Algebraic Number Theory Problem Sheet \#1

Problem 1 Let p, q be two different prime numbers. Show that

$$
\mathbb{Q}(\sqrt{p}, \sqrt{q})=\mathbb{Q}(\sqrt{p}+\sqrt{q})
$$

and express \sqrt{p} as a polynomial in $x:=\sqrt{p}+\sqrt{q}$ with rational coefficients.

Problem 2

a) Show that

$$
x:=2 \cos \frac{2 \pi}{5}
$$

is an algebraic integer and determine its minimal polynomial.
Hint: Use $x=e^{2 \pi i / 5}+e^{-2 \pi i / 5}$.
b) Deduce a construction of the regular pentagon with ruler and compass.

Problem 3

a) Show that

$$
z:=2 \cos \frac{2 \pi}{7}
$$

is an algebraic integer and determine its minimal polynomial.
b) Express the numbers

$$
z_{1}:=\frac{1}{z}, \quad z_{2}:=2 \cos \frac{4 \pi}{7} \quad \text { and } \quad z_{3}:=2 \cos \frac{6 \pi}{7}
$$

as polynomials in z with rational coefficients.

Problem 4

a) Calculate the greatest common divisor of 13 and $8+i$ in the ring $\mathbb{Z}[i]$.
b) Show that this greatest common divisor is a prime element of $\mathbb{Z}[i]$.

Due: Thursday, October 28, 2004

