Algebraic Number Theory Problem Sheet \#5

Problem 17

a) Let $A:=\mathbb{R}[T]$. Show that the maximal spectrum $X:=\operatorname{Specm}(A)$ is a disjoint union $X=X_{1} \dot{\cup} X_{2}$, where $X_{1}=\{\mathfrak{m} \in X: A / \mathfrak{m} \cong \mathbb{R}\}$ and $X_{2}=\{\mathfrak{m} \in X: A / \mathfrak{m} \cong \mathbb{C}\}$.
b) Let $B:=\mathbb{R}[T]\left[\sqrt{T^{2}+1}\right]$ and $Y:=\operatorname{Specm}(B)$. Show that Y can be decomposed as $Y=Y_{1} \dot{\cup} Y_{2}$, where Y_{k} is defined analogously to X_{k} of part a).
c) Consider the map

$$
\pi: Y \longrightarrow X
$$

induced by the inclusion $A \subset B$. For every $\mathfrak{m} \in X$ determine the fiber $\pi^{-1}(\mathfrak{m})$, i.e. the maximal ideals of B lying over \mathfrak{m}.

Problem 18

Let A be the ring of integers in an algebraic number field. Show that the natural map

$$
A \rightarrow \prod_{\mathfrak{m} \in \operatorname{Specm}(A)} A / \mathfrak{m}
$$

is an injective ring homomorphism.

Problem 19

a) Let $A \subset B$ be two integral domains and $s \in A \backslash\{0\}$. Prove

$$
B \text { integral over } A \quad \Longrightarrow \quad B[1 / s] \text { integral over } A[1 / s]
$$

$(A[1 / s] \subset B[1 / s]$ can be regarded as subrings of the quotient field of B.)
b) Show that the converse implication " \Longleftarrow " is not true in general.
c) Let $s_{1}, s_{2} \in A \backslash\{0\}$ with $A s_{1}+A s_{2}=A$. Prove

$$
B\left[1 / s_{k}\right] \text { integral over } A\left[1 / s_{k}\right] \text { for } k=1,2 \quad \Longrightarrow \quad B \text { integral over } A
$$

Problem 20

Calculate the continued fraction expansions of $\sqrt{17}$ and $\sqrt{19}$.

Due: Tuesday, November 30, 2004, 14:10 h

