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Abstract.

The quantum probability 
ux of a particle integrated over time and a distant surface gives the
probability for the particle crossing that surface at some time. The relation between these crossing
probabilities and the usual formula for the scattering cross section is provided by the 
ux-across-
surfaces theorem, which was conjectured by Combes, Newton and Shtokhamer.1 We prove the 
ux-
across-surfaces theorem for short range potentials and wave functions without energy cuto�s. The
proof is based on the free 
ux-across-surfaces theorem (Daumer et. al.),2 and on smoothness properties
of generalized eigenfunctions: It is shown that if the potential V (x) decays like jxj�
 at in�nity with

 > n 2 IN then the generalized eigenfunctions of the corresponding Hamiltonian � 1

2
�+V are n� 2

times continuously di�erentiable with respect to the momentum variable.

PACS: 03.80, 03.65.N, 02.30.Nw

I. Introduction

Potential scattering theory is concerned with the long-time behavior of wave functions 	t. Its relation to
experiment, i.e. to the de�nition of the scattering cross section is however only rarely discussed. One such
relation is provided by Dollard's scattering-into-cones theorem.3 It asserts that, assuming asymptotic
completeness of the wave operators, the probability of �nding a particle with a wave function 	t =
e�iHt	0 2 Hac(H), the absolutely continuous subspace for the Hamiltonian H, in the far future in a
given cone C � IR3 (with vertex at the origin) equals the probability that the quantum mechanical
momentum of the asymptotic outgoing wave W�1

+ 	0 lies in the same cone,

lim
t!1

Z
C

j	t(x)j
2 dx =

Z
C

j dW�1
+ 	0(k)j

2 dk; (1)

where b denotes the Fourier transform,W+ := s- limt!1 eiHte�iH0t is the wave operator andH = H0+V
with the free Hamiltonian H0 = �1

2� (we choose units such that �h = m = 1) and the potential V . The
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scattering-into-cones theorem is regarded as fundamental for quantum mechanical scattering theory. The
expression for the di�erential cross-section d�=d
 = jf(�; �)j2 from the time-independent scattering
theory can be derived from the right-hand side of (1).4

Combes, Newton and Shtokhamer1 observed, however, that what is relevant for scattering theory
is a formula for the probability that the particle crosses some distant surface at some time during the
scattering process. Heuristically, this probability should be given by integrating the quantum mechanical
probability 
ux j	t := Im(	�tr	t) over the relevant time interval and this surface.2;5;6 Combes, Newton,
and Shtokhamer hence conjectured the 
ux-across-surfaces theorem

lim
R!1

Z 1

0

dt

Z
R�

j	t � nd� =

Z
C�

j dW�1
+ 	0(k)j

2 dk; (2)

where � is a measurable subset of S1, the sphere with radius 1, R� := fRx 2 IR3 : x 2 �g and
C� := f�x 2 IR3 : x 2 �; � � 0g is the cone spanned by �. (2) was proven by Daumer, D�urr, Goldstein,
and Zangh��2 for the case V = 0. Recently (2) has been established for a large class of short-range
potentials by Amrein and Zuleta.7 For long-range potentials Amrein and Pearson8 showed that the left
hand side of (2) equals the left hand side of (1). (In this case modi�ed wave operators have to be
introduced to de�ne the right hand side of (1) and (2)). However, since the proofs in references 7 and

8 apply the usual time-dependent methods, they have to assume that dW�1
+ 	0 has compact support not

containing the origin. Although this condition is a natural idealization of the experimental situation
often encountered in scattering theory, and these wave functions form a dense set in L2, there are no
physical or mathematical reasons that (2) should hold only for this restricted class of wave functions.
Furthermore there are situations, i.e. the decay of an unstable system, where the physically interesting
wave functions do have momentum support at zero. But the set of wave functions for which (2) holds
can not be enlarged by a simple limiting procedure in L2, since the expressionZ 1

0

dt

Z
R�

j	t � nd�

is an unbounded sesquilinear form. Therefore the essential propagation estimates have to be proven
directly for wave functions without energy cuto�s. Some results in this directions, so called Lp-estimates,
have been established under rather restrictive conditions on the potential.9;10 However, these estimates
alone are not su�cient to prove (2).

In this paper we will give an elementary proof of (2) for a class of wave functions without energy
cuto�s. We must assume, however, that the potential is short-range with decay of order jxj�4��, � > 0,
at in�nity and that it does not have a zero energy resonance or eigenvalue. Our proof as well as the proof
in reference 7 are based on the results of the free case (V = 0) established in reference 2. We employ
stationary phase methods and the so called generalized eigenfunctions �(x; k), which are certain solutions
of the stationary Schr�odinger equation (�1

2
� + V (x))�(x; k) = k2�(x; k), k 2 IR3, not belonging to

L2(IR3). This strategy of proof has been put forward in reference 5. We need �(x; k) to be di�erentiable
with respect to k as well as to be uniformly bounded in both variables. Furthermore we need that
supk2IRnf0g j@kl�(x; k)j � c(1 + jxj) for some constant c and l = 1; 2; 3.

In Section 2 the 
ux-across-surfaces theorem will be established under suitable conditions on the
generalized eigenfunctions. In Section 3 we will prove a theorem on the regularity of the generalized
eigenfunctions, which will, among other things, justify the assumptions made in Section 2: �(x; k) is n
times partially di�erentiable with respect to k if V (x) = O(jxj�n�2��) for jxj ! 1 and some � > 0.
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Moreover, consider a family of Hamiltonians Hc := H0 + cV , c 2 IR. Then, if V (x) = O(jxj�3��),11 the
eigenfunctions corresponding to Hc are uniformly bounded and their partial derivatives of order n with
respect to k grow not faster than (1 + jxj)n except for a discrete set of constants c 2 IR.

II. The Flux-Across-Surfaces Theorem

We start with notation. Points in position space will be denoted by x 2 IR3, points in momentum space
by k 2 IR3. By dx and dk integration with respect to Lebesgue measure on IR3 is understood. For n � 2,
the following conditions on the potential V will be denoted by (V)n:

(V)n V : IR3 ! IR and

(i) V is locally H�older continuous except at a �nite number of singularities.12

(ii) V 2 L2(IR3).

(iii) jV (x)j = O(jxj�n��) for jxj ! 1 and some � > 0.

For n = 2 these are the conditions of Ikebe.13 Under these conditions H is self-adjoint on the domain
of H0. The absolutely continuous part of the spectrum is [0;1). Furthermore H has neither positive
eigenvalues nor singular continuous spectrum. The wave operators W� = s � limt!�1 e�iHteiH0t exist
and are complete, i.e.RanW� = Hac(H).

The time dependent wave function will be denoted by 	t := e�iHt	0, 	0 2 L2(IR3). To simplify
notation we will abbreviate 	out := W�1

+ 	0 for the outgoing asymptotic wave. By S we denote the set
of Schwartz functions.

Zero is said to be a resonance of H if there exists a solution f of �1
2�f(x) + V (x)f(x) = 0 such that

(1 + jxj)�
f(x) 2 L2(IR3) for any 
 > 1
2 and not for 
 = 0.14 The appearance of zero-energy resonances

or eigenvalues is an exceptional event: Hc = H0 + cV can have a zero-energy resonance or eigenvalue
only for c in discrete subset of IR.14

2.1 Theorem. Let the potential satisfy the condition (V)4 and let zero be neither a resonance nor an
eigenvalue of H. Let 	out 2 S. Then 	t = e�iHtW+	out is continuously di�erentiable except at the
singularities of V and for any measurable � � S1 and any T 2 IR

lim
R!1

1Z
T

dt

Z
R�

j	t (x) � nd� = lim
R!1

1Z
T

dt

Z
R�

jj	t(x) � nj d� =

Z
C�

jb	out(k)j
2 dk : (3)

2.2 Remark. The �rst equality in (3) shows that far away from the scattering center the 
ux is
essentially outgoing, i.e. that there the particles cross spherical surfaces only once and do not return.
Thus (3) yields the crossing probability of interest.

2.3 Remark. It would be of course more satisfactory if we could prove (3) under a suitably general
condition on 	0, not on 	out. However, the set of wave functions 	0 = W+	out for which Theorem
2.1 holds is dense in Hac(H) since S is dense in L2 and W+ : L2 ! Hac(H) is unitary. For an explicit
characterization of the domain W+S one would need suitable mapping properties of the wave operators.
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Some mapping properties for wave functions without energy cuto�s have been established by Yajima,10

however, they are not su�cient for our purpose.

2.4 Remark. Due to the so called intertwining property of the wave operators, W�e
�iH0t = e�iHtW�,

and the fact that S is left invariant under the free time evolution, the condition imposed on 	 in Theorem
2.1 is invariant under the full time evolution: e�iHtW+S =W+e

�iH0tS =W+S.

As already mentioned we will make use of the generalized eigenfunctions �(x; k) which diagonalize
H in the same sense as the ordinary plane waves feik�x; k 2 IR3g diagonalize H0. We de�ne �(x; k) and
state the properties that we will use in the proof of Theorem 2.1 in a proposition:

2.5 Proposition. Let V satisfy (V)2. Then for any k 2 IR3 n f0g there are unique continuous solutions
��(�; k) : IR

3 ! lC of the Lippmann-Schwinger equations

��(x; k) = eik�x �
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)��(y; k) dy; (4)

with the boundary conditions limjxj!1[��(x; k) � eik�x] = 0, which are also classical solutions of the
stationary Schr�odinger equation�

�
1

2
�+ V (x)

�
��(x; k) =

k2

2
��(x; k); (5)

such that:

(i) For any compact D � IR3 n f0g the functions ��(�; �) : IR
3 �D ! lC are uniformly continuous.

(ii) For any f 2 L2(IR3) the generalized Fourier transforms

(F�f)(k) =
1

(2�)
3
2

l:i:m:

Z
���(x; k)f(x) dx

exist in L2(IR3).15

(iii) RanF� = L2(IR3) and F� : Hac(H)! L2(IR3) are unitary and the inverse of F� is given by

(F�1
� f)(x) =

1

(2�)
3
2

l:i:m:

Z
��(x; k)f(k) dk :

(iv) For any f 2 D(H) \Hac(H) we have

Hf(x) = (F�1
�

k2

2
F�f)(x) =

1

(2�)
3
2

l:i:m:

Z
k2

2
��(x; k)(F�f)(k) dk (6)

and therefore for any f 2 Hac(H)

e�iHtf(x) = (F�1
� e�i

k2

2
tF�f)(x) =

1

(2�)
3
2

l:i:m:

Z
e�i

k2t
2 ��(x; k)(F�f)(k) dk: (7)
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(v) For any f 2 Hac(H) the relations W�f = F�1
� Ff hold, where F denotes the ordinary Fourier

transform.

(vi) If V satis�es (V)3, then ��(x; k) are continuously di�erentiable with respect to k for all x 2 IR3

except at k = 0. The partial derivatives @kl��(x; k) are continuous in x and k.

If, in addition, zero is not an eigenvalue or resonance of H, then ��(x; k) is well de�ned and
continuous for x; k 2 IR3,

sup
x2IR3;k2IR3

j��(x; k)j <1

and there is a c <1 such that

sup
k2IR3nf0g

���� @@kl��(x; k)
���� < c(1 + jxj)

for l = 1; 2; 3.

The proof of Proposition 2.5,(i)-(v) is due to Ikebe.13 (vi) is a special case of Theorem 3.1 on the regularity
of generalized eigenfunctions which we shall state and prove in Section 3.

2.6 Remark. Similar eigenfunction expansions can be obtained also for potentials with slower decay,
but then in general the continuity in k will not hold any more.16

Proof [of Theorem 2.1]. Let 	t = e�iHtW+	out, 	out 2 S. Using Proposition 2.5.(iv), (v) and
�(x; k) := �+(x; k)� eik�x we have that

	t(x) =
1

(2�)
3
2

Z
e�i

k2t
2 b	out(k)�+(x; k) dk

=
1

(2�)
3
2

Z
e�i

k2t
2 b	out(k)e

ik�x dk +
1

(2�)
3
2

Z
e�i

k2t
2 b	out(k)�(x; k) dk

=: �(x; t) + �(x; t) : (8)

The 
ux generated by this wave function is

j	t(x) = Im(��r�+ ��r� + ��r�+ ��r�) ; (9)

where the di�erentiability of � is obvious and that of � will be established later.
The �rst part j0 = Im(��r�) is the 
ux generated by the free time evolution of 	out and according

to the free 
ux-across-surfaces theorem2

lim
R!1

1Z
T

dt

Z
R�

j0(x; t) � nd� = lim
R!1

1Z
T

dt

Z
R�

jj0(x; t) � nj d� =

Z
C�

jb	out(k)j
2 dk :

Therefore to prove (3) we need only show that the last three terms in (9) do not contribute to the 
ux
across distant surfaces, i.e. that for j1 := Im(��r� + ��r�+ ��r�)

lim
R!1

1Z
T

dt

Z
SR

jj1(x; t) � nj d� = 0 : (10)
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For some �xed T > 0 this will follow from the estimates (which we shall prove below)

sup
x2SR

j�(x; t)j � t�
3
2 f1(R; t) 8t � T (11)

sup
x2SR

jr�(x; t)j � t�
3
2 f2(R; t) 8t � T ; (12)

where there exists a c <1 such that fi(R; t) satisfy

lim
R!1

fi(R; t) = 0 8 t � T (13)

and
sup

R2[0;1);t�T
fi(R; t) < c (14)

for i = 1; 2, and there is R0 � 0 such that

sup
x2SR

j�(x; t)j � c
1

R(t+ R)
; 8R > 0 ; (15)

sup
x2SR

jr�(x; t)j � c
1

R(t+ R)
; 8R > R0 (16)

for t � T . Note that the constants in these estimates depend on T .
Using (11) and (16) we obtain by dominated convergence

lim
R!1

1Z
T

Z
SR

jIm(��r�) � nj d� dt � lim
R!1

4�

1Z
T

sup
x2SR

R2j�jjr�j dt

� c lim
R!1

1Z
T

R2f1(R; t)

t
3
2R(t +R)

dt

= c

1Z
T

lim
R!1

Rf1(R; t)

t
3
2 (t +R)

dt = 0 (17)

for T > 0 where we observed that the integrand in (17) is bounded by an integrable function uniformly
in R,

Rf1(R; t)

t
3
2 (t +R)

� ct�
3
2 :

The terms j��r�j and j��r�j can be treated analogously and thus (10) holds for positive times T .
According to Remark 2.4, the set of wave functions for which (3) holds as well as the right hand side

of (3) are invariant under �nite time shifts:
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lim
R!1

1Z
T

dt

Z
R�

j	t (x) � nd� = lim
R!1

1Z
eT dt

Z
R�

j
	
t+T�eT (x) � nd�

=

Z
C�

���e�i k22 (T�eT ) b	out(k)
���2 dk = Z

C�

���b	out(k)
���2 dk :

Therefore if (3) holds (for all 	out 2 S) for some �xed T , then (3) will hold for all T ; hence (3) is proved
for all T .

We turn now to the proof of the estimates (11-16). Recalling that �(x; t) = (e�iH0t	out)(x) and,
since r commutes with the free time evolution, r�(x; t) = (e�iH0tr	out)(x), we can write

�(x; t) =
1

(2�it)
3
2

Z
ei

jx�yj2

2t 	out(y) dy (18)

and

r�(x; t) =
1

(2�it)
3
2

Z
ei

jx�yj2

2t r	out(y) dy : (19)

(11-14) are now immediate consequences of (18) and (19) and the fact that, for every �xed t � T , �(x; t)
and r�(x; t) are Schwartz functions.

By (4) �(x; k) = �+(x; k)� eik�x = � 1
2�

R
e�ijkjjx�yj

jx�yj V (y)�+(y; k) dy and therefore

�(x; t) =
1

(2�)
3
2

Z
e�i

k2t
2 b	out(k)�(x; k) dk

= �
1

(2�)
5
2

Z
e�i

k2t
2 b	out(k)

�Z
e�ijkjjx�yj

jx� yj
V (y)�+(y; k) dy

�
dk

= �
1

(2�)
5
2

Z
V (y)

jx� yj

Z
e�i(

k2t
2
+jkjjx�yj)b	out(k)�+(y; k) dk dy

=: �
1

(2�)
5
2

Z
V (y)

jx� yj
f(x; y; t) dy (20)

where

f(x; y; t) :=

Z
e�i(

k2t
2
+jkjjx�yj)b	out(k)�+(y; k) dk : (21)

The change of order of integration in (20) is justi�ed by Fubini's theorem. We shall now apply \stationary
phase" methods to estimate (21). We set

� :=
k2t
2
+ jkjjx� yj

t
2 + jx� yj

�0 =
d

djkj
� =

jkjt+ jx� yj
t
2 + jx� yj

=
jkj+ jx� yjt�1

1
2 + jx� yjt�1

� min(1; 2jkj)

! :=
t

2
+ jx� yj:
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In the following 0 will denote di�erentiation with respect to jkj. Introducing spherical coordinates, with
d
 denoting Lebesgue measure on the unit sphere, we estimate (21):

jf(x; y; t)j =

����Z 1

!�0

�
d

djkj
e�i!�

� b	out(k)�+(y; k)jkj
2 djkj d
(k)

����
=

���� 1!
Z

e�i!�
d

djkj

�
1

�0
b	out(k)�+(y; k)jkj

2

�
djkj d
(k)

����
�

1

!

Z ���� d

djkj

�
1

�0
b	out(k)�+(y; k)jkj

2

����� djkj d
(k) : (22)

For the second equality in (22) the boundary term from the partial integration at jkj =1 vanishes since

�
0�1 � max(1; 1

2jkj
), limjkj!1 jkj2b	out(k) = 0, and �+ is bounded according to Proposition 2.5.(vi). The

boundary term at jkj = 0 vanishes since b	out and �+ are bounded and �
0�1jkj2 � max(jkj2; jkj2 ). Note

that the di�erentiability of �+ is ensured by Proposition 2.5.(vi). Next, observe that

���� d

djkj

�
1

�0
b	out�+jkj

2

����� �

���� 1�02
�00b	out�+jkj

2

����+ ���� 1�0 b	0out�+jkj
2

����
+

���� 1�0 b	out�
0
+jkj

2

����+ ���� 1�0 b	out�+2jkj

���� : (23)

Since �00 = (12 + jx� yjt�1)�1 � 2, we obtain for the �rst term

Z ���� 1�02
�00b	out�+

���� dk �
sup

y;k2IR3
j�+(y; k)j

0B@ Z
jkj<1

2

jb	out(k)j

2jkj2
dk+

Z
jkj� 1

2

2jb	out(k)j dk

1CA � c1 : (24)

Analogously we get for the second and fourth term in (23)Z ���� 1�0
b	0out�+

���� dk � c2 and

Z ���� 2

�0 jkj
b	out�+

���� dk � c4

By Proposition 2.5.(vi) the third term satis�es a bound linear in jyj:Z ���� 1�0
b	out�

0
+

���� dk � ec3 sup
k2IR3nf0g

j�0+(y; k)j � c3(1 + jyj) :

Combining the four estimates we arrive at

jf(x; y; t)j � c
1

!
(1 + jyj) = c

1 + jyj
t
2 + jx� yj

; (25)

which inserted into (20) yields
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sup
x2SR

j�(x; t)j = sup
x2SR

���� 1

(2�)
5
2

Z
V (y)

jx� yj
f(x; y; t) dy

����
� c sup

x2SR

Z
jV (y)j(1 + jyj)

jx� yj( t2 + jx� yj)
dy : (26)

Now, substituting z = x� y,

Z
jV (y)j(1 + jyj)

jx� yj( t2 + jx� yj)
dy =

Z
jzj< jxj

2

jV (x � z)j(1 + jx� zj)

jzj( t2 + jzj)
dz

+

Z
jx�yj� jxj

2

jV (y)j(1 + jyj)

jx� yj( t2 + jx� yj)
dy

� sup
z2B jxj

2

jV (x� z)j(1 + jx� zj)

jxj
2Z

0

4�jzj2

jzj( t2 + jzj)
djzj

+
1

jxj
2 (

t
2 +

jxj
2 )

Z
jV (y)j(1 + jyj) dy ;

where Br denotes the ball with radius r in IR3 centered at the origin. Since V (x) = O(jxj�4��) for some
� > 0,

sup
z2B jxj

2

jV (x� z)j(1 + jx� zj) � cjxj�3

for jxj su�ciently large. UsingZ �

0

z

t+ z
dz = � + t ln

�
t

t+ �

�
� � + t

�
t

t+ �
� 1

�
=

�2

t+ �

we compute

jxj
2Z

0

jzj2

jzj( t2 + jzj)
djzj �

1

2

jxj2

t+ jxj
:

Finally
R
jV (y)j(1 + jyj) dy <1 so that altogether

sup
x2SR

j�(x; t)j � c sup
x2SR

�
jxj�3

jxj2

t+ jxj
+

1

jxj(t+ jxj)

�
=

c

R(t+ R)
: (27)
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We now show that the same bound holds for supx2SR jr�(x; t)j and R > R0, where R0 is chosen such
that all singularities of V lie in the ball with radius R0. Then

jr�(x; t)j �
1

(2�)
5
2

����Z V (y)

jx� yj2

Z
e�i(

k2t
2
+jkjjx�yj)b	out(k)�+(y; k) dk dy

����
+

1

(2�)
5
2

����Z V (y)

jx� yj

Z
e�i(

k2t
2
+jkjjx�yj)jkjb	out(k)�+(y; k) dk dy

���� ; (28)

where the exchange of di�erentiation and integration will be justi�ed below. The second term can be
treated analogously to j�(x; t)j, since also jkjb	out(k) 2 S. The �rst term can as well be estimated along
the same lines: in Equation (26) jx� yj2 will appear in the denominator instead of jx� yj, which leads
to a stronger bound than (27).

To get (28) from (20) we note that according to Proposition 2.5 �(�; k) is a classical solution of the
stationary Schr�odinger equation. Thus �(�; k) as well as �(�; k) are di�erentiable with respect to x except
at the singularities of V . We will show that

rx�(x; k) = rx

�
�

1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)�+(y; k) dy

�
= �

1

2�

Z
rx

�
e�ijkjjx�yj

jx� yj

�
V (y)�+(y; k) dy (29)

and that therefore
jrx�(x; k)j � c1 + c2jkj (30)

for some c1; c2 <1. Then changing the order of di�erentiation and integration in the �rst line of (20) is
justi�ed by dominated convergence and (28) follows for all x which are not singularities of V .

To get (29) for some x0 2 IR3 which is no singularity of V , we split the domain of integration into
B2R(x0) := fy 2 IR3 : jx0 � yj � 2Rg and its complement Bc

2R(x0), where R is chosen such that
B2R(x0) contains no singularity of V . Then one can change the order of integration and di�erentiation
in the Bc

2R(x0) term, since there the integrand is bounded by an integrable function uniformly in x for
x 2 BR(x0). To see that the B2R(x0) term can be made arbitrary small by appropriately choosing R, we
write down the di�erence quotient for this term. Using that supy2B2R(x0) (V (y)�+(y; k)) � ck <1 and

that jrei� � (r +�r)ei(�+��)j � jr��j+ j�rj we compute

lim
j�j!0

1

j�j

�������
Z

B2R(x0)

�
e�ijkjjx+��yj

jx+ �� yj
�
e�ijkjjx�yj

jx� yj

�
V (y)�+(y; k) dy

�������
� lim

j�j!0

1

j�j
ck

Z
B2R(x0)

����e�ijkjjx+��yjjx� yj � e�ijkjjx�yjjx+ �� yj

jx+ �� yjjx� yj

���� dy
� lim

j�j!0

1

j�j
ck

Z
B2R(x0)

jx� yjjkjj�j+ j�j

jx+ �� yjjx� yj
dy

10



� lim
j�j!0

ck

Z
B2R(x0)

�
jkj

jx+ �� yj
+

1

jx+ �� yjjx� yj

�
dy � ck12�R ;

where the last inequality is justi�ed by elementary integrations. The bound (30) can be obtained by a
simple calculation.

From that we also conclude that 	t(x) is di�erentiable outside the singularities of V (x) since � and
� are.

2.7 Remark. We used the domain 	out 2 S to simplify the proof and avoid tedious estimates.
A more detailed analysis of the proof shows that Theorem 2.1 also holds for 	out 2 L2 such that

(1 + k2)
q+p

2 (1 + �)
p

2 b	out 2 L2 for some p > 7
2 and q > 9

2 . Then (1 + k2)
q

2 (1 + �)
p

2 e�i
k2

2
tb	out 2 L2 for

all t 2 IR and this is enough regularity to prove the free theorem as well as our estimates.

III. Regularity of the Generalized Eigenfunctions

In this Section we will prove a theorem about the generalized eigenfunctions that connects the di�er-
entiability of �(x; k) with respect to k with the behavior of the potential at in�nity and gives uniform
bounds on �(x; k) and its partial derivatives. At the end of the section we state two simple corollaries
that show other applications of our results.

3.1 Theorem. Let the potential satisfy the condition (V)n for some n � 3, n 2 IN. Then

(i) ��(x; �) 2 Cn�2(IR3 n f0g) for all x 2 IR3 and the partial derivatives @�k��(x; k), j�j � n� 2, are
continuous with respect to x and k.17

(ii) If, in addition, zero is not an eigenvalue or a resonance of H, then

sup
x2IR3;k2IR3

j��(x; k)j <1

and for any � with j�j � n� 2 there is a c� <1 such that

sup
k2IR3nf0g

j@�k��(x; k)j < c�(1 + jxj)j�j :

3.2 Remark. Proposition 2.5.(vi) follows from Theorem 3.1 by taking n = 3.

Proof [of Theorem 3.1]. To simplify notation we will give the proof for �+(x; k) =: �(x; k) since
the proof for ��(x; k) is exactly the same apart from the change of some signs.

The structure of the proof will be as follows: First we introduce some notation and results from Ikebe
and Povzner that we will use frequently. Then part (i) of Theorem 3.1 is shown for j�j = 1 involving
several lemmas and results proven in the appendix. The generalization to j�j � 1 will be sketched
afterwards.
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In the proof of part (ii) of Theorem 3.1 we will establish boundedness of �(x; k) for k near zero and
for jkj ! 1 separately in two propositions.

We start with an investigation of Equation (4). If �(x; k) = eik�x+ �(x; k) is a continuous solution of
the Lippmann-Schwinger equation (4) with limjxj!1 �(x; k) = 0 for k 2 IR3, then �(x; k) is a solution of
the integral equation

�(x; k) = �
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)

�
eik�y + �(y; k)

�
dy (31)

and �(�; k) 2 C1(IR3). Therefore Equation (31) is examined on the Banach space B = C1(IR3), the
set of continuous functions vanishing at in�nity, equipped with the norm kfkB = supx2IR3 jf(x)j. L(B)
denotes the space of bounded linear operators mapping B into itself, equipped with the operator norm.
Following Ikebe13 we de�ne the linear operators Tk 2 L(B), k 2 IR3, by

(Tkf)(x) = �
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)f(y) dy : (32)

Since we will make use of some results of Ikebe and Povzner, we state them as a lemma:

3.3 Lemma. Let the potential satisfy the condition (V)3. Then:

(i) The operator Tk 2 L(B) de�ned in (32) is compact for all k 2 IR3.

(ii) Let f(x) be a bounded continuous function on IR3, then

h(x) := �
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)f(y) dy

is an element of B for all k 2 IR3 and h(x) = O(jxj�1) for jxj ! 1.

(iii) Let

g(x; k) := �
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)eik�y dy =

�
Tke

ik��
�
(x) ;

then g(�; k) 2 B for all k 2 IR3 and g(�; k) is continuous with respect to k.

(iv) Let f(�; k) 2 B be a solution of the homogeneous equation f(�; k) = Tkf(�; k) for k 2 IR3. If jkj > 0
then f = 0 and if k = 0 then (�1

2�+ V (x))f(x; 0) = 0.

(v) The map T : IR3 ! L(B), k 7! Tk is continuous.

For the proofs of (i), (ii), (iii) and (iv) see Ikebe13, for the proof of (v) see Povzner18.
Since we will use similar reasoning, we will brie
y repeat Ikebe's proof of the existence of continuous

solutions of Equation (31) starting from Lemma 3.3. Equation (31) now reads

�(�; k) = g(�; k) + Tk�(�; k) : (33)

According to Lemma 3.3.(iv) the homogeneous equation �(�; k) = Tk�(�; k) has only the trivial solution
�(x; k) = 0 if k 6= 0. Thus 1 is not an eigenvalue of Tk and therefore 1 is in the resolvent set since Tk is
compact,19 i.e. (1� Tk)�1 2 L(B) exists. The unique solution of (31) for jkj > 0 is then given by

12



�(�; k) = (1 � Tk)
�1g(�; k) : (34)

Since L(B) is a Banach algebra in which the map A 7! A�1 is continuous,19 from Lemma 3.3.(v) it
follows that (1 � Tk)�1 is continuous in k. Thus, since according to Lemma 3.3.(iii) g(�; k) is continuous
with respect to k, we have that �(x; k) is continuous with respect to k.

We will now prove part (i) of Theorem 3.1 for j�j = 1 and assume (V)3. The generalization to j�j > 1
will then be immediate. Consider arbitrary l 2 f1; 2; 3g and k0 2 IR3nf0g. We use the following notation:
kl denotes the l-th cartesian coordinate of a vector k 2 IR3 and k

l
the tuple of the other coordinates.

Symbolically we will write k = (kl; kl).
By (formally) di�erentiating (31) we obtain

@

@kl
�(x; k) =

@

@kl
g(x; k) +

i

2�

kl
jkj

Z
e�ijkjjx�yjV (y)�(y; k) dy

�
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)

@

@kl
�(y; k) dy : (35)

Assume that for kl 2 Il := [k0l � �l; k
0
l + �l] and k

l
2 I

l
:= [k0

l
� �

l
; k0

l
+ �

l
] where �l and �

l
are chosen

such that in particular 0 =2 I := Il � I
l
, the equation

�(x; k) =
@

@kl
g(x; k) +

i

2�

kl
jkj

Z
e�ijkjjx�yjV (y)

264 klZ
k0
l

�(y; (k0l; kl)) dk
0
l + �(y; (k0l ; kl))

375 dy

�
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)�(y; k) dy ; (36)

which arises from (35) by substituting �(x; k) =
R kl
k0
l

�(x; (k0l; kl)) dk
0
l + �(x; (k0l ; kl)), has a continuous

solution �(x; k). Integrating (36) with respect to kl and using Fubini's theorem we get

klZ
k0
l

�(x; (k0l; kl)) dk
0
l = g(x; k)� g(x; (k0l ; kl))

�
1

2�

Z
V (y)

264 e�ijkjjx�yj
jx� yj

0B@ k0lZ
k0
l

�(y; (k00l ; kl)) dk
00
l + �(y; (k0l ; kl))

1CA
375
kl

k0
l

dy

= g(x; k)� g(x; (k0l ; kl))

+
1

2�

Z
e�ij(k

0
l ;kl)jjx�yj

jx� yj
V (y)�(y; (k0l ; kl)) dy

�
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)

0B@ klZ
k0
l

�(y; (k0l; kl)) dk
0
l + �(y; (k0l ; kl))

1CA dy : (37)
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Since �(x; (k0l ; kl)) is a solution of (31) the second and third term of the right hand side of (37) combine
to ��(x; (k0l ; kl)). Therefore (37) simply reads

�(x; (k0l ; kl)) +

Z kl

k0
l

�(x; (k0l; kl)) dk
0
l =

g(x; k)�
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)

 
�(y; (k0l ; kl)) +

Z kl

k0
l

�(y; (k0l ; kl)) dk
0
l

!
dy :

In other words, if �(x; k) is a continuous solution of (36) then the function f(x; k) = �(x; (k0l ; kl)) +R kl
k0
l

�(x; (k0l; kl)) dk
0
l is a solution of Equation (31). Since (31) has a unique solution in B we may conclude

that f(x; k) = �(x; k), i.e. that @kl�(x; k) = �(x; k) for x 2 IR3 and k 2 I once we have shown that
f(�; k) 2 B.

We show now that equation (36) has a solution �(x; k) which is continuous with respect to x 2 IR3

and k 2 I such that �(�; (k0l ; kl)) +
R kl
k0
l

�(�; (k0l; kl)) dk
0
l 2 B. From the physical argument that �(x; k) �

eik�x+ eijkjjxj

jxj for jxj ! 1 we expect jrk�(x; k)j � eijkjjxj, jxj ! 1, to be a uniformly bounded function,

but we will only show that jrk�(x; k)j � c(1+ jxj)s for any s > 0. We start by multiplying equation (36)
by hxi�s := (1 + jxj)�s, s > 0:

e�(x; k) = hxi�s@klg(x; k)�
1

2�

Z
e�ijkjjx�yj

hxisjx� yj
hyisV (y)e�(y; k) dy

+
i

2�

kl
jkj

Z
e�ijkjjx�yj

hxis
hyisV (y)

264 klZ
k0
l

e�(y; (k0l; kl))dk0l + hyi�s�(y; (k0l ; kl))

375 dy: (38)

To see that �(x; k) = hxise�(x; k) � c(1 + jxj)s, we show that (38) has a unique solution in

eB := ff(x; k) 2 C(IR3 � I) : lim
jxj!1

sup
k2I

jf(x; k)j = 0g

In the appendix we prove that eB equipped with the norm kfkeB = supx2IR3;k2I jf(x; k)j is a Banach space

(see Lemma A.1) and that for f 2 eB the operators

( eTf)(x; k) := �
1

2�

Z
e�ijkjjx�yj

hxisjx� yj
hyisV (y)f(y; k) dy ;

( eT 0f)(x; k) :=
i

2�

kl
jkj

Z
e�ijkjjx�yj

hxis
hyisV (y)f(y; k) dy ; and

( eKf)(x; k) :=

Z kl

k0
l

f(x; (k0l; kl)) dk
0
l ;

belong to L( eB) if s > 0 is chosen such that hxisV (x) still satis�es (V)3 (see Lemma A.2).
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Noting that hxi�s@klg(x; k) and hxi
�s�(x; (k0l ; kl)) belong to

eB (see Lemma A.2), equation (38) can
be written as

e� = h�i�s@klg +
eT 0 eKe� + eT 0h�i�s�(�; (k0l ; kl)) + eT e� :

where h�i�s denotes the operator of multiplication with hxi�s in eB. To prove that this equation has a

unique solution in eB we show that (1� eT )�1 2 L( eB) exists and that

e� = (1� eT )�1 �h�i�s@klg + eT 0h�i�s�(�; (k0l ; kl))� + (1� eT )�1 eT 0 eK e� (39)

has a unique solution. The former will be content of Lemma 3.4, and to see the latter note that according
to Lemma A.2.(i)

k(1� eT )�1 eT 0 eKk
L(eB)

� k(1� eT )�1 eT 0k
L(eB)2�l:

Also k(1 � eT )�1k
L(eB) and keT 0kL(eB) depend on �l since the space eB itself depends on �l. But the norm

of these operators decreases as �l decreases since according to Lemma A.1.(ii) and the constructions

in the proofs of Lemma A.2 and Lemma 3.4 k eT 0k
L(eB) � supk2I kT

0s
k kL(B) and k(1 � eT )�1k

L(eB) �
supk2I k(1� T s

k )
�1kL(B). Thus one can choose �l such that

k(1� eT )�1 eT 0 eKk
L(eB) < 1 :

Then (39) has a unique solution e� 2 eB since (1� eT )�1 eT 0 eK is a contraction in a complete metric space.

Now �(x; k) = hxise�(x; k) is a solution of (36) and f(x; k) = �(x; (k0l ; kl)) +
R kl
k0
l

�(x; (k0l; kl))dk
0
l is a

solution of (31). Recall that to conclude f(x; k) = �(x; k), i.e. that � is the partial derivative of � with
respect to kl, we need to show f(�; k) 2 B. By construction supk2I j�(x; k))j = O(jxjs) for jxj ! 1 and
therefore also jf(x; k)j = O(jxjs) for any k 2 I. Thus writing V (x)f(x; k) = hxisV (x) hxi�sf(x; k) and
observing that hxisV (x) satis�es (V)3 and hxi�sf(x; k) is bounded we use Lemma 3.3.(ii) to conclude
that f(�; k) 2 B.

To complete the proof of part (i) for j�j = 1 we need to show the following lemma:

3.4 Lemma. (1� eT )�1 2 L( eB) exists.
Proof. First we show that (1� T s

k )
�1 2 L(B) exists, where T s

k := h�i�sTkh�is 2 L(B). Since hxisV (x)
meets the requirements of Lemma 3.3 and multiplication by hxi�s is a bounded operation on B, T s

k is
compact. Therefore (1 � T s

k )
�1 exists if the homogeneous equation (1 � T s

k )fs = 0 has only the trivial
solution fs = 0. Now let fs 2 B be a solution of the homogeneous equation which explicitly reads

fs(x) = (T s
kfs)(x) = �

1

2�

Z
e�ijkjjx�yj

hxisjx� yj
V (y)hyisfs(y) dy :

Then f(x) := hxisfs(x) is a solution of

f(x) = �
1

2�

Z
e�ijkjjx�yj

jx� yj
V (y)f(y) dy
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and Lemma 3.3.(ii) implies f 2 B since hxisV (x) satis�es (V)3 and hxi
�sf(x) is bounded. Using Lemma

3.3.(iv) we conclude that f(x) = fs(x) = 0 for k 6= 0. Therefore (1 � T s
k )
�1 exists for any k 2 I. The

continuity of (1 � T s
k )
�1 with respect to k follows again from the continuity of (1� T s

k ).

Using Lemma A.1.(ii) we de�ne the operator (1 � eT )�1 2 L( eB). Since (1 � T s
k )(1 � T s

k )
�1 = (1 �

T s
k )
�1(1� T s

k ) = 1 holds for all k 2 I, also (1� eT )(1 � eT )�1 = (1� eT )�1(1� eT ) = 1 holds.

It is now easy to prove the existence of higher order derivatives by induction. From the proof for
j�j = 1 we conclude that if �(x; k) 2 B is a solution of (31) then hxi�s@kl�(x; k) is given by the unique
solution �(x; k) in B of

�(x; k) = hxi�s@klg(x; k) +
i

2�

kl
jkj

Z
e�ijkjjx�yj

hxis
V (y)�(y; k) dy

�
1

2�

Z
e�ijkjjx�yj

hxisjx� yj
hyisV (y)�(y; k) dy

for any k 2 IR3 n f0g. In general, assume that �(x; �) 2 Cp(IR3 n f0g) for some p < n � 2 and that
hxi�s�p+1@�k �(x; k), j�j = p, is given by the unique solution �(x; k) of

�(x; k) = hxi�s�p+1 [@�k g(x; k) + @�k (Tk�)(x; k)� (Tk@
�
k �)(x; k)]

+(T s+p�1
k �)(x; k) (40)

in B, where T s+p�1
k is given by

(T s+p�1
k f)(x) := �

1

2�

Z
e�ijkjjx�yj

hxis+p�1jx� yj
V (y)hyis+p�1f(y) dy :

Then one can prove by exactly the same method as in the case j�j = 1 that @kl�(x; k) exists: Equation
(40) is analogous to (33) where g is replaced by hxi�s�p+1 [@�k g(x; k) + @�k (Tk�)(x; k)� (Tk@�k �)(x; k)] 2 B

and Tk by T s+p�1
k . As long as hyis+p�1V (y) satis�es (V)3 the proof of di�erentiability of the solution of

(40) can be done along the same lines as for j�j = 1.
Proof [of part (ii) of Theorem 3.1]. From the continuity of � and the fact that limjxj!1 (�(x; k)�

eik�x) = 0 for all k 6= 0 Ikebe already concluded that for compact D � IR3 n f0g

sup
x2IR3;k2D

j�(x; k)j <1

holds. It remains to examine the cases k ! 0 and jkj ! 1. If H has a zero-energy resonance or
eigenvalue, according to Jensen and Kato,14 the spectral density is singular at E = 0. Since the spectral
density and the generalized eigenfunctions are closely related,20 we expect that in this case also the
generalized eigenfunctions become singular at k = 0.

But assuming that H has neither a resonance nor an eigenvalue at E = 0, the eigenfunctions are
uniformly bounded near k = 0:

3.5 Proposition. Let the potential satisfy (V)n for some n � 3. If H has no zero-energy resonance or
eigenvalue, then for any compact D � IR3
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sup
x2IR3;k2D

j�(x; k)j <1

and for any � with j�j < n� 2 there is a c� <1 such that

sup
k2Dnf0g

j@�k�(x; k)j < c�(1 + jxj)j�j :

Proof. If H has no zero-energy resonance or eigenvalue the homogeneous equation f = T0f has no
solution in B since, according to Lemma 3.3, under the conditions (V)3 any solution of f = T0f is
a solution of (�1

2� + V (x))f(x) = 0 with f(x) = O(jxj�1). And a solution f 2 B of Hf = 0 with
f(x) = O(jxj�1) is in particular a resonance. Thus either f 2 L2, i.e. zero is an eigenvalue, or f =2 L2,
but then zero is a resonance.

Thus (1� Tk)�1 exists for all k 2 D and, recalling �(x; k) = ((1� Tk)�1g)(x; k),

sup
x2IR3;k2D

j�(x; k)j = sup
k2D

k�kkB � sup
k2D

k(1� Tk)
�1kL(B)kgkkB <1 ;

since k(1 � Tk)
�1kL(B) is a continuous function on a compact set and therefore bounded. Recalling

�(x; k) = eik�x + �(x; k) the proof of the �rst statement is complete.
The bounds for the partial derivatives near zero also follow from the fact that (1�T0)�1 exists if zero

is neither a resonance nor an eigenvalue of H. To see this we introduce spherical coordinates (jkj; !),
jkj 2 (0;1) and ! 2 S2 for k. If we replace @ki jkj = ki=jkj = ! � ei in Equation (40), it has a unique
solution �(�; jkj; !) 2 B also for jkj = 0. Thus limjkj!0 @

�
k �(x; jkj; !) exists for all ! 2 S2. As in the �rst

part of this proof

sup
x2IR3;k2Dnf0g

@�k �(x; k)

hxis+j�j�1
� sup

x2IR3;jkj2[0;R];!2S2
j�(x; jkj; !)j<1;

for some R such that D � KR, follows from the fact that �(�; jkj; !) 2 B depends continuously on k.
Noting j@�k e

ik�xj = jx�11 x�22 x�33 eik�xj < hxij�j completes the proof.

To prove the uniform bound on � and its derivatives it remains to examine their behavior for large k.
This can be done using the Born series. As expected on physical grounds the generalized eigenfunctions
for large momentum are essentially plane waves:

3.6 Proposition. Let the potential V satisfy (V)n for some n � 3. Then

lim
jkj!1

sup
x2IR3

hxi�j�jj@�k�(x; k)� @�k e
ik�xj = 0

for every j�j � n� 2.

Proof. First we will show that the function �(x; k) = �(x; k) � eik�x converges uniformly to zero for
jkj ! 1. Recall (34):
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�(�; k) = (1 � Tk)
�1g(�; k) :

We shall show that limjkj!1 kg(�; k)kB = 0, but we have no simple control of the norm of (1�Tk)�1, for
example in terms of the Born series, since

kTkkL(B) = sup
x2IR3

Z
jV (y)j

jx� yj
dy = const.

does not depend on jkj. Following Zemach and Klein21 we iterate Equation (33) once and obtain

�(�; k) = g(�; k) + Tkg(�; k) + T 2
k�(�; k) ; (41)

with the formal solution

�(�; k) = (1� T 2
k )
�1(g(�; k) + Tkg(�; k)) : (42)

If equation (41) has a unique solution it must equal the unique solution of (33) since any solution of (33)
is clearly also a solution of (41). We shall now �rst establish that a) (1 � T 2

k )
�1 ! 1 for jkj ! 1 and

then that b) kg(�; k) + Tkg(�; k)kB ! 0 for jkj ! 1, since then

lim
jkj!1

k�(�; k)kB � lim
jkj!1

k(1� T 2
k )
�1kL(B)k(g(�; k) + Tkg(�; k)kB = 0 :

a) follows from

3.7 Lemma. Let V 2 L1 \ L2 then

lim
jkj!1

kT 2
kkL(B) = 0 : (43)

(43) also holds, if T 2
k is understood as an operator on bounded continuous functions.

Now jkj can be chosen such that kT 2
kkL(B) < 1 and then (1 � T 2

k )
�1 is given as the norm convergent

Born series:

(1� T 2
k )
�1 =

1X
n=0

(T 2
k )

n :

Thus limjkj!1 k(1� T 2
k )
�1 � 1kL(B) = 0.

Proof [of Lemma 3.7]. We compute for f 2 B

(T 2
k f)(x) =

1

4�2

Z
e�ijkjjx�yj

jx� yj
V (y)

Z
e�ijkjjy�zj

jy � zj
V (z)f(z) dz dy

=
1

4�2

Z
V (z)f(z)

Z
e�ijkj(jx�yj+jy�zj)

jx� yjjy � zj
V (y) dy dz

=
1

4�2

Z
V (z)

jx� zj
f(z)

�
jx� zj

Z
e�ijkj(jx�yj+jy�zj)

jx� yjjy � zj
V (y) dy

�
dz

=:
1

4�2

Z
V (z)

jx� zj
f(z)IV (x; z; jkj) dz :

18



Zemach and Klein21 showed that for V 2 C1
0(IR

3)

lim
jkj!1

sup
x;z2IR3

jIV (x; z; jkj)j= 0 ;

i.e. that limjkj!1 kT 2
kkL(B) = 0 holds for V 2 C1

0(IR
3).

Potentials V 2 L1 \ L2 will be approximated in the following norm:

kjV kj = sup
x2IR3

Z
jV (y)j

jx� yj
dy :

Observing that

kjV kj � sup
x2IR3

Z
jx�yj<1

V (y)

jx� yj
dy + sup

x2IR3

Z
jx�yj�1

V (y)

jx� yj
dy

� c (kV kL2 + kV kL1) <1 ; (44)

where we used Schwarz's inequality for the kV kL2 term, we conclude that, since any V 2 L1 \ L2 can
be approximated by a function U 2 C1

0 simultaneously in L1 and L2-norm, this is also true for the
kj � kj-norm. Thus we get the following bound for the norm of T 2

k :

kT 2
kfkB = sup

x2IR3

���� 1

(2�)2

Z
e�ijkjjx�yj

jx� yj
(V (y) � U (y) + U (y))

�

Z
e�ijkjjy�zj

jy � zj
V (z)f(z) dz dy

����
� kfkBkjV kj

 
kjV � Ukj+ sup

x;z2IR3
jIU(x; z; jkj)j

!
:

The �rst term in the brackets becomes small for appropriately chosen U 2 C1
0 while the second one

converges to zero for jkj ! 1.

We now proceed to b) namely that limjkj!1 kg(�; k) + Tkg(�; k)kB = 0. By Tkg(x; k) = T 2
k e

ik�x and
Lemma 3.7 limjkj!1 kTkg(�; k)kB = 0 follows immediately. To get the analogous statement for g(�; k) we

assume �rst again V 2 C1
0(IR

3). Then

jg(x; k)j =
1

2�

����Z e�ijkjjx�yj

jx� yj
V (y)e�ik�(x�y) dy

����
�

1

2�

������
Z

�<�0

e�ijkjjzj(1+cos�)

jzj
V (x� z) dz

������
+

1

2�

Z
���0

jV (x � z)j

jzj
dz (45)
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holds. Herein � denotes the angle between z = (x�y) and k. Stationary phase methods on the �rst term
yields

1

2�

������
Z

�<�0

1

ijkj(1 + cos �)

�
d

djzj
e�ijkjjzj(1+cos�)

�
V (x� z)jzj djzjd
(z)

������
=

1

2�

������
Z

�<�0

1

ijkj(1 + cos �)
e�ijkjjzj(1+cos�)

�
d

djzj
V (x� z)jzj

�
djzjd
(z)

������
�

1

2�

1

jkj(1 + cos �0)

Z ���� d

djzj
V (x� z)jzj

���� djzjd
(z)
�

c

jkj(1 + cos �0)

jkj!1
�! 0;

where

sup
x2IR3

Z �����
d
djzjV (x� z)jzj

jzj2

����� dz = c <1

was used. This follows directly from V 2 C1
0 .

The second term in (45) is an integration over a cone with opening angle �0 where the potential in
the integrand has compact support, is bounded and displaced by �x. Thus

lim
�0!�

sup
x2IR3

Z
���0

jV (x� z)j

jzj
dz � c lim

�0!�

Z �

�0

j sin �j d� = 0

and limjkj!1 supx2IR3 jg(x; k)j = 0 follows. To get this for V 2 L1 \L2 we approximate V by U 2 C1
0 as

in Lemma 3.7.
Analogously we show that hxi�j�jj@�k�(x; k)� @�k e

ik�xj vanish uniformly for jkj ! 1. According to the
proof of part (i) of Theorem 3.1 @�k �(x; k) is obtained as the unique solution of (40) in B. For large jkj

the operator (1� (T s+p�1
k )2)�1 with p = j�j can be expanded in terms of the Born series and the solution

of the modi�ed equation is given by

� = (1� (T s+p�1
k )2)�1

�
h�i�s�p+1 [@�k g + @�k Tk� � Tk@

�
k �]

+ T s+p�1
k h�i�s�p+1 [@�k g + @�k Tk� � Tk@

�
k �]
�
:

It can be shown by the same methods as in the case of g(x; k) that the term, on which (1� (T s+p�1
k )2)�1

acts, uniformly approaches zero for jkj ! 1, which completes the proof of the proposition.

The uniform boundedness of � as well as the bounds on its partial derivatives with respect to k now
follow from Proposition 3.5 and Proposition 3.6.

We will end this section with two corollaries to Theorem 3.1 and Proposition 3.6: The �rst one states
that the Riemann-Lebesgue lemma holds also for the generalized Fourier transformation and its inverse.
Furthermore, the di�erentiability of the generalized Fourier transform of a function is connected to its
decay as in the case of the ordinary Fourier transform. Related results can be found in a work by Isozaki.22
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3.8 Corollary. Let V satisfy (V)n with some n � 3 and let zero not be an eigenvalue or resonance of
H. Then, for any N � n� 2 and any f such that hxiNf 2 L1(IR3) F�f and F�1

� f are in CN (IR3) and

@�kF�f 2 C1(IR
3) and @�kF

�1
� f 2 C1(IR

3) for all � with j�j � N .

Proof. Let hxiNf 2 L1, 0 � j�j � N , then e.g.

@�k (F+f)(k) = @�k
1

(2�)
3
2

Z
��+(x; k)f(x) dx =

1

(2�)
3
2

Z
@�k�

�
+(x; k)f(x) dx

=
1

(2�)
3
2

Z
@�k e

�ik�xf(x) dx+
1

(2�)
3
2

Z
@�k �

�
+(x; k)f(x) dx (46)

is bounded and continuous since j@�k�
�
+(x; k)j is bounded by c�hxi

j�j according to Theorem 3.1 and

hxij�jf 2 L1. Furthermore, the �rst term in the second line belongs to C1 by the ordinary Riemann-
Lebesgue lemma and the second term belongs to C1 since hxi�j�jj@�k �

�
+(x; k)j tends uniformly to zero

for jkj ! 1 according to Proposition 3.6.

The second corollary concerns the so called T-matrix, an object widely discussed in quantum mechan-
ical scattering theory. Let V satisfy (V)3, then the T-matrix T(�; �) is de�ned by

T(k; k0) = (2�)�3
Z

e�ik�xV (x)��(x; k
0) dx : (47)

There are several results about the analyticity of the T-matrix for potentials with exponential decay.23

The following corollary gives su�cient conditions for T(k; k0) to be continuously di�erentiable.

3.9 Corollary. Let V satisfy (V)n for some n � 3 and let zero be neither a resonance nor an eigenvalue
of H. Then

(i) T(�; �) 2 Cn�3(IR3 � (IR3 n f0g))

(ii) For every multi-index � with j�j � n� 3

sup
k2IR3;k02IR3nf0g

j@�k0T(k; k
0)j <1 :
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A Appendix

In this appendix we prove two lemmas used in Section 3.

A.1 Lemma.

(i) The space eB equipped with the norm

kfkeB = sup
x2IR3;k2I

jf(x; k)j

is a Banach space.

(ii) Let fAkgk2I � L(B) be a family of bounded operators on B such that Ak depends continuously
on k with respect to the operator-norm. Then

(Af)(x; k) := (Akf(�; k)) (x)

de�nes an operator A 2 L( eB) and kAk
L(eB) � supk2I kAkkL(B).

Proof [of part (i)]. Let ffngn2IN be a Cauchy sequence in eB � C(IR3 � I). Then there ex-

ists f 2 C(IR3 � I) such that limn!1 kf � fnkeB = 0. It remains to show that f 2 eB, i.e. that
limjxj!1 supk2I jf(x; k)j = 0. But

sup
k2I

jf(x; k)j � sup
k2I

jf(x; k)� fn(x; k)j+ sup
k2I

jfn(x; k)j

� kf � fnkeB + sup
k2I

jfn(x; k)j :

The �rst term can be made arbitrarily small by appropriately choosing n and the second term vanishes
for jxj ! 1.

Proof [of part (ii)]. Let f 2 eB. Then for any �xed k 2 I, f(�; k) 2 B and therefore Akf(�; k) 2 B.
First we show that Af(�; �) 2 C(IR3 � I):

j(Af)(x; k) � (Af)(x0; k0)j = j(Akf(�; k)) (x)� (Ak0f(�; k
0)) (x0)j

� j(Akf(�; k)) (x)� (Akf(�; k)) (x
0)j

+ j((Ak � Ak0)f(�; k)) (x
0)j

+ j(Ak0 (f(�; k)� f(�; k0))) (x0)j : (48)

Since Akf(�; k) 2 B the �rst term can be made arbitrary small by choosing jx� x0j small enough. The
second term becomes small uniformly in x0 by choosing jk � k0j small enough since

sup
x02IR3

j((Ak � Ak0)f(�; k)) (x
0)j = k(Ak � Ak0)f(�; k)kB � kAk �Ak0kL(B)kfkeB

and Ak depends continuously on k. The third term in (48) yields
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sup
x02IR3

j(Ak0 (f(�; k) � f(�; k0))) (x0)j � kAk0kL(B)kf(�; k)� f(�; k0)kB

� cmax

 
sup
jx0j>R

jf(x0; k)� f(x0; k0)j; sup
jx0j�R

jf(x0; k)� f(x0; k0)j

!
;

where we used supk2I kAkkL(B) � c <1. This holds because kAkkL(B) is a continuous function of k on

a compact set. The �rst term in max(: : :) can be made arbitrary small by choosing R large since f 2 eB.
The second term vanishes for jk� k0j ! 0 since a continuous function on a compact domain is uniformly
continuous.

We now show that

lim
jxj!1

sup
k2I

(Af)(x; k) = lim
jxj!1

sup
k2I

(Akf(�; k))(x) = 0 :

Suppose that this is wrong, then there exists an � > 0 and a sequence fxn; kngn2IN � IR3 � I with
limn!1 xn = 1, such that j(Aknf(�; kn))(xn)j > � 8n 2 IN. Since I is compact, fkng contains a
convergent subsequence (for simplicity also denoted by fkng) with limn!1 kn = k 2 I. Now

jAknf(xn; kn)j � jAkn(f(xn; kn) � f(xn; k))j+ j(Akn �Ak)f(xn; k)j

+jAkf(xn; k)j

where the �rst two terms get arbitrary small as n!1 as has just been shown, and the third term gets
arbitrary small as n!1 since Akf(�; k) 2 B. Thus we have a contradiction and Af 2 eB follows.

The estimate for the norm follows directly from

kAfkeB = sup
x2IR3;k2I

j(Akf(�; k))(x)j � sup
k2I

kAkkL(B)kf(�; k)kB � sup
k2I

kAkkL(B)kfkeB

A.2 Lemma. Let V satisfy (V)3 and let s > 0 such that hxisV (x) still satis�es (V)3. For f 2 eB let

( eTf)(x; k) := �
1

2�

Z
e�ijkjjx�yj

hxisjx� yj
hyisV (y)f(y; k) dy ;

( eT 0f)(x; k) :=
i

2�

kl
jkj

Z
e�ijkjjx�yj

hxis
hyisV (y)f(y; k) dy ; and

( eKf)(x; k) :=

Z kl

k0
l

f(x; (k0l; kl)) dk
0
l ;

then

(i) the operators eT , eT 0 and eK belong to L( eB) and k eKk
L(eB)

� 2�l, where 2�l is the length of the

interval Il.

(ii) The functions hxi�s@klg(x; k) and hxi
�s�(x; (k0l ; kl)) belong to

eB.
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Proof [of part (i)]. Let f 2 B and de�ne

(T s
kf)(x) = �

1

2�

Z
e�ijkjjx�yj

hxisjx� yj
hyisV (y)f(y) dy ;

(T
0s
k f)(x) =

i

2�

kl
jkj

Z
e�ijkjjx�yj

hxis
hyisV (y)f(y) dy ;

then for ef 2 B we have ( eT ef )(x; k) = (T s
k
ef (�; k))(x) and analogously for eT 0. We shall use Lemma A.1.(ii)

to prove that eT and eT 0 are in L( eB). We have to show that (T s
k )k2I and (T

0s
k )k2I are families of operators

in L(B) continuously depending on k.
Now hyisV (y) still satis�es the conditions (V)3. According to Lemma 3.3.(i) and (v) hxisT s

k satis�es
the conditions of Lemma A.1.(ii). Multiplication by hxi�s is a bounded operation in B and thus also

(T s
k )k2I satis�es the conditions of Lemma A.1.(ii). Hence eT 2 L( eB).
Next consider T

0s
k . From hyisV (y) 2 L1 and

j(T
0s
k f)(x)j � hxi�s

1

2�

Z
jhyisV (y)j dy kfkB

limjxj!1 j(T
0s
k f)(x)j = 0 follows. With jei� � ei�

0

j � j�� �0j for �; �0 2 IR we estimate

jhxis(T
0s
k f)(x) � hx0is(T

0s
k f)(x0)j �

�
1

2�

Z ���e�ijkjjx�yj� e�ijkjjx
0�yj

��� jhyisV (y)jjf(y)j dy
�

1

2�

Z
jkj jjx� yj � jx0 � yjj jhyisV (y)j dy kfkB

� jx� x0jjkj
1

2�

Z
jhyisV (y)j dy kfkB ;

which proves the continuity of hxis(T
0s
k f)(x) in x and thus that of (T

0s
k f)(x) itself. Therefore T

0s
k 2 L(B).

It remains to show that T
0s
k is norm continuous with respect to k:

k(T
0s
k � T

0s
k0 )fkB =

= sup
x2IR3

���� 12�
Z
hyisV (y)f(y)

hxis

�
kl
jkj

e�ijkjjx�yj�
k0l
jk0j

e�ijk
0jjx�yj

�����
� sup

x2IR3

���� 12�
Z
hyisV (y)f(y)

hxis
e�ijkjjx�yj

�
kl
jkj

�
k0l
jk0j

�����
+ sup

x2IR3

���� 12�
Z
hyisV (y)f(y)

hxis
k0l
jk0j

�
e�ijkjjx�yj� e�ijk

0jjx�yj
�����

� c

���� kljkj � k0l
jk0j

���� kfkB
+ sup

x2IR3

1

2�

Z
jhyisV (y)j

hxis

���e�ijkjjx�yj � e�ijk
0jjx�yj

��� dy kfkB :
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Since we can achieve c
��� kljkj � k0l

jk0j

��� < �
2 for any � > 0 by choosing jk � k0j small it remains to show that

also

sup
x2IR3

1

2�

Z
jhyisV (y)j

hxis

���e�ijkjjx�yj� e�ijk
0jjx�yj

��� dy < �

2

for jk� k0j small. Since hxisV (x) 2 L1 and
���e�ijkjjx�yj � e�ijk

0jjx�yj
��� � 2 there exists R1 such that

sup
jxj>R1

1

2�

Z
jhyisV (y)j

hxis

���e�ijkjjx�yj � e�ijk
0jjx�yj

��� dy �
� sup

jxj>R1

1

hxis
1

2�

Z
2jhyisV (y)j dy <

�

2
:

Similarly there is R2 such that

sup
x2IR3

1

2�

Z
y>R2

jhyisV (y)j

hxis

���e�ijkjjx�yj � e�ijk
0jjx�yj

��� dy �
� sup

x2IR3

1

hxis
1

2�

Z
y>R2

2jhyisV (y)j dy <
�

4
;

holds. Observing that from jxj < R1 and jyj < R2 jx� yj < R1+R2 follows, we obtain for the remaining
part

sup
jxj<R1

1

2�

Z
jyj<R2

jhyisV (y)j

hxis

���e�ijkjjx�yj � e�ijk
0jjx�yj

��� dy �
� jjkj � jk0jj

1

2�
(R1 +R2)

Z
jhyisV (y)j dy � Cjk� k0j <

�

4

for jk� k0j su�ciently small. Combining these results we get that for any � > 0

k(T
0s
k � T

0s
k0 )fkB < �kfkB

for jk�k0j small enough, which proves the norm continuity of T
0s
k . Therefore T

0s
k meets the requirements

of Lemma A.1.(ii) and we conclude that eT 0 2 L( eB).
Finally consider eK. For f 2 eB the continuity of ( eKf)(x; k) =

R kl
k0
l

f(x; (k0l; kl)) dk
0
l in x and k is clear.

Furthermore

lim
jxj!1

sup
k2I

j( eKf)(x; k)j � lim
jxj!1

2�l sup
k2I

jf(x; k)j = 0 ;

so that eK 2 L( eB) and
k eKfkeB = sup

x2IR3;k2I

�����
Z kl

k0
l

f(x; (k0l; kl)) dk
0
l

����� � 2�lkfkeB :
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Proof [of part (ii)]. Since �(x; k) 2 B for all k 6= 0 and I is compact, hxi�s�(x; (k0l ; kl)) 2
eB is

obvious. Observing

@klg(x; k) =
i

2�

kl
jkj

Z
e�ijkjjx�yjV (y)eik�y dy

�
i

2�

Z
e�ijkjjx�yj

jx� yj
V (y)yle

ik�y dy ;

hxi�s@klg(x; k) 2 eB can be shown using the same types of estimates as in the proof of part (i) of this
lemma.

References

1 Combes, J.-M., Newton, R.G. and Shtokhamer, R.: Scattering into cones and 
ux across surfaces, Phys.
Rev. D 11, 366{372 (1975).

2 Daumer, M., D�urr, D., Goldstein, S. and Zangh��, N.: On the Flux-Across-Surfaces Theorem, Letters in
Mathematical Physics 38, 103{116 (1996).

3 Dollard, J.D.: Scattering into cones I, Potential scattering, Comm. Math. Phys. 12 193{203 (1969).
4 See e.g. pp.278 in Amrein, W.O., Jauch, J.M. and Sinha, K.B.: Scattering Theory in QuantumMechanics,
W.A.Benjamin, Inc., Reading, Massachusetts, 1977.

5 Daumer, M.: Streutheorie aus der Sicht Bohmscher Mechanik, PhD thesis Ludwig-Maximilians-Universit�at
M�unchen (1995).

6 Daumer, M., D�urr, D., Goldstein, S. and Zangh��, N.: On the quantum probability 
ux through surfaces,
Journal of Stat. Phys. Vol. 88, 967{977 (1997)

7 Amrein, W.O. and Zuleta, J.L.: Flux and scattering into cones in potential scattering, Helv. Phys. Acta
70, 1 (1997).

8 Amrein, W.O. and Pearson D.B.: Flux and scattering into cones for long range and singular potentials,
Journal of Physics A, Vol. 30, 5361-5379 (1997).

9 Journ�e, J.-L., So�er, A. and Sogge, C.D.: Decay Estimates for Schr�odinger Operators, Comm. Pure.
Appl. Math. 44 573{604 (1991).

10 Yajima, K.: The W k;p-continuity of wave operators for Schr�odinger operators, J. Math. Soc. Japan 47
No. 3, 551{581 (1995).

11 Throughout this paper \O(jxj�)" will always mean \O(jxj�) as jxj ! 1".
12 V : D ! IR is locally H�older continuous if for every x 2 D there is an open neighborhood Ux � D and

an �x > 0, cx > 0 such that jV (x)� V (y)j � cxjx� yj�x for all y 2 Ux.
13 Ikebe, T.: Eigenfunction expansion associated with the Schr�odinger operators and their applications to

scattering theory, Arch. Rational Mech. Anal. 5, 1{34 (1960).
14 Jensen A. and Kato T.: Spectral properties of Schr�odinger operators and time-decay of the wave function,

Duke Math. J. 46, 583{611 (1979).
15 l:i:m:

R
is a short way of writing s� limR!1

R
BR

and s� lim denotes the strong limit.
16 Agmon, S.: Spectral Properties of Schr�odinger Operators and Scattering Theory, Annali della Scuola

Norm. Sup. di Pisa Ser. IV 2, 151{217 (1975).

26



17 We use the usual multi-index notation: � = (�1; �2; �3), �i 2 IN0, @
�
k f(k) := @�1k1 @

�2
k2
@�3k3 f(k) and

j�j := �1 + �2 + �3.
18 Povzner, A.J.: The expansion of arbitrary functions in terms of eigenfunctions of the operator ��u = cu,

Math. Sbornik 32, 109{156 (1953); A.M.S. Translations, Series 2 60, 1{49 (1967).
19 See e.g.Yoshida, K.: Functional Analysis, Springer-Verlag, New York, 1974.
20 See e.g.Theorem XI.41.(d) in Reed, M. and Simon, B.: Methods of Modern Mathematical Physics III,

Academic Press, London, 1979.
21 Zemach, C. and Klein, A.: The Born Expansion in Non-Relativistic Quantum Theory, Il Nuovo Cimento

X 6, 1078{1087 (1958).
22 Isozaki, H.: Di�erentiability of generalized Fourier transforms associated with Schr�odinger operators, J.

Math. Kyoto Univ. 25 789{806 (1985).
23 See e.g.Theorems XI.47 and XI.48 in reference 20.

27


