Algebraic Number Theory Problem Sheet #4

Problem 13

Prove that every element of the ring $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$ is associated to an element of the subring $\mathbb{Z}[\sqrt{-3}]$.

Problem 14

Prove: A natural number n can be represented as

$$n = x^2 + 2y^2, \qquad x, y \in \mathbb{Z},$$

if and only if

$$n = 2^k a^2 p_1 p_2 \cdot \ldots \cdot p_r$$

with $a \in \mathbb{Z}$ and (not necessarily distinct) prime numbers $p_j \equiv 1, 3 \mod 8, k \ge 0, r \ge 0$.

Problem 15

- a) Prove that the ring $\mathbb{Z}[\frac{1}{3}\sqrt{2}]$ is a principal ideal ring.
- b) Show that $\mathbb{Z}[\frac{1}{3}\sqrt{2}]$ is not an integral algebraic extension of \mathbb{Z} and the induced map

$$\operatorname{Spec}(\mathbb{Z}[\frac{1}{3}\sqrt{2}]) \to \operatorname{Spec}(\mathbb{Z})$$

is not surjective. Which prime ideals lie above $(2), (3), (5), (7), (11) \in \text{Spec}(\mathbb{Z})$?

Problem 16

Let X be a compact topological space (e.g. a closed bounded set in \mathbb{R}^n) and $A := \mathcal{C}(X)$ the ring of all continuous functions $f : X \to \mathbb{R}$. For every $x \in X$, define an ideal $\mathfrak{m}_x \subset A$ by

$$\mathfrak{m}_x := \{ f \in A : f(x) = 0 \},\$$

Show that \mathfrak{m}_x is a maximal ideal of A, and the map

$$X \longrightarrow \operatorname{Specm}(A), \qquad x \mapsto \mathfrak{m}_x,$$

is bijective.

Hint: Prove that if functions $f_1, \ldots, f_m \in A$ have no common zero in X, they generate the unit ideal in A.