Algebraic Number Theory Problem Sheet \#4

Problem 13

Prove that every element of the ring $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is associated to an element of the subring $\mathbb{Z}[\sqrt{-3}]$.

Problem 14

Prove: A natural number n can be represented as

$$
n=x^{2}+2 y^{2}, \quad x, y \in \mathbb{Z},
$$

if and only if

$$
n=2^{k} a^{2} p_{1} p_{2} \cdot \ldots \cdot p_{r}
$$

with $a \in \mathbb{Z}$ and (not necessarily distinct) prime numbers $p_{j} \equiv 1,3 \bmod 8, k \geq 0, r \geq 0$.

Problem 15

a) Prove that the ring $\mathbb{Z}\left[\frac{1}{3} \sqrt{2}\right]$ is a principal ideal ring.
b) Show that $\mathbb{Z}\left[\frac{1}{3} \sqrt{2}\right]$ is not an integral algebraic extension of \mathbb{Z} and the induced map

$$
\operatorname{Spec}\left(\mathbb{Z}\left[\frac{1}{3} \sqrt{2}\right]\right) \rightarrow \operatorname{Spec}(\mathbb{Z})
$$

is not surjective. Which prime ideals lie above (2), (3), (5), (7), (11) $\in \operatorname{Spec}(\mathbb{Z})$?

Problem 16

Let X be a compact topological space (e.g. a closed bounded set in \mathbb{R}^{n}) and $A:=\mathcal{C}(X)$ the ring of all continuous functions $f: X \rightarrow \mathbb{R}$. For every $x \in X$, define an ideal $\mathfrak{m}_{x} \subset A$ by

$$
\mathfrak{m}_{x}:=\{f \in A: f(x)=0\},
$$

Show that \mathfrak{m}_{x} is a maximal ideal of A, and the map

$$
X \longrightarrow \operatorname{Specm}(A), \quad x \mapsto \mathfrak{m}_{x},
$$

is bijective.
Hint: Prove that if functions $f_{1}, \ldots, f_{m} \in A$ have no common zero in X, they generate the unit ideal in A.

Due: Tuesday, November 23, 2004, 14:10 h

