ with u > 1 and N(u) = -1 one has $u \ge 1 + \delta$.

b) Suppose there exists a unit u with N(u) = -1. Show that also the fundamental unit ε satisfies $N(\varepsilon) = -1$.

Due: Tuesday, December 7, 2004, 14:10 h