
SCATTERING AND THE ROLE OF OPERATORS INBOHMIAN MECHANICSM. Daumer1, D. D�urr1, S. Goldstein2, N. Zangh��31. Fakult�at f�ur Mathematik, Universit�at M�unchen, Theresienstr. 39, 80333Munich, Germany2. Department of Mathematics, Rutgers University, New Brunswick, NewJersey 08903, USA3. Istituto di Fisica, Universit�a di Genova, INFN, Via Dodecaneso 33,16146 Genova, ItalyABSTRACTUsing Bohmian mechanics, we analyze the problem of describing escape time,escape position and sojourn time|quantities for which the quantum formalism assignsno self-adjoint operator|for quantum systems. The large-scale behavior relevant toscattering theory is also discussed.HOW DOES ONE HANDLE THIS?Consider an electron with a localized initial wave function, with support inside acertain region G. Surrounding the electron are detectors, placed along the boundary ofG, which measure the position and the time of \escape" of the electron from the region.What are the quantum mechanical predictions for the statistics of these quantities?Predictions in quantum mechanics are based on a correspondence between opera-tors and observable quantities, with the operators that correspond to classical observ-ables arising as follows: The operators q̂, p̂ for position and momentum may be foundby replacing the classical Poisson bracket by the commutator: f ; g ! 1i�h [ ; ]. For ageneral classical observable, given by a function f(q;p) on phase space, the rule is toreplace q;p in f by the operators q̂, p̂. (This procedure is however ambiguous sinceit does not specify the order in which noncommmuting operators should appear in aproduct.) The spectral measure of the operator is then supposed to describe the statis-tics for the outcome of the measurement of the corresponding observable. This rule is



trusted to yield the correct operators in the usual \measurement situations" where theobservable is measured at a speci�c time chosen by the experimenter.But what are the operators for the escape time and escape position? For a classicalparticle with trajectoryQ(t), the escape time (the �rst exit time) and the correspondingescape position from the region G are given byTe := infftjQ(t) 2 Gcg (1)and Qe = Q(Te): (2)One should notice at once that these expressions are not \simple" functions f(q;p)on phase space, since they depend explicitly on the trajectory, i.e., on the classicaldynamics. The simple rule of replacement mentioned above would presumably lead togrotesque ambiguities if applied to these quantities. Notice also that the moment oftime at which the \counter clicks" is indeed random and is not a parameter chosen bythe experimenter performing the measurement. Because of this \problem of continuousobservation" (see, e.g., [2, 3]), some physicists have felt the need to generalize thequantum formalism so that it may be applied in such situations [1, 2, 3].It is not at all clear what rule should in fact be used to �nd the \correct" operators.Moreover, the mere existence of an operator for \time" seems to conict with generalprinciples: From the sizable literature on the subject of \time operators" we may citethe argument of Pauli [4] that there can be no self-adjoint operator t̂ which is canonicallyconjugate to the Hamiltonian H.1 Furthermore it is shown in [1] that no orthogonalbasis of arrival or escape time eigenstates exists,2 and hence no corresponding self-adjoint time operator.On the other hand, by being more exible with the quantum rules various re-searchers have proposed solutions to some of these problems: Since kPG tk2 (PG tdenotes the projection of  t onto G) is the probability of �nding the particle at timet in G, a natural guess for the probability density of the escape time is to de�ne�e(t) = � ddtkPG tk2. Why is it natural? Imagine a classical picture in which theparticle never returns to G once it leaves. In this case kPG tk2 would indeed be theprobability that the particle is still in G at time t, which is (1� ) the distributionfunction of the escape time. However, in general �e(t) may well be negative (the parti-cle may return to G) and thus �e(t) cannot in general be interpreted as a probabilitydensity [2].Using similar ideas, one may also arrive at a \time-operator" for the total timespent in G, called the sojourn-time or dwell-time operator [2],[5]. For this particular\continuous observation," the generalization of the rule above is straightforward. Theclassical expression for the total time Ts spent by the particle in the region G is such thatthe position Q(t) can be unambigously replaced by the Heisenberg position operator1[t̂; H] = i�h implies that the spectrum of both t̂ and H is the whole real line, which conicts withthe semiboundedness of H.2If, for example, \escape time eigenstates" jti existed, states for which the electron would leave acertain region at an exactly speci�ed time t, then any time-evolved eigenstate would have to be aneigenstate itself. That is, for times t0 > 0, e�iHt0 jti = jt� t0i, and this state must be orthogonal to jti.But the scalar product htjt� t0i = htje�iHt0 jtimay be seen as a (distributional) boundary value from which it may be analytically continued (in t0)into the lower half plane, Im t0 < 0, (assumingH � 0). But by the unicity of the analytic continuation,the boundary value cannot be zero on a set of positive measure; otherwise it would have to be zero att0 = 0, which is surely not the case.



q̂(t): With �G denoting the indicator function of the set GTs = Z 10 �G(Q(t))dt: (3)This becomes t̂s = Z 10 PG(t)dt (4)where PG(t) is the Heisenberg operator for the projection onto G. Note that formally[t̂s;H] = i�h on the subspace of wave functions which are localized in G [2].This operator gives a mean sojourn time which is in agreement with the classicalresult when kPG tk2 is the probability for the particle to be in G at time t (see the nextsection). However, in view of the negative result mentioned above,3 there are doubtsas to whether this operator yields more than the \correct" mean.While little discussion seems to have been devoted to the problem of �nding anoperator for the escape position, the statistics for the escape position have receivedsome attention, having been addressed in the \scattering-into-cones" theorem [6] andthe \ux-across-surfaces" theorem [7]. We shall discuss these theorems later when weconsider the large-scale behaviour typical of scattering theory.We wish to focus on the question of how one handles situations where no self-adjoint operators exist for escape and sojourn time and escape position, i.e., where theusual quantum rules for predictions do not apply. What can be done?We shall give a systematic discussion of this issue within the context of Bohmianmechanics, which is a theory of point particles in motion|in which particles havetrajectories|and which is known to yield the same predictions as quantum mechanicswhenever the latter is unambiguous [8, 9].THE BOHMIAN WAYIn Bohmian mechanics a particle having wave function  moves along a trajectoryQ(t) determined by ddtQ(t) = vt(Q(t)) = �hmImr t t (Q(t)) (5)where  t is a solution of Schr�odinger's equationi�h @@t t = (� �h22mr2 + V ) t: (6)The wave function  2 L2(IR3) is supposed to be su�ciently smooth, so that thedynamics exists.4 We do not wish to limit our discussion to free particle motion. Indeedwe wish to include in the description the escape of the particle for scattering states. Wemay therefore think of the potential V as a typical scattering potential with scatteringcenter lying in G.The initial position Q of the particle with initial wave function  is distributedaccording to the probability density � = j j2 ( is assumed to be normalized). Thecontinuity equation (quantum ux equation) shows that the ux(j tj2; jt) = (j tj2; j tj2vt; )3The argument above does not directly apply in general to the sojourn time since the particle mayleave the region G and return to it, but in cases of no return the escape time and sojourn time are thesame.4For the \existence of dynamics" see [11] and the contribution of K. Berndl in this volume.



is conserved, implying equivariance, i.e., that under the motion (5) the time-evolvedprobability density �t = j tj2 at all times.We may now discuss our problem|in accordance with the title of this conference|on three levels.Level 1: microscopicThe escape time Te, the escape position X(Te) and the sojourn time Ts ((1){(3))are in Bohmian mechanics random variables on the probability space 
 = G, the setof initial positions, equipped with the probability measure IP given by the density j j2.Thus, in principle, all the statistics can be computed.As we remarked above, the mean of Ts is readily computed from (3) applyingFubini's theorem and using equivariance (see also [10]):IE(Ts) = Z 10 kPG(t) k2dt: (7)As we have said, this connects with (4) sinceIE(Ts) = ( ; t̂s ): (8)The distribution of Ts, however, will depend in a rather complicated manner on  ; inparticular, there is no reason to expect it to be given by the the spectral measure of t̂s.Level 2: mesoscopicIn general, the particle may well return to G after the �rst-exit time Te. By the\mesoscopic level" we have in mind the situation where the particle never returns to Gonce it leaves. This is guaranteed by the following current positivity condition (CPC):CPC : 8t � 0 and 8q 2 @G; j(q; t) � n(q) � 0; (9)where n(q) denotes the outward normal. This ensures that a trajectory may cross thesurface @G of G at most once. For a given surface @G, the CPC is of course a conditionon the wave function. Under the CPC, the product of the current and the surface-timeelement d�dt is the joint distribution for escape time and position:IP((Qe; Te) 2 (d�; dt)) = j(q; t) � n(q)d�dt (10)For the sake of proper normalization, we assume that the particle leaves the regionG with certainty, i.e., that limt!1 kPG(t) k2 = 0: (11)(This holds, for example, for a wave function whose spectral decomposition has only anabsolutely continuous component [12].)Integrating (10) over the surface and applying Gauss' theorem yields, by virtue ofthe continuity equation (the quantum ux equation), the escape-time density�e(t) = � ddtkPG(t) k2: (12)This is now completely clear since the CPC implies that if the particle is in G at timet, it did not leave G before time t, i.e., that IP(te > t) = kPG(t) k2.We may introduce in (12) the self-adjoint operator



Z(t) = � ddtPG(t) = � i�h [H;PG(t)] (13)so that �e(t) = ( ;Z(t) ): (14)Z(t) is clearly a positive operator on a linear subspace of wave functions satisfying theCPC.The expression for the probability that the escape time is within an arbitrary set� IP(Te 2 �) = ( ;Z(�) ) := ( ; Z� Z(t)dt ) (15)leads us now to the map � 7! Z(�), which is a positive-operator-valued measure (POV)[13]. A POV is a generalization of a projection-valued measure (PV) in the sense thatthe operators (Z(�)) need not be projections.5As in the spectral theorem, we may associate with a POV a self-adjoint operator,namely its �rst moment. This association is, however, many-to-one, and the operatoritself is of rather limited value: We may de�ne t̂e byt̂e = Z 10 tZ(t)dt = Z 10 PG(t)dt; (16)where the second equality follows from (13). Thus t̂e = t̂s (cf.(4)) as, of course, it must.But in general the Z(�) are not projections (Z(�)2 6= Z(�) in general) and hence theydo not de�ne the spectral resolution of t̂e. Therefore the spectral measure for t̂e doesnot in general describe the escape time distribution. (Of course this operator does yieldthe correct mean.)We obtain the distribution of the escape position in the mesoscopic regime byintegrating (10) over t: �e(q) = Z 10 j(q; t) � n(q)dt; q 2 @G: (17)As with the escape time, one may extract from (17) a POV,6 which will in general notbe a PV.Level 3: macroscopicBy the macroscopic level we have in mind the \scattering regime," in which thesurface @G is very far from the scattering center so that the large-time asymptoticbehavior becomes relevant.While on the mesoscopic level we have assumed by de�nition that the CPC holds,we may expect that on the macroscopic level the CPC must hold for scattering states(i.e. states for which (11) holds). However, to be sure, we still assume the CPC.For simplicity, we assume that G is the ball Kr of radius r centered at theorigin, which coincides with the scattering center. Let C be a concentric cone andlet �Cr := @Kr \ C be the surface de�ned by the intersection of the surface of the balland the cone. What is the probability that the particle escapes through �Cr in the limitas r ! 1? For this we need to integrate (17) over �Cr and take the limit. One easily�nds heuristically that5What we call a POV is in [3] called a \generalized resolution of identity" (GRI). It is introducedthere in connection with the problem of the escape time operator.6(17) as well as (10) indeed de�ne a POV [15].



limr!1 IP(Qe 2 �Cr ) = limr!1 Z�Cr Z 1t=0 jt � d�dt = limt!1 kPC(t) k2: (18)Together with Dollard's \scattering-into-cones theorem"[6] (which assumes the exis-tence of the wave operators 
� := s� limt!�1 eiHte�iH0t)limt!1 kPC(t) k2 = kPCF
y� k2; (19)this yields the ux-across-surfaces theorem:limr!1 Z�Cr Z 1t=0 jt � d�dt = kPCF
y� k2: (20)Here F denotes the Fourier transform.We would like to emphasize that while (20) may conceivably be satis�ed evenwithout the CPC's holding (in some appropriate asymptotic sense), the CPC is crucialif we are to regard (20) as the probability that the particle �rst exits through �Cr . Thusthe CPC, together with the ux-across-surfaces theorem, appears to be the basis ofscattering theory. The importance of (20) for scattering was recognized in [7], but theproof was only given for the free evolution.7We wish next to point out that the POV structure of (17) characteristic of themesoscopic regime has become, in the macroscopic regime, a PV structure: We mayreadily recognize on the r.h.s. of (20) the PV de�ned by the (direction of the) \asymp-totic momentum" p̂+ = 
�p̂
y�, i.e., by C 7! �C(p̂+).We can also of course write down the di�erential cross section d�d! by introducingangular variables �e; �e and the solid angle d! and by writing the PV on the r.h.s. of(20) as Z(d!) := 
�F�1PCd!F
y� = �Cd! (p̂+) (21)where Cd! is the cone spanned by d!. Thend� := limr!1 IP(�e; �e 2 d!) = ( ;Z(d!) ) (22)is the probability that the particle escapes asymptotically within the solid angle d!.WHAT CAN BE OBSERVED?The reader may now well ask the \Gretchenfrage"8: \Can one measure all therandom variables of levels 1, 2, and 3? Can one do realistic experiments, involvingapparatuses as measuring devices, which actually record the escape time and positionas computed from the theory; in other words, can one observe these random variables?"The answer is provided by the following straightforward and completely generalresult of Bohmian mechanics [15]: The statistics of quantities which are measured inan experiment are always given by a POV. Thus we may say the following concerningthe measurability of the random variables Te;Qe and Ts:� Level 1, microscopic, the CPC is not assumed to hold.7For the general proof see [14].8\Nun sag, wie hast du's mit der Religion?Du bist ein herzlich guter MannAllein ich glaub du h�alst nicht viel davon." (Faust I, Goethe)



In general, the random variables are not distributed according to a POV and therecan be no experiment to measure them.As a side remark, we mention that measurements of the mean sojourn time havebeen discussed in connection with the so-called Larmor clock: In the limit of anin�nitely small magnetic �eld localized in G, it can be shown that the precessionangle of the spin of the particle is proportional to the mean of the sojourn time[5].� Level 2, mesoscopic, the CPC holds.As we have seen, in this case the statistics are always given by POV's. Moreover,the detectors around the boundary should accurately measure the random vari-ables under discussion. (An analysis of the experiment and a discussion of theaccuracy of the measurement is contained in [1].)� Level 3, macroscopic.The statistics of the escape position are given by (the PV associated with) theasymptotic momentum, which of course can be measured.WHAT ROLE DO OPERATORS PLAY?We have remarked that Bohmian mechanics yields in very natural situations adescription of what goes on which cannot be directly veri�ed through measurements.But that turns out to be a strength rather than a weakness of the (indeed of anycomplete) theory: In Bohmian mechanics the act of measurement can be analyzed inas much detail as one wishes; in particular, Bohmian mechanics tells us precisely whichquantities can be measured and which physical processes qualify as measurements ofwhatever it is that can be measured. This analysis reveals the status of operatorsin the description of nature, and allows a clear view of the range of applicability ofthe usual quantum mechanical formulas. The particular example of escape statisticsexempli�es the general situation [15], namely, that operators as \observables" appearmerely as computational tools in the phenomenology of certain types of experiments|those for which the statistics of the result are governed by a PV. However, they haveno fundamental signi�cance and do not at all reect what, on the microscopic level, isreally going on.AcknowledgmentsThis work has been partially supported by NSF Grants no. DMS-9105661 and no.DMS-9305930, by DFG, and by INFN.
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