Algebraic Number Theory Problem Sheet \#3

Problem 9

Let $d \neq 1$ be a squarefree integer with $d \equiv 1 \bmod 4$.
Show that the ring $\mathbb{Z}[\sqrt{d}]$ is not a UFD.

Problem 10

Let $A=\mathfrak{o}_{K}$ be the ring of integers in a quadratic number field $K=\mathbb{Q}(\sqrt{d}), d \neq 0,1$ squarefree.
a) Suppose that there exists a unit $\varepsilon \in A^{*}$ with $N(\varepsilon)=-1$.

Show that every odd prime divisor $p \mid d$ satisfies $p \equiv 1 \bmod 4$.
b) Give examples of units $\varepsilon \in A^{*}$ with $N(\varepsilon)=-1$ for the cases $d=5,10,13,41$.

Problem 11

Determine all prime elements $\pi \in \mathbb{Z}\left[\frac{1+\sqrt{13}}{2}\right]$ (up to units) with $|N(\pi)|<50$.

Problem 12

Let $A=\mathfrak{o}_{K}$ be the ring of integers in a quadratic number field $K=\mathbb{Q}(\sqrt{d})$ and $p \in \mathbb{Z}$ a rational prime which splits in \mathfrak{o}_{K}, i.e. $A p=\mathfrak{p} \cdot \mathfrak{p}^{\prime}$ with different prime ideals $\mathfrak{p}, \mathfrak{p}^{\prime} \subset \mathfrak{o}_{K}$. Prove:
(1) $\mathfrak{p} \cap \mathfrak{p}^{\prime}=A p$,
(2) $\mathfrak{p}+\mathfrak{p}^{\prime}=A$,
(3) $A / A p \cong \mathbb{F}_{p} \times \mathbb{F}_{p}$.

Due: Tuesday, November 16, 2004, 14:10 h

