Algebraic Number Theory
 Problem Sheet \#6

Problem 21

Calculate the values of the following periodic continued fractions:

$$
\begin{aligned}
& x=\operatorname{cfrac}(1, \overline{1}) \\
& y=\operatorname{cfrac}(0, \overline{1,2,3,4}) .
\end{aligned}
$$

Hint: x satisfies the equation $x=1+\frac{1}{x}$. Find a similar equation for y.

Problem 22

Calculate the continued fraction expansions of $\sqrt{n^{2}+1}$ and $\sqrt{n^{2}-1}$, where n is a positive integer ($n>1$ in the second case).

Problem 23

Let u_{k} / v_{k} and u_{k+1} / v_{k+1} be two consecutive convergents of the continued fraction expansion of an irrational number $\theta \in \mathbb{R} \backslash \mathbb{Q}$. Show that at least one of them satisfies the estimate

$$
\left|\theta-\frac{u_{i}}{v_{i}}\right|<\frac{1}{2 v_{i}^{2}}, \quad i=k \text { or } k+1 .
$$

Problem 24

Let \mathfrak{o}_{K} be the ring of integers in a real quadratic number field K.
a) Complete the prove given in the course for the structure of the group of units in \mathfrak{o}_{K} by showing:

There exists a $\delta>0$ such that for every unit $u \in \mathfrak{o}_{K}^{*}$ with $u>1$ and $N(u)=-1$ one has $u \geq 1+\delta$.
b) Suppose there exists a unit u with $N(u)=-1$. Show that also the fundamental unit ε satisfies $N(\varepsilon)=-1$.

Due: Tuesday, December 7, 2004, 14:10 h

