Lösungen zu Blatt 7 der Übungen zur Vorlesung Analysis II für Statistiker, LMU-München, Sommersemester 2011

Florian Hoffmann, Peter Philip

24. Juni 2011

1. (5 Punkte)

- (a) Es sei x = (1, 3, 5, 1, 1). Finden Sie ein $y = (y_1, y_2, y_3, y_4, y_5)$ so, dass $y_1 \neq 0, y_2 \neq 0$, $y_3 \neq 0, y_4 \neq 0, y_5 \neq 0$ und $y \perp x$ bezüglich des euklidischen Skalarprodukts auf \mathbb{R}^5 .
- (b) Es seien x=(2,4,0) und y=(3,3,1). Finden Sie ein $z=(z_1,z_2,z_3)$ so, dass $z_1 \neq 0, z_2 \neq 0, z_3 \neq 0$ und sowohl $z \perp x$ als auch $z \perp y$ bezüglich des euklidischen Skalarprodukts auf \mathbb{R}^3 .

Lösung:

zu a):

Wir können y aus dem 4 dimensionalen Raum, auf dem x senkrecht steht bis auf die Einschränkung $y_i \neq 0$ beliebig wählen. Ein mögliches y ergibt sich also wie folgt. Wähle $y = (1, 1, 1, 1, y_5)$, die Komponente y_5 bestimmt sich nun aus der Forderung der Orthogonalität $x \perp y$ also $\langle x, y \rangle = 0$:

$$\langle x, y \rangle = 1 + 3 + 5 + 1 + 1 \cdot y_5 = 10 + y_5 = 0$$

also y = (1, 1, 1, 1, -10)

zu b) : Wir können eine Komponente von z frei wählen. Wir wählen $z_1 = 1$. Dann haben wir die bestimmenden Gleichungen:

$$\langle x, z \rangle = 2 + 4z_2 + 0 = 0$$

und

$$\langle y, z \rangle = 3 + 3z_2 + z_3 = 0$$

also $z_2 = -\frac{1}{2}$ und $z_3 = -\frac{3}{2}$ und somit $z = (1, -\frac{1}{2}, -\frac{3}{2})$

2. (5 Punkte) Finden Sie zwei Metriken auf \mathbb{R}^n , die nicht äquivalent sind, und begründen Sie Ihre Auswahl (wenn Sie Ihre Metriken geschickt wählen, lässt sich die Aufgabe in weniger als 5 Zeilen lösen).

Lösung:

Sei d_1 die diskrete Metrik auf \mathbb{R}^n und d_2 die euklidische Metrik auf \mathbb{R}^n . Bezüglich der diskreten Metrik ist jede Teilmenge von \mathbb{R}^n offen, also auch $\{0\}$. Jedoch ist $\{0\}$ nicht d_2 -offen, da zum Beispiel jede d_2 - ϵ -Kugel um 0 den Punkt $y := (\epsilon/2, 0, \dots, 0) \neq 0$ enthält. Da somit $\{0\}$ offen bezüglich d_1 ist, jedoch nicht offen bezüglich d_2 , sind d_1 und d_2 nicht äquivalent.

3. (5 Punkte) Zeigen Sie, dass die Funktion

$$f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}, \quad f(x,y) = \begin{cases} \frac{1}{x^2 + y^2} e^{-\frac{1}{x^2 + y^2}} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

stetig auf $\mathbb{R} \times \mathbb{R}$ ist.

Lösung:

Die Funktion $h(x,y) = x^2 + y^2$ ist stetig als Summe von Monomen, somit ist für $(x,y) \neq (0,0)$ ihre Verknüpfung mit der Funktion $g(z) = \frac{1}{z}$ ebenfalls stetig. Analoges gilt für die Verknüpfung $\exp(-g(h(x,y)))$ für $(x,y) \neq (0,0)$. Somit ist f außerhalb von (0,0) stetig als Produkt stetiger Funktionen.

Um die Stetigkeit in (0,0) zu zeigen genügt es zu beweisen, dass für alle Folgen $(x_n, y_n) \in \mathbb{R}^2, (x_n, y_n) \to (0, 0) \text{ für } n \to \infty \text{ gilt } \lim_{n \to \infty} f(x_n, y_n) = f(0, 0) = 0.$ Für eine beliebige solche Nullfolge (x_n, y_n) ist

$$0 \le f(x_n, y_n) = \frac{1}{(x_n^2 + y_n^2)e^{\frac{1}{x_n^2 + y_n^2}}} = \frac{1}{(x_n^2 + y_n^2) \sum_{k=0}^{\infty} \frac{1}{k!} (\frac{1}{x_n^2 + y_n^2})^k} = (1)$$

$$= \frac{1}{(x_n^2 + y_n^2) + 1 + \sum_{k=1}^{\infty} \frac{1}{(k+1)!} (\frac{1}{x_n^2 + y_n^2})^k}$$
(2)

$$= \frac{1}{(x_n^2 + y_n^2) + 1 + \sum_{k=1}^{\infty} \frac{1}{(k+1)!} \left(\frac{1}{x_n^2 + y_n^2}\right)^k}$$
 (2)

Geht nun $(x_n, y_n) \rightarrow (0, 0)$ verschwindet der erste Term im Nenner und die Reihe $\sum_{k=1}^{\infty} \frac{1}{(k+1)!} \left(\frac{1}{x_n^2 + y_n^2}\right)^k$ wächst über alle Schranken. Der Ausdruck (2) geht also von oben gegen Null. Somit $f(x_n, y_n) \to 0$ für $n \to \infty$. Etwas einfacher sieht die Funktion faus, wenn wir bemerken, dass $x^2 + y^2$ genau das Quadrat des euklidischen Abstands vom Ursprung ist. Ein Wechsel auf Polarkoordinaten $r \in \mathbb{R}^+, \ \phi \in [0, 2\pi)$ mit x = $r\cos\phi$, $y=r\sin\phi$ führt also zu $f(r,\phi)=f(r)=\frac{1}{r^2}e^{-\frac{1}{r^2}}$. Die Argumentation läuft in diesem Falle jedoch genau so wie oben.

4. (5 Punkte) Sei wie auf Blatt 6 Aufgabe 4 \mathcal{X} der reelle Vektorraum der reellen Folgen, die schließlich konstant Null sind, das heißt, eine reelle Folge $x = (x_n)_{n \in \mathbb{N}}$, $x_n \in \mathbb{R}$ für alle $n \in \mathbb{N}$, ist genau dann ein Element von \mathcal{X} , wenn es ein $N \in \mathbb{N}$ gibt mit $x_n = 0$ für alle $n \geq N$. Für $x = (x_n)_{n \in \mathbb{N}} \in \mathcal{X}$ und $y = (y_n)_{n \in \mathbb{N}} \in \mathcal{X}$ können wir ein Skalarprodukt durch

$$\langle x, y \rangle := \sum_{n=1}^{\infty} x_n y_n.$$

definieren.

Zeigen Sie, dass die Folge $(x^k)_{k\in\mathbb{N}}$ in \mathcal{X} mit

$$x_n^k := \begin{cases} (1/2)^n & \text{für } 1 \le n \le k, \\ 0 & \text{für } n > k \end{cases}$$
 (3)

bezüglich der vom Skalarprodukt induzierten Norm eine Cauchyfolge in \mathcal{X} ist (geometrische Reihe!), die in \mathcal{X} nicht konvergiert. Dies zeigt, dass \mathcal{X} nicht vollständig (also kein Hilbertraum) ist.

Lösung:

Sei $\|\cdot\|$ die vom obigen Skalarprodukt induzierte Norm auf \mathcal{X} . Für $k,l\in\mathbb{N}$ mit $l\geq k$ rechnet man

$$||x^{k} - x^{l}||^{2} = \sum_{n=1}^{\infty} (x_{n}^{k} - x_{n}^{l})^{2} = \sum_{n=k+1}^{l} \left(-\left(\frac{1}{2}\right)^{n} \right)^{2} = \sum_{n=k+1}^{l} \left(\frac{1}{4}\right)^{n}$$

$$< \sum_{n=k}^{\infty} \left(\frac{1}{4}\right)^{n} = \left(\sum_{n=0}^{\infty} \left(\frac{1}{4}\right)^{n}\right) - \left(\sum_{n=0}^{k-1} \left(\frac{1}{4}\right)^{n}\right) = \frac{1}{1 - \frac{1}{4}} - \frac{1 - \left(\frac{1}{4}\right)^{k}}{1 - \frac{1}{4}}$$

$$= \frac{4}{3} \frac{1}{4^{k}}.$$
(4)

Also gilt $||x^k - x^l|| < a_k$ mit $a_k := 2/(2^k\sqrt{3})$, also $a_k \to 0$ für $k \to \infty$. Daraus folgt, dass $(x^k)_{k \in \mathbb{N}}$ eine Cauchyfolge ist: Zu jedem $\epsilon > 0$ gibt es ein $N \in \mathbb{N}$ so, dass $a_k < \epsilon$ für alle k > N. Sind k, l > N, so ist $||x^k - x^l|| < a_{\min\{k,l\}} < \epsilon$.

Sei nun $y = (y_n)_{n \in \mathbb{N}} \in \mathcal{X}$ beliebig. Dann gibt es $N_y \in \mathbb{N}$ so, dass $y_n = 0$ für alle $n > N_y$. Also ist für alle $k > N_y$:

$$||x^k - y||^2 = \sum_{n=1}^{\infty} (x_n^k - y_n)^2 \ge \sum_{n=N_y+1}^{\infty} |x_n^k|^2 \ge \left(\frac{1}{4}\right)^{N_y+1} > 0.$$
 (5)

Da diese Zahl von k unabhängig ist, kann $||x^k - y||$ nicht gegen Null konvergieren, also kann $(x^k)_{k \in \mathbb{N}}$ nicht gegen y konvergieren. Da $y \in \mathcal{X}$ beliebig war, ist gezeigt, dass $(x^k)_{k \in \mathbb{N}}$ in \mathcal{X} gar nicht konvergieren kann.