
A Theorem on Zero Schemes of Sections in Two-Bundles over

Affine Schemes with Applications to Set Theoretic Intersections1

O. Forster and K. Wolffhardt

We consider the following problem. Let E be a rank 2 vector bundle over an affine
scheme X and f a section of E with zero scheme Z ⊂ X. If codimZ = 2 and there
exists a reasonable theory of Chern classes on X, then Z represents the second Chern
class c2(E). Since the second Chern class of a vector bundle and of its dual coincide,
one may ask whether E∗ admits a section ϕ with the same zero scheme Z.

We prove that this is true if X is an affine algebraic surface over an algebraically closed
field (Proposition 1.3). The proof uses Serre’s extension theory for codimension 2 ideals
and the cancellation theorem of Murthy-Swan. In an elementary way we then prove
the existence of ϕ in a more general situation: X is an arbitrary affine scheme and the
only condition is that det(E) | Z be trivial (Proposition 1.5).

We apply these results to prove generalizations of the theorem of Storch [St] and
Eisenbud-Evans [EE] on the minimal number of equations for the set theoretical de-
scription of closed subschemes of an affine scheme. By other methods, similar results
have been obtained by Boratyński [B], Lyubeznik [L], and Mandal [M]. In Theorem 2.6
we prove: Let Y ⊂ X = SpecR be a subscheme. If Y is defined by a locally principal
ideal I ⊂ R such that the conormal module I/I2 is generated by m elements (m > 2),
then Y can be set theoretically defined by m functions. For arbitrary codimension we
derive the following result: Y can be set theoretically defined by n := dimX functions
if Y is a locally complete intersection without zero-dimensional components. In fact n
functions suffice in a more general case. The conditions on the ideal I are as follows.
For k > 1 let Yk the set of points y ∈ Y such that Iy requires at least k generators. We
suppose dimYk 6 n− k for 1 6 k 6 n− 1 and Yn = ∅. Then Y can be set theoretically
defined by n functions (cf. Theorem 3.6).

1. Zero schemes of sections in 2-bundles

1.1. Let E be a vector bundle over a locally ringed space (X,OX). By this we mean
a locally free OX-module of finite type. We denote its dual bundle by E∗. A section
f ∈ Γ(X,E) defines a morphism of OX -modules

E∗ −→ OX , ϕ 7→ 〈ϕ, f〉,

which we identify with f . The ringed subspace Z with structure sheaf

OZ := Coker(E∗ f−→OX)

1TEXed version of an article which appeared originally in:
G.M. Greuel, G. Trautmann (Eds.): Singularities, Representation of Algebras, and Vector Bundles.
Proceedings, Lambrecht 1985, Lecture Notes in Mathematics, Vol. 1270 (1987), pp. 372 – 383.
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is called the zero scheme of f and denoted by SchE(f) or briefly by Sch(f). Its under-
lying topological space is

V (f) = VE(f) := {x ∈ X : f(x) = 0}.

Here f(x) denotes the element induced by f in the vector space E(x) := Ex/mxEx.

1.2. Suppose now that the vector bundle E on X has constant rank 2 and that the
zero scheme Z = Sch(f) of a section f in E has codimension 2. If for example X is
a non-singular variety over an algebraically closed field, Z represents the Chern class
c2(E), which is equal to c2(E

∗). So the question arises if the dual bundle E∗ admits a
section with the same zero scheme Z.

Of course, this is not always true. Assume for instance that X is Cohen-Macaulay in
every point of Z. Then a simple necessary condition can be formulated as follows: If
both E and E∗ admit sections with zero scheme Z, then det(E)2 | Z is trivial. To see
this, we consider the conormal bundle νZ := IZ/I2

Z of Z, where IZ is the ideal sheaf
defining Z. The epimorphism

E∗ f−→ IZ → 0

induces an isomorphism (E∗ | Z)
∼−→ νZ . Analogously, we have an isomorphism

(E | Z)
∼−→ νZ . This implies det(E)2 | Z ∼= OZ . This necessary condition is evidently

fulfilled if Z consists of finitely many points. This assumption is sufficient, as the fol-
lowing proposition shows.

1.3. Proposition. Let X be an affine algebraic surface over an algebraically closed
field and E an algebraic vector bundle of rank 2 over X. Let f ∈ Γ(X,E) be a section
such that Sch(f) is zero-dimensional and consists of Cohen-Macaulay points of X.
Then there exists a section ϕ ∈ Γ(X,E∗) of the dual bundle with Sch(ϕ) = Sch(f).

Remark. Later we will prove a theorem which contains Proposition 1.3 as a special
case. Nevertheless we will bring a separate proof of 1.3, because it is of independent
interest.

Proof. Let Z = Sch(f) and IZ := Im(f : E∗ → OX) the ideal sheaf of Z. Since X is
Cohen-Macaulay in every x ∈ Z, we have an exact sequence (Koszul complex)

0 −→ L∗ −→ E∗ f−→ IZ −→ 0,

where L = det(E). This exact sequence defines an element ξ ∈ Ext1(IZ , L
∗) =

Γ(X, Ext1(IZ , L
∗)). Now

Ext1(IZ , L
∗) ∼= Ext2(OZ , L

∗) ∼= det(νZ) ⊗ L∗ ∼= det(E) ⊗ L∗ ⊗OZ
∼= OZ .

Since E∗ is locally free, we have by Serre theory: ξx is a generator of Ext1(IZ , L
∗)x for

all x ∈ X. On the other hand,

Ext1(IZ , L) ∼= det(E) ⊗ L⊗OZ .
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Since Z is zero-dimensional, we have a (non-canonical) isomorphism Ext1(IZ , L) ∼=
Ext1(IZ , L

∗). Let ξ̃ ∈ Ext1(IZ , L) be the element which corresponds to ξ under this
isomorphism and let

0 −→ L −→ V −→ IZ −→ 0

be the extension correspondimg to ξ̃. Again by Serre, V is locally free of rank 2. We
will prove V ∼= E. First, by Schanuel’s lemma,

V ⊕ L∗ ∼= E∗ ⊕ L.

We have to use the following

1.4. Lemma. Let W be a vector bundle over a two-dimensional affine scheme X with
det(W ) ∼= OX. Then W ∼= W ∗.

Proof of the lemma. We may assume that W has constant rank m. The assertion is
clear for m = 1 and also for m = 2, since for a vector bundle E of constant rank 2 one
has

E∗ ∼= E ⊗ detE∗.

If m > 2, by a well known theorem of Serre, we can write W ∼= W ′ ⊕Om−2
X , where W ′

is a vector bundle of rank 2, and the assertion follows.

We return to the proof of Proposition 1.3. Applying Lemma 1.4 we obtain

V ⊕ L∗ ∼= E∗ ⊕ L ∼= E ⊕ L∗.

By the cancellation theorem of Murthy and Swan [MS] this implies V ∼= E, and we
have an exact sequence

0 −→ L −→ E
ϕ−→ IZ −→ 0,

which proves Proposition 1.3.

Remark. For the application of Murthy-Swan’s cancellation theorem we had to suppose
that X is an affine algebraic surface over an algebraically closed field. Actually the
assertion holds in a much more general situation.

1.5. Theorem. Let X be an affine scheme, E a vector bundle of rank 2 over X and
f ∈ Γ(X,E) a section with zero scheme Z := Sch(f). Suppose that the restriction of
the line bundle L := det(E) to Z is trivial. Then there exists a section ϕ ∈ Γ(X,E∗)
with zero scheme Z.

Note that we do not require that X is Cohen-Macaulay in the points of Z nor that Z
is of codimension 2. The condition that det(E) | Z is trivial is automatically fulfilled
if Z consists of finitely many points.
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Proof. Since L | Z is trivial there exists a section h ∈ Γ(X,L) such that h | Z has
no zeros. Therefore (f, h) ∈ Γ(X,E ⊕ L) is unimodular (i.e. a section without zeros).
Hence there exists a section (ψ, λ) ∈ Γ(X,E∗ ⊕ L∗) such that

(∗) 〈ψ, f〉 + 〈λ, h〉 = 1.

Define

Φ := ψ ⊗ ψ + i(λ) : E −→ E∗,

where i(λ) : E → E∗ is defined by

〈i(λ)v, w〉 := 〈λ, v ∧ w〉

for sections v, w of E. Let ϕ := f ◦ Φ ∈ Γ(X,E∗) be the composition of the maps

E
Φ−→ E∗ f−→ OX ,

i.e.

〈ϕ, v〉 = 〈Φ(v), f〉 = 〈ψ, v〉〈ψ, f〉+ 〈λ, v ∧ f〉.

It remains to show that

Im(E
ϕ−→ OX) = Im(E∗ f−→ OX) =: IZ .

i) We prove the equality Imϕx = IZ,x first for x ∈ V (λ). By definition, Imϕ ⊂ IZ .
From (∗) it follows that 〈ϕ, f〉(x) = 1. Now

〈ϕ, f〉 = 〈ψ, f〉2,

hence ϕx(f) is invertible, so Imϕx = OX,x ⊃ IZ,x.

ii) The equality Imϕx = IZ,x for x 6∈ V (λ) follows immediately from the fact that
Φ | XrV (λ) is an isomorphism. This will be shown using the following funny formula.

1.6. Proposition. Let E be a rank 2 vector bundle and let S,A : E → E∗ be mor-
phisms, S symmetric and A antisymmetric. Then

det(S + A) = det(S) + det(A).

Remark. These determinants are sections of the line bundle det(E∗)2.

Proof. Since the assertion is local, the formula can be verified by simple matrix calculus.

Now we can complete the proof of Theorem 1.5. We apply the proposition to Φ and
get

det Φ = det(ψ ⊗ ψ) + det(i(λ)) = 0 + λ2,
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hence det Φ is invertible on X r V (λ), q.e.d.

2. Set theoretic description of hypersurfaces

For the proof of our theorem on the set theoretic description of hypersurfaces in affine
schemes we need some preparations

2.1. Let X = Spec(R) be the spectrum of a ring R and Ω = Specm(R) ⊂ X its
maximal spectrum. For subsets Z ⊂ Y ⊂ X, where Z is closed in Y , we have the
notion of combinatorial (Krull) dimension dimY and codimY Z. We will also use the
following notations:

dimm Y := dim (Y ∩ Ω),

CodimYZ := min {codimYZ, codimY ∩Ω(Z ∩ Ω)}.

While always dim(Y ∩Ω) 6 dimY , examples show that codimY ∩Ω(Z ∩Ω) may be less,
equal or bigger than codimY Z.

2.2. Lemma. Let Y be an affine scheme whose underlying topological space is noethe-
rian. Let L1, . . . , Lr be line bundles on Y such that L1 ⊕ . . .⊕Lr admits a unimodular
section. Then there exists a unimodular section (f1, . . . , fr) ∈ Γ(Y, L1 ⊕ . . .⊕ Lr) such
that

CodimY V (f1, . . . , fk) > k

for all k = 1, . . . , r.

Proof. Let (g1, . . . , gr) ∈ Γ(Y, L1 ⊕ . . . ⊕ Lr) be unimodular. Then f1, . . . , fr are con-
structed by induction in such a way that (f1, . . . , fk, gk+1, . . . , gr) is unimodular and
the above inequalities hold.

2.3. Proposition. Let L be a line bundle on an affine scheme X and ϕ ∈ Γ(X,L∗).
Set Y := Sch(ϕ). Suppose that L | Y is generated by m global sections, m > 2. Then
there exist f1, . . . , fm ∈ Γ(X,L) such that

Sch(f1, . . . , fm) ⊂ Y.

If Y has noetherian topology, the sections f1, . . . , fm may be chosen in such a way that
in addition

CodimY Sch(f1, . . . , fm) > m− 1.

Proof. Choose g1, . . . , gm ∈ Γ(X,L) that generate L | Y . Then g1 has no zeros on
V (g2, . . . , gm) ∩ Y . Therefore there exists also a ϕ1 ∈ Γ(X,L∗) which has no zeros on
V (g2, . . . , gm)∩Y . Then (ϕ1, g2, . . . , gm) | Y is a unimodular section of L∗⊕L⊕(m−1) | Y .
If Y is a noetherian topological space, we may assume by Lemma 2.2 that

CodimY V (ϕ1, g2, . . . , gm−1) ∩ Y > m− 1.
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Set

Z := Sch(ϕ, ϕ1, g2, . . . , gm−1) ⊂ Y

and

X ′ := Sch(g2, . . . , gm−1).

Since gm | Z has no zeros, L | Z is trivial. Application of Theorem 1.5 to the bundle
L∗ ⊕ L∗ | X ′ and its section (ϕ, ϕ1) | X ′ yields (f1, f2) ∈ Γ(X,L⊕ L) such that

Z = Sch(f1, f2) ∩X ′ = Sch(f1, f2, g2, . . . , gm−1).

Now

(f1, f2, . . . , fm) := (f1, f2, g2, . . . , gm−1)

satisfies the assertion of the proposition.

2.4. In the sequel we will use the following notations. For a module M over a ring R
we denote by µ(M) its minimal number of generators. We say that an ideal I ⊂ R is
generated up to radical by m elements, if there exists an ideal J ⊂ I with

√
J =

√
I

and µ(J) 6 m.

2.5. We will need the following fact: If F is a finitely generated OY -module over a
reduced scheme Y such that µ(Fy) is constant, then F is locally free.

The following theorem gives a bound on the number of generators up to radical of a
hypersurface ideal I by the number of generators of the conormal bundle I/I2.

2.6. Theorem. Let R be a ring and I ⊂ R a finitely generated locally principal ideal
with µ(I/I2) 6 m for some m > 2. Then I is generated up to radical by m elements.

If Supp(I/I2) is noetherian, the following more precise statement holds: There exists
an ideal J ⊂ I with

√
J =

√
I, µ(J) 6 m and

CodimSupp(I/I2) Supp(I/J) > m− 1.

Proof. Set a :=
√

Ann I, R′ := R/a and let X ′ := SpecR′ be the affine scheme of R′.
The underlying topological space of X ′ is V (a) = Supp I. Since µ((I/aI)x) = 1 for
all x ∈ X ′, and R′ is reduced, the R′-module I/aI is locally free of rank 1 by (2.5).
We denote by L the line bundle associated to I/aI. The inclusion I → R induces a
morphism ϕ : L→ OX′ with

VL∗(ϕ) = V (f) ∩X ′ = Supp(I/I2);
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this is the underlying topological space of Y := Sch(ϕ). We have

Γ(Y, L | Y ) = I/(I + a)I,

hence µ(Γ(Y, L | Y )) 6 µ(I/I2) 6 m. By Proposition 2.3 there exist sections

f1, . . . , fm ∈ Γ(X ′, L) = I/aI

with

Z := V (f1, . . . , fm) ⊂ Y,

and, if Supp(I/I2) is noetherian, CodimY Z 6 m− 1. Let F1, . . . , Fm ∈ I be represen-
tatives of f1, . . . , fm, and J ⊂ R the ideal generated by F1, . . . , Fm. By construction

Supp(I/J) = Z ⊂ Supp(I/I2),

hence V (J) = V (I). This proves Theorem 2.6.

2.7. Corollary. Let I be a finitely generated, locally principal ideal in a ring R such
that Specm(R/I) is noetherian and satisfies

dim Specm(R/I) 6 n− 1

for some n > 2. Then I is generated up to radical by n elements.

Proof. Since Y = Specm(R/I) has dimension 6 n−1 and µ((I/I2)y) 6 1 for all y ∈ Y ,
it follows that I/I2 is generated by n elements ([F],[Sw]).

Remark. Corollary 2.7 says in particular: Let R be an n-dimensional noetherian ring,
n > 2. Then every locally principal ideal can be generated up to radical by n elements.
This has been proved by Boratyński [B] for R a 2-dimensional affine algebra over
an algebraically closed field and by Murthy for n-dimensional regular affine algebras
over algebraically closed fields (mentioned in [L]). Mandal proved it for arbitrary n-
dimensional noetherian Cohen-Macaulay rings [M].

2.8. Corollary. Let Y ⊂ X be an effective Cartier divisor on an n-dimensional
Stein space X, n > 3. Then the ideal I(Y ) of Y is generated up to radical by ⌊n+1

2
⌋

holomorphic functions.

Remark. On an n-dimensional Stein space any vector bundle of rank d can be generated
by d+ ⌊n/2⌋ global sections. (In [FR] this is proved over Stein manifolds; the proof is
valid for arbitrary Stein spaces by the results of Hamm ([H1], [H2]) on the topology of
Stein spaces with singularities.) This implies that I(Y ) can be generated by 1 + ⌊n/2⌋
holomorphic functions (without restriction on n).

Proof of Corollary 2.8. By the above remark, I(Y )/I(Y )2 can be generated by 1 +
⌊n−1

2
⌋ = ⌊n+1

2
⌋ elements.

7



O. Forster and K. Wolffhardt

3. Set theoretic description of subschemes

3.1. Lemma. Let M be a finitely generated module over a ring R. We denote by
X the affine scheme of R and by M the OX-module associated to M . Suppose that
Y0 := Supp(M) is noetherian. Then there exist α1, . . . , αm ∈ R such that for

Yj := V (α1, . . . , αj) ∩ Y0

we have

i) M | (Yj−1 r Yj) is free for j = 1, . . . , m,

ii) Ym = ∅.
Here Yj−1 r Yj is considered as a reduced subscheme of X. For any locally closed
subscheme Z ⊂ X the restriction M | Z denotes the sheaf M⊗OZ on Z.

Proof. The αj are constructed by induction. To find αj+1, let y ∈ Yj be a point such that
µ(My) is minimal in Yj. Then by (2.5) the sheaf M | Yj is free in some neighbourhood
of y in Yj , which can be chosen as Yj r V (αj+1).

3.2. Lemma. Let P be a module over a ring R, and α ∈ R such that Pα is a free
Rα-module of rank r and D(α) := Spec(R) r V (α) is a noetherian topological space.
Then for every g ∈ P there exists f ∈ P such that

i) f ≡ g mod αP ,

ii) CodimD(α)V (f | D(α)) > r.

Proof. There exist e1, . . . , er ∈ αP such that their images ej := ej | D(α) ∈ Pα form a
basis of Pα. Define gj ∈ Rα by

g | D(α) =

r
∑

j=1

gjej.

By induction on j choose aj ∈ R such that the sets Y0 := D(α) and

Yj := {x ∈ Yj−1 : gj(e) = aj(x)}

satisfy

CodimYj−1
Yj > 1 for j = 1, . . . , r.

For this it suffices that gj(xµ) 6= aj(xµ), µ = 1, . . . , m, where {x1, . . . , xm} meets all
irreducible components of Yj−1 and of Yj−1 ∩ Specm(R). For

f := g −
r

∑

j=1

ajej
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we have V (f | V (α)) = Yr, which implies the assertion.

3.3. Let M be a finitely generated module over a ring R. For k ∈ N we define subsets
Xk(M) of X := Spec(R) as

Xk(M) := {x ∈ X : µ(Mx) > k}.

All Xk(M) are closed sets. We have X0(M) = X, X1(M) := Supp(M), and Xk(M) = ∅
for large k. We will apply this concept especially to the conormal module I/I2 of a
finitely generated ideal I. Note that X1(I/I

2) = Supp(I)∩V (I) and Xk(I/I
2) = Xk(I)

for k > 2.

To estimate the minimal number of generators of a module M over R we define the
invariant

b(M) :=

{

sup{k + dimmXk(M) : k > 1 and Xk(M) 6= ∅}, if M 6= 0,
0, if M = 0.

If Specm(R) is noetherian, we have µ(M) 6 b(M), (cf. [F], [Sw]).

3.4. Proposition. Let M be a finitely generated R-module such that Supp(M) is
noetherian. For k ∈ N let X ′

k := Xk(M) rXk+1(M). There exists an f ∈M such that

CodimX′

k
V (f | X ′

k) > k for all k.

(Note that, by definition, the empty subset of any topological space has codimension
+∞.)

Proof. Let Supp(M) = Y0 ⊃ Y1 ⊃ . . . ⊃ Ym = ∅ be a stratification as in Lemma 3.1.
We find f by constructing fj = f | Yj for j = m,m− 1, . . . , 0 inductively with the aid
of Lemma 3.2.

Remark. Proposition 3.4 contains as a special case the following well known result [S]:
Let P be a finitely generated projective module of rank r over a ring with noetherian
spectrum. Then there exists an f ∈ P such that CodimV (f) > r. If, in particular,
dim Specm(R) < r, the module P has a direct summand isomorphic to R.

3.5. Corollary. Let M be a finitely generated R-module such that Supp(M) is noethe-
rian. Suppose that for some m > 2 we have

b(M) 6 m, Xm(M) = ∅.

Then there exist elements f1, . . . , fm−2 ∈ M such that for j = 1, . . . , m− 2 the module
Mj := M/(f1, . . . , fm−2) satisfies

b(Mj) 6 m− j, Xm−j(Mj) = ∅.

Proof by induction on j, using Proposition 3.4.
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In particular, Mm−2 has a support Y := Supp(Mm−2) with dimm Y 6 1, and Mm−2

induces by (2.5) a line bundle on the reduced subscheme Y of SpecR.

3.6. Theorem. Let I be a finitely generated ideal of a ring R such that Supp(I/I2)
is noetherian. Suppose that for some positive integer m we have

b(I/I2) 6 m and Xm(I/I2) = ∅.

Then there exists an ideal J ⊂ I with µ(J) 6 m,
√
J =

√
I and dimm Supp(I/J) 6 0.

Proof. For m = 1 we have I/I2 = 0 and the assertion is trivial. Therefore suppose
m > 2. By Corollary 3.5 there exist f1, . . . , fm−2 ∈ I such that the ideal

I ′ := I/(f1, . . . , fm−2)

of the ring

R′ := R/(f1, . . . , fm−2)

satisfies

b(I ′/I ′2) 6 2 and X2(I
′/I ′2) = ∅.

Identifying Spec(R′) with V (f1, . . . , fm−2) ⊂ Spec(R) we have V (I ′) = V (I). By The-
orem 2.6 there exists an ideal J ′ ⊂ I ′ generated by two elements f ′

m−1, f
′

m, such that

V (J ′) = V (I ′) and dimm Supp(I ′/J ′) 6 0.

Let fm−1, fm ∈ I be representatives of f ′

m−1, f
′

m and J := (f1, . . . , fm). Since V (J) =
V (J ′) and I/J ∼= I ′/J ′, the assertion follows.

3.7. Remark. The assumptions on b(I/I2) and X(I/I2) in Theorem 3.6 are for m > 2
equivalent to

(i) dimm (V (I/I2) ∩ Supp(I)) 6 m− 1,

(ii) dimmXk(I) 6 m− k for k = 2, . . . , m− 1,

(iii) Xm(I) = ∅.

Therefore Theorem 3.6 applies in particular to locally complete intersections. By a
locally complete intersection ideal we mean an ideal I in a ring R such that

µ(Ix) 6 height(Ix) for all x ∈ V (I).

Note that, by this definition, Ix need not be generated by a regular sequence in Rx

(which would be automatically the case if R were supposed to be Cohen-Macaulay).
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Further we do not require V (I) to be of pure codimension. For a finitely generated
locally complete intersection ideal I in an n-dimensional ring we have

dimXk(I) 6 n− k for k > 2.

Therefore Theorem 3.6 implies

3.8. Corollary. Let R be an n-dimensional noetherian ring and I ⊂ R a locally
complete intersection ideal such that V (I) has no zero-dimensional components. Then
I can be generated up to radical by n elements.

In the case of Cohen-Macaulay rings this result was obtained by Lyubeznik [L] for
height(I) > 2, and by Mandal [M] also for height one.

In general, Corollary 3.8 is not correct if V (I) has zero-dimensional components. For
example let R be the coordinate ring of a smooth n-dimensional affine algebraic variety
X over an algebraically closed field, and I the ideal of a single point x ∈ X. If I is
generated up to radical by n elements, then the class of {x} in the Chow group An(X)
of codimension n cycles is a torsion element. This is not always the case (see e.g. [MM]
or [R]).
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