Prof. Dr. Otto Forster

Elliptische Funktionen und Elliptische Kurven, Übungen Blatt 7

Sei k stets ein Körper.

Aufgabe 25

Man zeige: Zu jeder Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,k)$ gibt es genau einen Körper-Automorphismus $\Phi: k(X) \longrightarrow k(X)$ mit $\Phi|k=id_k$ und

$$X \mapsto \Phi(X) := \frac{aX + b}{cX + d}.$$

Aufgabe 26

a) Sei $P_2(X) := (X - a)(X - b) \in k[X], (a, b \in k, a \neq b).$ Man zeige: Es gibt einen Körperisomorphismus

$$\Phi: k(X)[\sqrt{P_2(X)}] \longrightarrow k(X) \quad \text{mit } \Phi | k = id_k.$$

Anleitung: i) Man konstruiere zunächst einen Körperisomorphismus

$$\Phi_1: k(X)[\sqrt{X}] \longrightarrow k(X) \text{ mit } \Phi_1(\sqrt{X}) = X \text{ und } \Phi_1|_{k=id_k}.$$

- ii) Der Körperisomorphismus $k(X) \to k(X)$, der durch $X \mapsto \frac{X-a}{X-b}$ gegeben wird (vgl. Aufg. 25), lässt sich zu einem Körperisomorphismus $\Phi_2: k(X)[\sqrt{X}] \to k(X)[\sqrt{P_2(X)}]$ fortsetzen.
- b)* Sei $P_4(X) \in k[X]$ ein Polynom 4. Grades mit paarweise verschiedenen Nullstellen in k. Man zeige: Es gibt ein Polynom 3. Grades $P_3(X) \in k[X]$ und einen Körperisomorphismus

$$\Phi: k(X)[\sqrt{P_4(X)}] \longrightarrow k(X)[\sqrt{P_3(X)}] \quad \text{mit } \Phi|k = id_k.$$

Aufgabe 27

Sei $k \subset K$ und $v: K^* \longrightarrow \mathbb{Z}$ eine normalisierte diskrete Bewertung von K über k. Für den zu v gehörenden Bewertungsring $A := \mathfrak{o}_{K,v}$ zeige man:

- a) Jedes Ideal $\mathfrak{a} \subset A$ ist ein Hauptideal.
- b) Für das maximale Ideal $\mathfrak{m} \subset A$ gilt $\bigcap_{\nu=0}^{\infty} \mathfrak{m}^{\nu} = (0)$.

Aufgabe 28

Die elliptische Kurve $E \subset \mathbb{P}_2(k)$, $(k \text{ algebraisch abgeschlossen, } \operatorname{char}(k) \neq 2,3)$, habe die affine Gleichung $Y^2 = X^3 + aX + b$.

Im unendlichfernen Punkt O=(0:0:1) ist bekanntlich $\tau:=\frac{X}{Y}$ eine Orts-Uniformisierende. Man berechne den Hauptteil der Laurent-Reihe der Funktion (X+Y)|E im Punkt O bezüglich τ .

Abgabetermin: Montag, 11.12.2000, 9:10 Uhr, Übungskasten vor HS 138.