Lösung zu Blatt 4 der Übungen zur Vorlesung Analysis II für Statistiker, LMU-München, Sommersemester 2011

Florian Hoffmann, Peter Philip

3. Juni 2011

1. (5 Punkte)

- (a) Es sei $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) := \exp(x)$, $g: \mathbb{R} \longrightarrow \mathbb{R}$, $g(x) := -x^2 2$. Geben Sie explizite Formeln für (f+g)(x), (fg)(x), (f/g)(x), $\max(f,g)(x)$, $\min(f,g)(x)$, $g^+(x)$, $g^-(x)$, $(g \circ f)(x)$ und $(f \circ g)(x)$ an.
- (b) Wie lauten die Koordinatenfunktionen von

$$f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$$
, $f(x, y, z) := (yx^3, \exp(-yz^2), |x + y + z|^3)$?

Lösung:

(a)

$$(f+g)(x) = \exp(x) - x^2 - 2 \tag{1}$$

$$(fg)(x) = -\exp(x)(x^2 + 2) \tag{2}$$

$$(f/g)(x) = -\frac{\exp(x)}{x^2 + 2}$$
 (3)

$$\max(f,g)(x) = \exp(x) \tag{4}$$

$$\min(f,g)(x) = -x^2 - 2\tag{5}$$

$$g^+(x) = 0 (6)$$

$$g^{-}(x) = x^2 + 2 (7)$$

$$(g \circ f)(x) = -(\exp(x))^2 - 2 \tag{8}$$

$$(f \circ g)(x) = \exp(-x^2 - 2) \tag{9}$$

(b) Die Koordinatenfunktionen erhalten wir durch Projektion, also

$$f_1(x, y, z) = (\pi_1 \circ f)(x, y, z) = yx^3$$

$$f_2(x, y, z) = (\pi_2 \circ f)(x, y, z) = \exp(-yz^2)$$

$$f_3(x, y, z) = (\pi_3 \circ f)(x, y, z) = |x + y + z|^3$$

2. (5 Punkte)

Bestimmen Sie für jede der folgenden drei Funktionen, ob sie im angegebenen Punkt ξ einen Grenzwert besitzt und beweisen Sie jeweils Ihr Ergebnis.

- (a) $f:]0, \infty[\longrightarrow \mathbb{R}, f(x) := \cos(1/x), \xi := 0.$
- (b) $f: [0, \infty[\longrightarrow \mathbb{R}, f(x) := x \cos(1/x), \xi := 0.$
- (c) $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $f(r, \phi, \theta) := (r \cos \phi \sin \theta, r \sin \phi \sin \theta, r \cos \theta)$, $\xi := (0, 0, 0)$.

Lösung:

Zu (a)

Für $k \in \mathbb{N}$ setze $x_k := 1/(k\pi + \frac{\pi}{2})$ und $y_k := 1/(2k\pi)$. Dann sind $(x_k)_{k \in \mathbb{N}}$ und $(y_k)_{k \in \mathbb{N}}$ Folgen in \mathbb{R}^+ mit $\lim_{k \to \infty} x_k = 0$ und $\lim_{k \to \infty} y_k = 0$. Andererseits gilt $\lim_{k \to \infty} f(x_k) = \lim_{k \to \infty} \cos(k\pi + \frac{\pi}{2}) = 0$ und $\lim_{k \to \infty} f(y_k) = \lim_{k \to \infty} \cos(2k\pi) = 1$. Da die Folgen verschiedene Grenzwerte haben, existiert der Grenzwert von f(x) für $x \to 0$ nicht.

Zu (b)

Sei $(x_k)_{k\in\mathbb{N}}$ eine Folge in \mathbb{R}^+ mit $\lim_{k\to\infty} x_k = 0$. Aus $-1 \le \cos(1/x_k) \le 1$ für alle $k \in \mathbb{N}$ folgt $\lim_{k\to\infty} x_k \cos(1/x_k) = 0$, also $\lim_{k\to\infty} f(x_k) = 0$. Somit ist 0 Grenzwert von f(x) für $x\to 0$.

Zu (c)

Seien $(r_k)_{k\in\mathbb{N}}$, $(\phi_k)_{k\in\mathbb{N}}$, $(\theta_k)_{k\in\mathbb{N}}$ reelle Folgen mit $\lim_{k\to\infty} r_k = 0$, $\lim_{k\to\infty} \phi_k = 0$ und $\lim_{k\to\infty} \theta_k = 0$.

Dann folgt

$$\lim_{k \to \infty} \sin \theta_k = 0, \quad \lim_{k \to \infty} \cos \theta_k = 1$$
$$\lim_{k \to \infty} \sin \phi_k = 0, \quad \lim_{k \to \infty} \cos \phi_k = 1$$

also $\lim_{k\to\infty} r_k \cos\theta_k = 0$ und $\lim_{k\to\infty} r_k \sin\phi_k \cos\theta_k = 0$, sowie auch $\lim_{k\to\infty} r_k \cos\phi_k \sin\theta_k = 0$, also insgesamt $\lim_{k\to\infty} f(r_k, \phi_k, \theta_k) = (0, 0, 0)$. Somit ist (0, 0, 0) Grenzwert von f(x) für $x \to (0, 0, 0)$.

3. (5 Punkte)

Zeigen Sie durch Benutzung von Sätzen aus der Vorlesung, dass die Funktion $f: \mathbb{R}^3 \longrightarrow \mathbb{R}, f(x,y,z) := \ln(1+\sqrt{|xy+z|})$, stetig ist (dabei dürfen Sie die Stetigkeit der eindimensionalen Funktionen $t \mapsto \ln t, t \mapsto \sqrt{t}$ $(t \ge 0)$ und $t \mapsto |t|$ ohne Beweis benutzen).

Lösung auf der nächsten Seite

Lösung:

- Das Polynom $P:(x,y,z)\mapsto xy+z$ ist stetig als Summe von Produkten von Monomen.
- Wir haben somit, dass $|\cdot| \circ P$ als Verknüpfung stetiger Funktionen stetig ist.
- Da $|xy+z| \ge 0$ ist $\sqrt{|xy+z|}$ definiert und als Verknüpfung stetiger Funktionen wieder stetig.
- Die konstante Funktion 1 ist stetig, somit ist die Summe $1+\sqrt{\cdot}\circ|\cdot|\circ P$ wieder stetig.
- Da $1 + \sqrt{|xy+z|} > 0$, ist der ln hiervon definiert und somit die Verknüpfung ln $\circ (1 + \sqrt{\cdot} \circ |\cdot| \circ P)$ wieder stetig,

also ist $f: \mathbb{R}^3 \longrightarrow \mathbb{R}$, $f(x, y, z) = \ln(1 + \sqrt{|xy + z|})$ stetig.

4. (5 Punkte)

Zeigen Sie, dass die Funktion

$$f: \mathbb{R}^+ \longrightarrow \mathbb{R}, \ f(x) = \sqrt{x}$$

gleichmäßig stetig auf \mathbb{R}_0^+ ist. Anleitung:

Zeigen Sie zunächst, dass $\sqrt{|x-y|} < \sqrt{x} + \sqrt{y}$ für beliebige $x,y \in \mathbb{R}^+$, und benutzen Sie diese Ungleichung dann, um zu beweisen, dass für $\epsilon > 0$ aus $|x-y| < \delta := \epsilon^2$ folgt, dass $|\sqrt{x} - \sqrt{y}| < \epsilon$.

Lösung:

Zum Beweis der Ungleichung seien x, y > 0. Dann gilt

$$(x-y)^2 = x^2 - 2xy + y^2 < (x+y)^2 < (x+2\sqrt{xy}+y)^2$$
.

Wurzelziehen liefert

$$|x - y| < x + 2\sqrt{xy} + y = (\sqrt{x} + \sqrt{y})^2$$
.

Erneutes Wurzelziehen liefert $\sqrt{|x-y|}<\sqrt{x}+\sqrt{y}$. Sei nun $\epsilon>0,\ \delta:=\epsilon^2$ sowie $x,y\in\mathbb{R}^+$. Für $|x-y|<\delta$ folgt

$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} = \frac{\sqrt{|x - y|}\sqrt{|x - y|}}{\sqrt{x} + \sqrt{y}} < \sqrt{|x - y|} < \sqrt{\delta} = \epsilon,$$

was die gleichmäßige Stetigkeit von f beweist.