Elliptische Funktionen und Elliptische Kurven, Übungen Blatt 11

Es sei k stets ein algebraisch abgeschlossener Körper mit $\operatorname{char}(k) \neq 2, 3$.

Aufgabe 41

Man betrachte eine elliptische Kurve $E \subset \mathbb{P}_2(k)$ mit der affinen Gleichung $Y^2 = P_3(X)$. Sei ferner $k_0 \subset k$ ein Körper, über dem E definiert ist, also $P_3(X) \in k_0[X]$.

Für die 2-Teilungspunkte (siehe Aufgabe 9) von $E(k_0)$, das heißt die Punkte $P \in E(k_0)$ mit 2P = O, beweise man:

 $E(k_0)$ hat einen, zwei, oder vier 2-Teilungspunkte.

Aufgabe 42

Sei E eine elliptische Kurve über k_0 wie in Aufgabe 41. Der Körper k_0 sei endlich. Zeigen Sie:

Die Gruppenordnung von $E(k_0)$ ist genau dann gerade, wenn das Polynom $P_3(X)$ mindestens eine Nullstelle in k_0 besitzt.

Aufgabe 43

Sei E eine elliptische Kurve über k_0 wie in Aufgabe 41.

- a) Man beweise: Der affine Teil von $E(k_0)$ hat entweder keinen, zwei oder acht Wendepunkte.
- b)* Welche Fälle können im Fall $k_0 = \mathbb{R} \subset \mathbb{C} = k$ auftreten?

Aufgabe 44

Es seien E eine elliptische Kurve über \mathbb{C} und $p_1, p_2 \in E(\mathbb{C}), p_1 \neq p_2$, zwei verschiedene Punkte auf dieser Kurve.

- a) Man zeige: Es gibt stets eine rationale Funktion $F \in K(E)$, die in p_1 und p_2 Nullstellen erster Ordnung und genau einen Pol 2. Ordnung in einem weiteren Punkt $q \in E(\mathbb{C})$ hat. Für den Punkt q gibt es vier verschiedene Möglichkeiten.
- b)* Gilt diese Aussage auch für elliptische Kurven über einem beliebigen algebraisch abgeschlossenen Körper?

Abgabetermin: Montag, 22.01.2001, 9:10 Uhr, Übungskasten vor HS 138.