Algebraic Number Theory Problem Sheet #5

Problem 17

a) Let $A := \mathbb{R}[T]$. Show that the maximal spectrum $X := \operatorname{Specm}(A)$ is a disjoint union $X = X_1 \stackrel{.}{\cup} X_2$, where $X_1 = \{\mathfrak{m} \in X : A/\mathfrak{m} \cong \mathbb{R}\}$ and $X_2 = \{\mathfrak{m} \in X : A/\mathfrak{m} \cong \mathbb{C}\}.$

b) Let $B := \mathbb{R}[T] \left[\sqrt{T^2 + 1} \right]$ and $Y := \operatorname{Specm}(B)$. Show that Y can be decomposed as $Y = Y_1 \cup Y_2$, where Y_k is defined analogously to X_k of part a).

c) Consider the map

 $\pi: Y \longrightarrow X$

induced by the inclusion $A \subset B$. For every $\mathfrak{m} \in X$ determine the fiber $\pi^{-1}(\mathfrak{m})$, i.e. the maximal ideals of B lying over \mathfrak{m} .

Problem 18

Let A be the ring of integers in an algebraic number field. Show that the natural map

$$A \to \prod_{\mathfrak{m} \in \operatorname{Specm}(A)} A/\mathfrak{m}$$

is an injective ring homomorphism.

Problem 19

a) Let $A \subset B$ be two integral domains and $s \in A \setminus \{0\}$. Prove

B integral over $A \implies B[1/s]$ integral over A[1/s]

 $(A[1/s] \subset B[1/s]$ can be regarded as subrings of the quotient field of B.)

b) Show that the converse implication " \Leftarrow " is not true in general.

c) Let $s_1, s_2 \in A \setminus \{0\}$ with $As_1 + As_2 = A$. Prove

 $B[1/s_k]$ integral over $A[1/s_k]$ for $k = 1, 2 \implies B$ integral over A

Problem 20

Calculate the continued fraction expansions of $\sqrt{17}$ and $\sqrt{19}$.

Due: Tuesday, November 30, 2004, 14:10 h