
The Theorem of Gauß-Bonnet
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Abstract. The theorem of Gauß-Bonnet is interpreted within the framework of Complex
Analysis of one and several variables.

Geodesic triangles

In 1828, Gauß proved in his Disquisitiones generales circa superficies curvas [3] the
following theorem: Let ABC be a geodesic triangle on a smooth oriented surface X
in Euclidean 3-space with angles α, β, γ. (Geodesic means that the three sides of the
triangle are geodesic lines.) Then the spherical excess α+β+γ−π equals the integral
of the curvature K over the triangle:

α + β + γ − π =

∫

ABC

KdS.

Here dS is the surface element (2-dimensional volume element) on X. To define the
curvature K, Gauß introduced a map (known today as Gauß map), which can be
constructed as follows: Let N(x), x ∈ X, be a unit normal field on the surface X.
Then N defines a map Γ from X to the unit sphere S2. Let dS be an infinitesimal
surface element at x ∈ X. Then the curvature K(x) is defined as the ratio of the
areas of Γ(dS) and dS. This definition apparently depends on the embedding of X
in 3-space. However Gauß proved in the same Disquisitiones his famous Theorema

egregium that K depends only on the inner geometry (i.e. the metric tensor) of the
surface X. If we write in classical notation the metric on X in local coordinates as
ds2 = Edx2 + 2Fdxdy + Gdy2, then K is a function of E,F,G and its derivatives up
to second order.
O. Bonnet (1819 - 1892) considered also the case when the sides of the triangle are
not necessarily geodesic and calculated the correction terms that have to be added.
However we will not need this in the sequel.

Euler characteristic

Let T be a triangulation of a closed oriented connected surface X. We denote by n0(T )
the number of vertices, by n1(T ) the number of edges and by n2(T ) the number of
triangles of this triangulation. Then

χ(T ) := n0(T ) − n1(T ) + n2(T )

1This article appeared in: Symposia Gaussiana, Conf. A, Editors Behara/Fritsch/Lintz.
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is the Euler characteristic of T . It is well known (and was essentially proved by Euler
for the case of surfaces homeomorphic to S2) that χ(T ) does not depend on the tri-
angulation but only on the surface and may therefore be denoted by χ(X). The Euler
characteristic can be expressed by other topological invariants of the surface as

χ(X) = b0(X) − b1(X) + b2(X),

where bi(X) are the Betti numbers of X. Since for a closed connected oriented surface
b0(X) = b2(X) = 1 and b1(X) is even, b1(X) = 2g(X), where g(X) is called the genus

of X, we have also
χ(X) = 2 − 2g(X).

We are now in a position to state the theorem of Gauß-Bonnet.

Theorem (Gauß-Bonnet). Let X be a smooth closed oriented surface in R3. Then
∫

X

KdS = 2πχ(X).

Proof. We use a geodesic triangulation T of the surface with triangles ∆ν , ν=1, . . .,n2(T ).
Let αν , βν , γν be the angles of ∆ν . Then

∫

∆ν

KdS = αν + βν + γν − π.

Summation over ν yields
∫

X

KdS =
∑

(αν + βν + γν) − πn2(T ).

Now the sum of angles at every vertice of the triangulation is 2π, hence
∑

(αν + βν + γν) = 2πn0(T ).

On the other hand, every edge of the triangulation belongs to two triangles, which
implies

2n1(T ) = 3n2(T ).

Putting everything together, we get
∫

X

KdS = π(2n0(T ) − n2(T ))

= π(2n0(T ) − 2n1(T ) + 2n2(T )) = 2πχ(T ).

This proves the theorem.

Note that for the proof of the theorem one does not need the invariance of the Euler
characteristic. On the contrary, since the left hand side of the Gauß-Bonnet formula
does not depend on the triangulation, the theorem implies that the Euler characteristic
depends only on the surface and its metric. With a little extra work one can see that it is
not necessary to suppose the triangulation as geodesic. (If a non geodesic triangulation
is given, in a sufficiently fine subdivision one can replace all edges by geodesics, which
leaves the Euler characteristic unchanged.) Thus the right hand side does not depend
on the metric, so also

∫
X
KdS does not depend on the metric.
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Isothermal coordinates

If we look at the underlying conformal structure of a surface in Euclidean 3-space we
get a Riemann surface. Indeed this point of view was already taken by Gauß, who
introduced isothermal coordinates. These are local coordinates such that the metric
takes the form

ds2 = λ(x, y)(dx2 + dy2).

Therefore (x, y) defines a conformal map of a coordinate neighborhood of the surface
to the Euclidean plane. The existence of isothermal coordinates is equivalent to the
solution of the so called Beltrami equation (see Ahlfors [1]). Already Gauß proved
the existence of isothermal coordinates for the real analytic case. Let us briefly de-
scribe his idea. If the metric is given locally by the positive definite quadratic form(
E F
F G

)
, then in every point there exist two complex conjugate isotropic directions

which annihilate this form. So if we embed the surface into a 2-dimensional complex
analytic manifold we can find there local coordinates (ξ, η) such that ds2 transforms to
ds2 = λdξdη. Then the coordinates (x, y) with ξ = x+ iy, η = x− iy are isothermal.
Using isothermal coordinates (x, y), the formula for the Gauß curvature of the metric
ds2 = λ(dx2 + dy2) simplifies to

K = −
1

2λ
∆ log λ,

where ∆ is the Laplace operator. Note that the 2-dimensional volume element with
respect to these coordinates is dS = λdx ∧ dy, hence

KdS = −1

2
(∆ log λ) dx ∧ dy.

If we introduce the complex coordinate z = x + iy and use Wirtinger calculus, the
metric becomes ds2 = λ|dz|2 and

KdS = −i
( ∂2

∂z̄∂z
log λ

)
dz ∧ dz̄ = i ∂̄ ∂ log λ.

Here the last expression is to be understood in the sense of calculus of exterior differ-
ential forms:

∂f =
∂f

∂z
dz, ∂̄f =

∂f

∂z̄
dz̄,

∂(f ∧ dg) =
∂f

∂z
dz ∧ dg, ∂̄(f ∧ dg) =

∂f

∂z̄
dz̄ ∧ dg.

We have d = ∂ + ∂̄ and ∂ ∂ = ∂̄ ∂̄ = 0, hence one can also write

KdS = i d (∂ log λ).

Abelian differentials

On our surface X, which we regard as a compact Riemann surface, we consider now an
abelian differential σ, i.e. a meromorphic differential form. The degree of σ, defined as
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the difference of the number of zeroes and the number of poles (counted with multiplic-
ities), equals 2g−2, where g is the genus of X. This fact is equivalent to the theorem of
Gauß-Bonnet, as we shall see now. Let (Uν , zν) be a covering of X by complex charts.
We may suppose that every Uν contains at most one zero or one pole of σ, and that
in this case the zero or pole occurs for zν = 0. With respect to the coordinates zν the
metric is given by ds2 = λν |dzν |

2 and the differential form may be written as σ = fνdzν

with a meromorphic function fν . It follows that on the intersections Uν ∩ Uµ we have

λν/λµ = |fν/fµ|
2.

Therefore there exists a globally defined function ϕ with

ϕ =
λν

|fν |2
on Uν for all ν,

which is smooth except for singularities at the zeroes and poles of σ. Since log |fν | is
harmonic, we have

KdS = i d (∂ logϕ)

outside the poles and zeroes of σ. Let Xε = X−
⋃
Dk,ε, where the Dk,ε are small disks

around the singularities of σ. Then

∫

X

KdS = i lim
ε→0

∫

Xε

d (∂ logϕ) = −i
∑

lim
ε→0

∫

∂Dk,ε

∂ logϕ

by Stokes’ theorem (the two-dimensional case of the Gauß integral formula). To evaluate
the integrals over the circles we note that at a zero or pole of σ the function ϕ is of
the form ϕ = ψ/|z|2m with a smooth function ψ without zeroes and m the order of σ
at the zero or pole (m < 0 in the latter case). Therefore

lim
ε→0

∫

∂Dk,ε

∂ logϕ = lim
ε→0

∫

|z|=ε

∂ (log |z|−2m) = −m lim
ε→0

∫

|z|=ε

dz

z
= −2πim.

Summing up, we get ∫

X

KdS = −2π deg(σ).

The Gauß-Bonnet theorem now implies deg(σ) = 2g − 2. Conversely, if one proves the
formula deg(σ) = 2g − 2 by other means (for example by representing the Riemann
surface X as a branched covering of the Riemann sphere and studying the ramification
points) one gets another proof of the theorem of Gauß-Bonnet.

Chern classes

The above developments have been greatly generalized by Chern [2] (good textbooks
are [4],[6]) to higher dimensional manifolds. Chern defined curvature forms for vector
bundles on an n-dimensional complex manifold X which represent, via the de Rham
isomorphism, cohomology classes that are topological invariants of the vector bundle.
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Let E be a holomorphic vector bundle of rank r on X and let h be a hermitian metric
on E. With respect to a local trivialization of E, the metric is given by a positive
definite hermitian r × r-matrix h = (hµν). Now one can define the curvature form of
the metric as

Θ = ∂̄h−1∂h.

This is only defined locally, but can be viewed as a global 2-form with coefficients in
the endomorphism bundle End(E). (For n = 1 and the tangent bundle the form Θ is
equal, up to a factor i, to the form KdS from above.) With an indeterminate t, we
write

det
(
1 +

i

2π
Θ t

)
= 1 + c1t+ . . .+ crt

r.

Then ck is a closed differential form of degree 2k which represents the k-th Chern class
of E. As a special case, let X be an n-dimensional compact complex manifold with a
hermitian metric g = (gµν), (i.e. a metric on the tangent bundle). Then the n-th Chern
class is given by cn = ( i

2π
)n det(∂̄g−1∂g) and Chern’s generalization of the Gauß-Bonnet

theorem reads

( i

2π

)n
∫

X

det(∂̄g−1∂g) = χ(X) =

n∑

k=0

(−1)nbk(X).

Todd classes

On a compact Riemann surface X the genus g can also be analytically defined as
the dimension of the first cohomology group H1(X,O) of the sheaf O of holomorphic
functions. Therefore the Euler-Poincaré characteristic of O has the value

χ(X,O) := dimH0(X,O) − dimH1(X,O) = 1 − g,

and the Gauß-Bonnet theorem can be written as
∫

X

KdS = πχ(X,O).

The generalization of this form of the Gauß-Bonnet theorem to higher dimensions is a
special case of Hirzebruch’s Riemann-Roch theorem [5] and involves Todd classes. To
define the Todd classes of a complex vector bundle E of rank n, consider the power
series in n indeterminates x1, . . . , xn

n∏

ν=1

xν

1 − e−xν
=

∞∑

k=0

Fk(x1, . . . , xn),

where Fk is a homogeneous polynomial of degree k in x1, . . . , xn. Since Fk is symmetric
in x1, . . . , xn, it can be expressed as a polynomial in the elementary symmetric functions
sj(x1, . . . , xn),

Fk(x1, . . . , xn) = F̃k(s1, . . . , sn).

If we substitute sj by the j-th Chern class cj(E), we get the k-th Todd class of E

tdk(E) = F̃k(c1(E), . . . , cn(E)).
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For example, td1 = 1

2
c1 and td2 = (c21 + c2)/12. The Todd classes of a compact complex

n-dimensional manifold X are defined as the Todd classes of the tangent bundle of X.
With these definitions we can now state the Hirzebruch-Riemann-Roch formula for the
sheaf O. ∫

X

tdn(X) = χ(X,O) =
n∑

k=0

(−1)k dimHk(X,O).

Of course this formula, which is only a special case of the Riemann-Roch theorem and
the Atiyah-Singer index theorem, is much more difficult to prove than the classical
Gauß-Bonnet theorem. But I hope that its connection to this classical theorem gives a
good motivation to take up the study.
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