Übungen zur Vorlesung: Der Minkowski-Raum

Aufgabe 41: a. Sei $U \subset \mathbb{R}^n$ offen und sternförmig bzgl. 0. Zeige: Für eine \mathcal{C}^{∞} -Funktion $f: U \to \mathbb{R}$ gilt

$$f(x) = f(0) + \sum_{\nu} f_{\nu}(x)x_{\nu}, \text{ mit } f_{\nu}(x) := \int_{0}^{1} \frac{\partial f}{\partial x_{\nu}}(tx)dt,$$

für alle $x = (x_1, \ldots, x_n) \in U$.

b. Sei $\theta: \mathcal{C}_a^{\infty} \to \mathbb{R}$ eine Derivation im Punkt $a \in \mathbb{R}^n$. Beweise für alle $f \in \mathcal{C}_a^{\infty}$

$$\theta(f) = \sum_{\nu} c_{\nu} \frac{\partial f}{\partial x_{\nu}}(a), \text{ mit } c_{\nu} := \theta(x_{\nu}).$$

 $(x_{\nu}$ ist dabei die ν -te Koordinatenfunktion.)

Aufgabe 42: Die *Poincaré-Halbebene* ist definiert als die obere Halbebene $H = \{(u, v) \in \mathbb{R}^2 : v > 0\}$ mit der Metrik $g = \frac{1}{v^2}(du \otimes du + dv \otimes dv)$.

 ${\bf a.}$ Parametrisiere die folgenden beiden Kurven in Hnach der Bogenlänge bzgl. der Metrik $g\colon$

$$\gamma_1(t) = (\cos t, \sin t), t \in]0, \pi[, \quad \gamma_2 = (0, t), t \in \mathbb{R}_+^*.$$

b. Zeige: Für beliebige Konstanten $a \in \mathbb{R}, r \in \mathbb{R}_+^*$ sind die folgenden Abbildungen $\tau_i : H \to H$ Isometrien von H:

$$\tau_1(u,v) = (u+a,v), \quad \tau_2(u,v) = (ru,rv),$$

$$\tau_3(u,v) = (-u,v), \quad \tau_4(u,v) = \frac{(u,v)}{u^2+v^2}.$$

c. Zeige: Die Geodätischen von H sind die vertikalen Geraden $\{u=const\}$ und die Halbkreise $\{(u-a)^2+v^2=r^2\}, (a\in\mathbb{R},r\in\mathbb{R}_+^*).$

Aufgabe 43: Die Schwarzschild-Halbebene zur Masse M>0 ist definiert als $P=\{(t,v)\in\mathbb{R}^2: r>2M\}$ mit der Metrik

$$g = (1 - \frac{2M}{r})dt \otimes dt - (1 - \frac{2M}{r})^{-1}dr \otimes dr.$$

Bestimme alle lichtartigen Geodätischen in P.

Aufgabe 44: Gravitationeller Dopplereffekt in der Schwarzschild-Ebene.

a. Bezeichnungen wie in Aufgabe 43. Seien r_E und r_S Konstanten > 2M. Ein Sender mit der Weltlinie $\gamma_S(t) = (t, r_S)$ in P sendet Licht mit der Frequenz ν aus; der Empfänger mit der Weltlinie $\gamma_E(t) = (t, r_E)$ in P mißt (in seiner Eigenzeit) für das ankommende Licht die Frequenz ν' . Beweise

$$\frac{\nu'}{\nu} = \sqrt{\frac{1 - 2M/r_S}{1 - 2M/r_E}}.$$

b. Zeige, daß dieselbe Formel auch in der vierdimensionalen Schwarzschild-Welt für Licht gilt, das sich radial zum Zentralkörper ausbreitet (d.h. $\vartheta = const, \varphi = const$).

Berechne den Wert von $\frac{\nu'}{\nu} - 1$ im Falle der Erde für $r_E =$ Erdradius und $r_S = r_E + h, \ 0 < h << r_E.$

Numerische Werte:

Masse der Erde $M = 5.98 \cdot 10^{27}$ g,

Erdradius $r_E = 6370 \text{ km}$,

Gravitations-Konstante $G = 6.67 \cdot 10^{-8} \frac{\text{cm}^3}{\text{g sec}}$,

Lichtgeschwindigkeit $c=3\cdot 10^{10}$ sec.

Abgabetermin: Mittwoch, den 24.7.1996, 13.15 Uhr.