A Theorem on Zero Schemes of Sections in Two-Bundles over
Affine Schemes with Applications to Set Theoretic Intersections!

O. Forster and K. Wolffhardt

We consider the following problem. Let E be a rank 2 vector bundle over an affine
scheme X and f a section of E with zero scheme Z C X. If codim Z = 2 and there
exists a reasonable theory of Chern classes on X, then Z represents the second Chern
class co(E). Since the second Chern class of a vector bundle and of its dual coincide,
one may ask whether £* admits a section ¢ with the same zero scheme Z.

We prove that this is true if X is an affine algebraic surface over an algebraically closed
field (Proposition 1.3). The proof uses Serre’s extension theory for codimension 2 ideals
and the cancellation theorem of Murthy-Swan. In an elementary way we then prove
the existence of ¢ in a more general situation: X is an arbitrary affine scheme and the
only condition is that det(E) | Z be trivial (Proposition 1.5).

We apply these results to prove generalizations of the theorem of Storch [St] and
Eisenbud-Evans [EE| on the minimal number of equations for the set theoretical de-
scription of closed subschemes of an affine scheme. By other methods, similar results
have been obtained by Boratynski [B], Lyubeznik [L], and Mandal [M]. In Theorem 2.6
we prove: Let Y C X = Spec R be a subscheme. If Y is defined by a locally principal
ideal I C R such that the conormal module I/I? is generated by m elements (m > 2),
then Y can be set theoretically defined by m functions. For arbitrary codimension we
derive the following result: Y can be set theoretically defined by n := dim X functions
if Y is a locally complete intersection without zero-dimensional components. In fact n
functions suffice in a more general case. The conditions on the ideal I are as follows.
For k > 1 let Y}, the set of points y € Y such that I, requires at least k generators. We
suppose dimY, <n—kforl<k<n-—1andY, = 0. Then Y can be set theoretically
defined by n functions (cf. Theorem 3.6).

1. Zero schemes of sections in 2-bundles

1.1. Let E be a vector bundle over a locally ringed space (X, Ox). By this we mean
a locally free Ox-module of finite type. We denote its dual bundle by E*. A section
f € I'(X, E) defines a morphism of Ox-modules

E*_>OX7 QO’_)<S07f>7

which we identify with f. The ringed subspace Z with structure sheaf

Oy = Coker(E* 4, Ox)

!TEXed version of an article which appeared originally in:
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is called the zero scheme of f and denoted by Schg(f) or briefly by Sch(f). Its under-

lying topological space is

V() =Ve(f) ={r e X: f(z) =0}

Here f(z) denotes the element induced by f in the vector space E(z) := E,/m,E,.

1.2. Suppose now that the vector bundle £ on X has constant rank 2 and that the
zero scheme Z = Sch(f) of a section f in E has codimension 2. If for example X is
a non-singular variety over an algebraically closed field, Z represents the Chern class
c2(E), which is equal to co(E*). So the question arises if the dual bundle E* admits a
section with the same zero scheme Z.

Of course, this is not always true. Assume for instance that X is Cohen-Macaulay in
every point of Z. Then a simple necessary condition can be formulated as follows: If
both E and E* admit sections with zero scheme Z, then det(F)? | Z is trivial. To see
this, we consider the conormal bundle v, := 7, /Z% of Z, where 75 is the ideal sheaf
defining Z. The epimorphism

1,20

induces an isomorphism (E* | Z) — wvz. Analogously, we have an isomorphism
(E | Z) = vz. This implies det(FE)? | Z = Oy. This necessary condition is evidently
fulfilled if Z consists of finitely many points. This assumption is sufficient, as the fol-
lowing proposition shows.

1.3. Proposition. Let X be an affine algebraic surface over an algebraically closed
field and E an algebraic vector bundle of rank 2 over X. Let f € T'(X, E) be a section
such that Sch(f) is zero-dimensional and consists of Cohen-Macaulay points of X.
Then there exists a section ¢ € I'(X, E*) of the dual bundle with Sch(yp) = Sch(f).

Remark. Later we will prove a theorem which contains Proposition 1.3 as a special
case. Nevertheless we will bring a separate proof of 1.3, because it is of independent
interest.

Proof. Let Z = Sch(f) and Zy := Im(f : E* — Oyx) the ideal sheaf of Z. Since X is

Cohen-Macaulay in every x € Z, we have an exact sequence (Koszul complex)
0— L"— FE~ i>IZ—>O,

where L = det(E). This exact sequence defines an element ¢ € Ext'(Zz,L*) =
(X, Ext' (Tz,L")). Now

Ext'(Ty, L) = Ext*(Og, L) 2 det(vz) @ L* 2 det(E) @ L* @ Oz =2 Oy.

Since E* is locally free, we have by Serre theory: &, is a generator of Ext'(Zy, L*), for
all x € X. On the other hand,

Ext' (Tz, L) 2 det(E) ® L ® Oy.
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Since Z is zero-dimensional, we have a (non-canonical) isomorphism Ext'(Z, L) =
Ext'(Ty, L¥). Let ¢ € Ext'(Zz, L) be the element which corresponds to ¢ under this
isomorphism and let

0—L—V—7,—0

be the extension correspondimg to é . Again by Serre, V is locally free of rank 2. We
will prove V' = E. First, by Schanuel’s lemma,

Vel =Z=E" @L.

We have to use the following

1.4. Lemma. Let W be a vector bundle over a two-dimensional affine scheme X with
det(W) = Ox. Then W = W*.

Proof of the lemma. We may assume that W has constant rank m. The assertion is
clear for m = 1 and also for m = 2, since for a vector bundle E of constant rank 2 one
has

E* =2 F®det E*.
If m > 2, by a well known theorem of Serre, we can write W = W' @ O% 2, where W’
is a vector bundle of rank 2, and the assertion follows.

We return to the proof of Proposition 1.3. Applying Lemma 1.4 we obtain
Vel"Z2E"oL=Ea®L".

By the cancellation theorem of Murthy and Swan [MS] this implies V' = E, and we
have an exact sequence

O—>L—>EL>IZ—>O,

which proves Proposition 1.3.

Remark. For the application of Murthy-Swan’s cancellation theorem we had to suppose
that X is an affine algebraic surface over an algebraically closed field. Actually the
assertion holds in a much more general situation.

1.5. Theorem. Let X be an affine scheme, E a vector bundle of rank 2 over X and
f e (X, E) a section with zero scheme Z = Sch(f). Suppose that the restriction of
the line bundle L := det(E) to Z is trivial. Then there ezists a section ¢ € T'(X, E*)
with zero scheme Z.

Note that we do not require that X is Cohen-Macaulay in the points of Z nor that Z
is of codimension 2. The condition that det(E) | Z is trivial is automatically fulfilled
if Z consists of finitely many points.
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Proof. Since L | Z is trivial there exists a section h € I'(X, L) such that h | Z has
no zeros. Therefore (f,h) € I'(X, E & L) is unimodular (i.e. a section without zeros).
Hence there exists a section (¢, A) € T'(X, E* @ L*) such that

() (W, [y + (A h) =1
Define

Q:=yY@Y+i(N): E— £,
where i(\) : E — E* is defined by
(i AN)v,w) == (A, v Aw)
for sections v, w of E. Let ¢ := f o ® € I'(X, E*) be the composition of the maps

(]

E-% B L oy,
ie.

(p,v) = (@(v), f) = (b, 0} (¥, ) + (A oA f).
It remains to show that

m(E -2 Ox) = Im(E* -1 Oy) = 7.

i) We prove the equality Im ¢, = T, , first for x € V(A). By definition, Im ¢ C 7.
From (%) it follows that (p, f)(z) = 1. Now

(o, f) =, )%,

hence ¢, (f) is invertible, so Im ¢, = Ox, D Iz,.

ii) The equality Imy, = Z5, for x ¢ V() follows immediately from the fact that
® | X \V()) is an isomorphism. This will be shown using the following funny formula.

1.6. Proposition. Let E be a rank 2 vector bundle and let S, A : E — E* be mor-
phisms, S symmetric and A antisymmetric. Then

det(S + A) = det(S) + det(A).
Remark. These determinants are sections of the line bundle det(E*)?.

Proof. Since the assertion is local, the formula can be verified by simple matrix calculus.

Now we can complete the proof of Theorem 1.5. We apply the proposition to & and
get

det ® = det(¢ @ ) + det(i(N)) = 0+ \?,

4
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hence det @ is invertible on X \ V()), q.e.d.

2. Set theoretic description of hypersurfaces

For the proof of our theorem on the set theoretic description of hypersurfaces in affine
schemes we need some preparations

2.1. Let X = Spec(R) be the spectrum of a ring R and 2 = Specm(R) C X its
maximal spectrum. For subsets Z C Y C X, where Z is closed in Y, we have the
notion of combinatorial (Krull) dimension dimY and codimyZ. We will also use the
following notations:

dimmY := dim (Y N ),
Codimy Z := min {codimy Z, codimynq(Z NNQ)}.

While always dim(Y N Q) < dim Y, examples show that codimyno(Z N€2) may be less,
equal or bigger than codimy Z.

2.2. Lemma. LetY be an affine scheme whose underlying topological space is noethe-
rian. Let Ly, ..., L, be line bundles on Y such that L1 & ... & L, admits a unimodular
section. Then there exists a unimodular section (fy,...,f,) € (Y, L1 @ ...® L,) such
that

Codimy V' (f1,..., fx) = k

forallk=1,...,r.

Proof. Let (g1,...,9,) € T'(Y, L1 @ ... ® L,) be unimodular. Then fi,..., f, are con-
structed by induction in such a way that (fi,..., fx, gks1,---,¢r) is unimodular and
the above inequalities hold.

2.3. Proposition. Let L be a line bundle on an affine scheme X and ¢ € I'(X, L*).
Set Y := Sch(p). Suppose that L | Y is generated by m global sections, m > 2. Then
there exist fi,..., fm € T(X, L) such that

SCh(fl, ey fm) cY.

If Y has noetherian topology, the sections f1,..., fm may be chosen in such a way that
in addition

Codimy Sch(fi,..., fm) =m — 1.

Proof. Choose g¢1,...,9m € I'(X, L) that generate L | Y. Then g; has no zeros on
V(ga,.--,9m) NY. Therefore there exists also a ¢; € I'(X, L*) which has no zeros on
V(ga, -+, gm)NY. Then (¢1, o, ., gm) | Y is a unimodular section of L*@® LEMm=Y | Y.
If Y is a noetherian topological space, we may assume by Lemma 2.2 that

Codimy V (@1, 92, -, gm-1)NY = m — 1.

5
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Set

Z :=Sch(y, 01,92, Gm-1) CY

and
X' :=Sch(g2, .-, Gm_1)-

Since g, | Z has no zeros, L | Z is trivial. Application of Theorem 1.5 to the bundle
L* @ L* | X' and its section (¢, ¢1) | X’ yields (fi, fo) € I'(X, L & L) such that

Z = Sch(f1, fa) N X" = Sch(f1, f2, 92, -, Gm-1)-

Now

(flana--’vfm) = (f17f27927"-7gm—1)

satisfies the assertion of the proposition.

2.4. In the sequel we will use the following notations. For a module M over a ring R
we denote by p(M) its minimal number of generators. We say that an ideal I C R is
generated up to radical by m elements, if there exists an ideal J C I with vJ = VT
and p(J) < m.

2.5. We will need the following fact: If F is a finitely generated Oy-module over a
reduced scheme Y such that p(F,) is constant, then F is locally free.

The following theorem gives a bound on the number of generators up to radical of a
hypersurface ideal I by the number of generators of the conormal bundle /12

2.6. Theorem. Let R be a ring and I C R a finitely generated locally principal ideal
with u(I/1?) < m for some m > 2. Then I is generated up to radical by m elements.

If Supp(I/I?) is moetherian, the following more precise statement holds: There exists

an ideal J C I with /J = I, u(J) < m and

Codimgypp(r/r2) Supp(L/J) = m — 1.

Proof. Set a := vAnnI, R := R/a and let X' := Spec R’ be the affine scheme of R'.
The underlying topological space of X" is V(a) = Supp /. Since p(({/al),) = 1 for
all x € X', and R’ is reduced, the R'-module I/al is locally free of rank 1 by (2.5).
We denote by L the line bundle associated to I/al. The inclusion I — R induces a
morphism ¢ : L — Ox with

Vi-(p) = V(f) N X' = Supp(I/1?);
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this is the underlying topological space of Y := Sch(y). We have
Y, L|Y)=1/(I+a)l,

hence u(T(Y, L | Y)) < u(I/1?) < m. By Proposition 2.3 there exist sections
fi,o s fmel(X' L) =1/al

with
Z:=V(fi,...,fm) CY,

and, if Supp(I/I?) is noetherian, CodimyZ < m — 1. Let F,..., F,, € I be represen-
tatives of fi,..., f, and J C R the ideal generated by Fi,..., F},,. By construction

Supp(1/J) = Z C Supp(I/I?),
hence V(J) = V(I). This proves Theorem 2.6.

2.7. Corollary. Let I be a finitely generated, locally principal ideal in a ring R such
that Specm(R/I) is noetherian and satisfies

dim Specm(R/I) <n—1

for some n > 2. Then I is generated up to radical by n elements.

Proof. Since Y = Specm(R/I) has dimension < n—1 and u((I/1?),) < 1forally €Y,
it follows that I/I? is generated by n elements ([F],[Sw]).

Remark. Corollary 2.7 says in particular: Let R be an n-dimensional noetherian ring,
n > 2. Then every locally principal ideal can be generated up to radical by n elements.
This has been proved by Boratynski [B] for R a 2-dimensional affine algebra over
an algebraically closed field and by Murthy for n-dimensional regular affine algebras
over algebraically closed fields (mentioned in [L]). Mandal proved it for arbitrary n-
dimensional noetherian Cohen-Macaulay rings [M].

2.8. Corollary. Let Y C X be an effective Cartier divisor on an n-dimensional
Stein space X, n = 3. Then the ideal I(Y) of Y is generated up to radical by L”T“J
holomorphic functions.

Remark. On an n-dimensional Stein space any vector bundle of rank d can be generated
by d + |n/2| global sections. (In [FR] this is proved over Stein manifolds; the proof is
valid for arbitrary Stein spaces by the results of Hamm ([H1], [H2]) on the topology of
Stein spaces with singularities.) This implies that /(Y") can be generated by 1+ [n/2]
holomorphic functions (without restriction on n).

Proof of Corollary 2.8. By the above remark, I(Y)/I(Y)? can be generated by 1 +

[ 254 = [%] elements.
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3. Set theoretic description of subschemes

3.1. Lemma. Let M be a finitely generated module over a ring R. We denote by
X the affine scheme of R and by M the Ox-module associated to M. Suppose that
Yo := Supp(M) is noetherian. Then there exist aq,. .., a, € R such that for

Y; =V(w,...,a;) N Y,

we have
i) M| (Y21 NY) is free for j=1,...,m,
0 Y, =0.

Here Y;_1 N\ Y; 1s considered as a reduced subscheme of X. For any locally closed
subscheme Z C X the restriction M | Z denotes the sheaf M ® Oy on Z.

Proof. The a; are constructed by induction. To find o 11, let y € Y be a point such that
p(M,) is minimal in Y;. Then by (2.5) the sheaf M | Y] is free in some neighbourhood
of y in Y}, which can be chosen as Y; \ V(a41).

3.2. Lemma. Let P be a module over a ring R, and o € R such that P, is a free
R,-module of rank r and D(«) := Spec(R) \ V(«) is a noetherian topological space.
Then for every g € P there exists f € P such that

i) f = g mod aP,
ii) Codimp)V(f | D(ar)) = 7.
Proof. There exist ey, ..., e, € aP such that their images €; :=¢e; | D(a) € P, form a

basis of P,. Define g; € R, by
g1 D) =3 g%
j=1

By induction on j choose a; € R such that the sets Y := D(«) and
Vii={r €Y g(e) = a;(2)}

satisfy
Codimy, ,Y; > 1 for j=1,...,r.

For this it suffices that g;(z,) # a;(z,), 0 = 1,...,m, where {x1,...,z,,} meets all
irreducible components of Y;_; and of Y;_; N Specm(R). For

f =g — ZCLJBJ‘
j=1
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we have V(f | V(a)) =Y., which implies the assertion.

3.3. Let M be a finitely generated module over a ring R. For k € N we define subsets
Xi(M) of X := Spec(R) as

Xe(M) :={x € X : u(M,) > k}.

All X (M) are closed sets. We have Xo(M) = X, X;(M) := Supp(M), and X (M) =
for large k. We will apply this concept especially to the conormal module I/I? of a
finitely generated ideal I. Note that X;(I/I?) = Supp(I)NV (1) and Xy (I/I*) = X;.(I)
for k > 2.

To estimate the minimal number of generators of a module M over R we define the
invariant

b(M) = sup{k + dimm Xy (M) : k > 1 and X (M) # 0}, if M #0,
10, if M=0.

If Specm(R) is noetherian, we have pu(M) < b(M), (cf. [F], [Sw]).

3.4. Proposition. Let M be a finitely generated R-module such that Supp(M) is
noetherian. For k € N let X| = Xi(M) ~\ Xy41(M). There exists an f € M such that

Codimx, V(f | X}) =k for all k.

(Note that, by definition, the empty subset of any topological space has codimension
+00.)

Proof. Let Supp(M) =Yy D Y] D ... DY, = 0 be a stratification as in Lemma 3.1.
We find f by constructing f; = f | Y; for j =m,m —1,...,0 inductively with the aid
of Lemma 3.2.

Remark. Proposition 3.4 contains as a special case the following well known result [S]:
Let P be a finitely generated projective module of rank r over a ring with noetherian
spectrum. Then there exists an f € P such that CodimV(f) > r. If, in particular,
dim Specm(R) < r, the module P has a direct summand isomorphic to R.

3.5. Corollary. Let M be a finitely generated R-module such that Supp(M) is noethe-
rian. Suppose that for some m > 2 we have

Then there exist elements f1,..., fm_o € M such that for j =1,...,m — 2 the module
M; = M/(fi,..., fm—2) satisfies

b(M) <m—j,  Xinj(M;)=0.
Proof by induction on j, using Proposition 3.4.

9
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In particular, M,, o has a support Y := Supp(M,,_2) with dimmY < 1, and M, »
induces by (2.5) a line bundle on the reduced subscheme Y of Spec R.

3.6. Theorem. Let I be a finitely generated ideal of a ring R such that Supp(I/I?)
is noetherian. Suppose that for some positive integer m we have

bI/I*) <m and X,(I/I%) = 0.

Then there exists an ideal J C I with u(J) < m, v/J =1 and dimm Supp(I/J) < 0

Proof. For m = 1 we have I/I? = 0 and the assertion is trivial. Therefore suppose
m > 2. By Corollary 3.5 there exist fi,..., f,n_2 € I such that the ideal

=1/(f1, -, fm—2)

of the ring

=R/(f1,--- fm-2)

satisfies
b(I'/T?) <2 and Xy(I'/I7) = 0.

Identifying Spec(R’) with V(fi,..., fm—2) C Spec(R) we have V(I') = V(I). By The-

orem 2.6 there exists an ideal J' C I’ generated by two elements f; _,, f} , such that
V(J)=V({') and dimm Supp(I'/J") <0

Let fi-1, fm € I be representatives of f/ |, f! and J := (fi,..., fm). Since V(J) =
V(J') and I/J = I'/.J’, the assertion follows.

3.7. Remark. The assumptions on b(I/I?) and X (I/I?) in Theorem 3.6 are for m > 2
equivalent to

() dimm(V <1/12> n Supp< N<m—1,
(ii) dimm X (1) <m — fork=2,...,m—1,
(iii) Xm(I) = 0.

Therefore Theorem 3.6 applies in particular to locally complete intersections. By a
locally complete intersection ideal we mean an ideal I in a ring R such that

p(I,) < height(Z,) for all x € V(I).

Note that, by this definition, I, need not be generated by a regular sequence in R,
(which would be automatically the case if R were supposed to be Cohen-Macaulay).

10
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Further we do not require V(1) to be of pure codimension. For a finitely generated
locally complete intersection ideal I in an n-dimensional ring we have

dim Xi(I) <n—k for k> 2.
Therefore Theorem 3.6 implies

3.8. Corollary. Let R be an n-dimensional noetherian ring and I C R a locally
complete intersection ideal such that V (I) has no zero-dimensional components. Then
I can be generated up to radical by n elements.

In the case of Cohen-Macaulay rings this result was obtained by Lyubeznik [L] for
height(I) > 2, and by Mandal [M] also for height one.

In general, Corollary 3.8 is not correct if V(I) has zero-dimensional components. For
example let R be the coordinate ring of a smooth n-dimensional affine algebraic variety
X over an algebraically closed field, and I the ideal of a single point z € X. If [ is
generated up to radical by n elements, then the class of {x} in the Chow group A"(X)
of codimension n cycles is a torsion element. This is not always the case (see e.g. [MM]

or [R]).
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