Algebraic Number Theory Problem Sheet \#2

Problem 5

Show that the ring $\mathbb{Z}[\sqrt{-5}]$ is not a UFD (unique factorization domain) by decomposing the element 21 in two essentially different ways as a product of irreducible factors.

Problem 6

The ring $\mathbb{Z}[\sqrt{6}]$ is euclidean, hence a UFD. The decompositions

$$
6=2 \cdot 3=\sqrt{6} \cdot \sqrt{6}
$$

seem to contradict unique factorization.
Explain why this is not a counter example to unique factorization.
What is a correct factorization of 6 as a product of prime elements?

Problem 7

Show that every unit u in the ring $\mathbb{Z}[\sqrt{2}]$ can be written as

$$
u= \pm(1+\sqrt{2})^{n}
$$

for some $n \in \mathbb{Z}$.

Problem 8

Let $A=\mathfrak{o}_{K}$ be the ring of integers in a quadratic number field $K=\mathbb{Q}(\sqrt{d})$.
Show that for every pair of associated elements $x, y \in A$ one has $|N(x)|=|N(y)|$.
Is the converse true, i.e. does $|N(x)|=|N(y)|$ imply that x and y are associated? (Proof or counter example).

Due: Tuesday, November 9, 2004, 14:10 h

