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ux of a particle integrated over time and a distant surface givesthe probability for the particle crossing that surface at some time. We prove the free 
ux-across-surfaces theorem, which was conjectured by Combes, Newton and Shtokhamer [1],and which relates the integrated quantum 
ux to the usual quantum mechanical formulafor the cross section. The integrated quantum 
ux is equal to the probability of outwardcrossings of surfaces by Bohmian trajectories in the scattering regime.2 IntroductionTime-dependent scattering theory is concerned with the long-time behavior of wave pack-ets  t. Dollard's scattering-into-cones theorem [2, 3] asserts that, assuming, say, asymp-totic completeness, the probability of �nding a particle with a wave function  2 Hac(H),the absolutely continuous subspace for the HamiltonianH, in the far future in a given coneC � IR3 (with vertex at the origin) equals the probability that the quantum mechanicalmomentum of 
y� lies in the same cone,limt!1 ZC d3xj t(x)j2 = ZC d3vj d
y� (v)j2; (1)where 
� := s- limt!1 eiHte�iH0t is the wave operator, H = H0 + V with the free Hamil-tonian H0 = ��=2 (we choose units such that �h = m = 1) and the interaction potentialV . b denotes the Fourier transform. The scattering-into-cones theorem is regarded asfundamental, from which the expression for the di�erential cross section d�d
 = jf(�; �)j2from the time-independent theory is to be derived from the r.h.s. of (1) (e.g. [4], p. 356,[5]). 1



Combes, Newton and Shtokhamer [1] observed however that what is relevant for scat-tering theory is a formula for the probability that the particle crosses some distant surfaceat some time during the scattering process, since the detectors click at some random time,which is not chosen by the experimenter. Heuristically, this probability should be givenby integrating the quantum mechanical probability 
ux over the relevant time intervaland this surface. (The 
ux is often used that way in textbooks.) Combes, Newton andShtokhamer hence conjectured the \
ux-across-surfaces theorem"limR!1 Z 10 dt ZC\@BR j t � nd� = ZC d3vj d
y� (v)j2; (2)where BR is the ball with radius R and outward normal n. To our knowledge there existsno proof of this theorem. A simpler statement, also not previously proven, is the \free
ux-across-surfaces theorem," for freely evolving  t,limR!1 Z 10 dt ZC\@BR j t � nd� = ZC d3vj ̂(v)j2 (3)which in a sense is physically good enough, because the scattered wave packet will movealmost freely after the scattering has essentially been completed (see also [1]). We shallprove the \free 
ux-across-surfaces theorem" in this paper, commenting at the end on thegeneral 
ux-across-surfaces theorem.We want �rst to give the heuristic argument for (3). The 
ux should contribute to theintegral in (3) only for large times, because the packet has to travel a long time before itreaches the distant sphere @BR, so that we may use the long-time asymptotics of the freeevolution. Writing  t(x) = (e�iH0t )(x) = Z d3y ei jx�yj22t(2�it)3=2 (y) (4)and expanding the exponent of the propagator, we obtain t(x) = eix22t(it)3=2  ̂(xt ) + eix22t(it)3=2 Z d3y(2�)3=2e�ix�yt (ei y22t � 1) (y) (5)so that for large times (the second term should be negligible since j(ei y22t � 1)j ! 0 ast!1)  t(x) � (it)�3=2eix22t  ̂(xt ): (6)The importance of this asymptotics for scattering theory has long been recognized, seee.g. [7] and [2].Consider now a cone C. Substituting v := xt one readily obtains the scattering-into-cones theorem limt!1 ZC d3xj t(x)j2 = ZC d3vj ̂(v)j2: (7)2



But the l.h.s. of (7) should be una�ected if C is replaced by the truncated cone CR = C \BcR; BcR := IR3nBR, for anyR > 0. Thus writing RCR d3xj t(x)j2 = R t0 dt0 RCR d3x @@t0 j t0(x)j2+RCR d3xj 0(x)j2 and using the quantum 
ux equation @@t j tj2 +r � j t = 0 together withGauss' theorem and taking R!1 provides a heuristic argument for the free 
ux-across-surfaces theorem. Unfortunately, because of the di�culty in controlling the relevantapproximations, this argument cannot be readily turned into a rigorous proof (see also[1]).Instead we may more directly compute the 
ux using (6), from which we �nd for t!1j t(x) = Im �t (x)r t(x) � t�3j ̂(xt )j2xt : (8)Noting that the 
ux is purely outgoing for large times, i.e. parallel to the outward normaln of @BR, we then �nd upon substituting v := xt thatZ 10 dt ZC\@BR j t � nd� � Z 10 dt ZC\@BR t�3j ̂(xt )j2xt � n(x)d�= ZC d3vj ̂(v)j2: (9)This calculation can smoothly be turned into a rigorous proof, to which we now turn.3 The Flux-Across-Surfaces TheoremFirst we �x the following notation, illustrated also in the �gure.For R > 0 let BR := fx 2 IR3 : x � Rg and @BR = fx 2 IR3 : x = Rg, withx = jxj. Further let n : @BR ! IR3, n(x) := xx be the outward normal of the sphere@BR. The cone spanned by the subset � � S2 := fx 2 IR3 : x = 1g of the unitsphere is C := f�x 2 IR3 : x 2 �; � � 0g and its intersection with the sphere @BR isR� := C \ @BR = fRx 2 IR3 : x 2 �g. Another characterization of cones is providedby the unit vector nC , knCk = 1 and the opening angle �C 2 [0; �], namely C := fx 2IR3 : x � nC > x cos �Cg. We chose polar coordinates (r; �; �); r � 0; � 2 [0; �]; � 2 [0; 2�)centered at the origin, x(r; �; �) = (r sin � cos�; r sin � sin�; r cos �); with the z-directionnC . In these polar coordinates BR = f(r; �; �) : r � Rg, @BR = f(r; �; �) : r = Rg andC = f(r; �; �) : � < �Cg. The intersection of the cone C with the sphere @BR is nowC \ @BR = f(r; �; �) : r = R; � < �Cg with outward normal n(�; �) = R�1x(R; �; �).d
 = sin �d�d� denotes the solid angle.Theorem 3.1 Let  2 S(IR3) and  t := e�iH0t . Then for all T � 0 and any cone ClimR!1 Z 1T dt ZC\@BR j t(x) � nd� = limR!1 Z 1T dt ZC\@BR jj t(x) � njd� = ZC d3vj ̂(v)j2: (10)3



Remark 3.2 The condition  2 S(IR3), the Schwarz space, is introduced for the sake ofsimplicity. The proof may be performed with milder assumptions. Note, however, thatS(IR3) is a time invariant domain under the free evolution.Remark 3.3 The reason for formulating the theorem slightly stronger than (3), includinginformation also about the modulus of j t � n, is that in Bohmian mechanics (see remark3.11) the �rst (second) 
ux integral in (10) gives simply the expected value of the numberof signed crossings (the total number of crossings) by the Bohmian trajectories of thesurface. If they both agree it is an easy consequence that (10) equals the asymptoticprobability that the particle crosses C \ @BR at some time in [0;1).It will be convenient to introduce a notion of closeness of 
uxes.De�nition 3.4 Two smooth functions j1; j2 : IR3 � IR! IR3 are said to be \close in thesense of the asymptotic 
ux across surfaces," or j1 FAS� j2, if for some T > 0limR!1 Z 1T dt Z@BR j(j1 � j2) � njd� = 0: (11)Lemma 3.5 Suppose that for j : IR3 � IR! IR3 and j�0 (x; t) := t�3j�(xt )j2 xt with smooth� 2 L2(IR3), we have j FAS� j�0 . Then for all cones C � IR3 and some T > 0limR!1 Z 1T dt ZC\@BR j t(x) � n(x)d� = limR!1 Z 1T dt ZC\@BR jj t(x) � n(x)jd� = ZC d3vj�(v)j2:(12)Proof: By de�nition (3.4) it is su�cient to establish (12) for j t replaced by j�0 .Using spherical coordinates x(r; �; �) = (r sin � cos�; r sin � sin �; r cos �) we computeZ 1T dt ZC\@BR j�0(x) � n(x)d� = Z 1T dt ZC\@BR t�3j�(xt )j2xt � n(x)d�= Z 1T dt Z� d
R2t�3j�̂(x(R; �; �)t )j2x(R; �; �)t � n(�; �):Observing x(R;�; )t = x(Rt ; �;  ) and substituting v := Rt we obtainlimR!1 Z 1T dt ZC\@BR j�0 (x) � n(x)d� = limR!1 Z R=T0 dvv2 Z� d
j�̂(v; �;  )j2= ZC d3vj�(v)j2: (13)The observation that x � n(x) = jx � n(x)j �nally shows that all equalities in (12) hold.4



Lemma 3.6 Let  2 S(IR3);  t := e�iH0t and j t = Im �tr t. Thenj t(x; t) FAS� xt t�3j ̂(xt )j2: (14)Proof: We verify the conditions in de�nition (3.4). For t > 0 we may write t(x) = (e�iH0t )(x)= Z d3y ei jx�yj22t(2�it)3=2 (y)= eix22t(it)3=2  ̂(xt ) + eix22t(it)3=2 Z d3y(2�)3=2e�ix�yt (ei y22t � 1) (y): (15)Since jei y22t � 1j � 2 (16)for all y 2 IR3; t > 0, we obtain thatf(v; t) := Z d3y(2�)3=2e�iv�y(ei y22t � 1) (y) (17)is well de�ned for all v 2 IR3. Because  2 S(IR3) we may interchange di�erentiation andintegration to further obtain that f is di�erentiable on IR3 � [T;1).It is useful to introduceg(v; t) := rf(v; t) = �i Z d3y(2�)3=2e�iv�y(ei y22t � 1)y (y): (18)Further we put �(x; t) := eix22t(it)3=2  ̂(xt ) (19)and �(x; t) := eix22t(it)3=2f(xt ; t); (20)i.e.  t(x) = �(x; t) + �(x; t), andr�(x; t) = eix22t(it)3=2 �ixt  ̂(xt ) + 1t (r ̂)(xt )� (21)r�(x; t) = eix22t(it)3=2 �ixt f(xt ; t) + 1tg(xt ; t)� : (22)We may thus writej t(x) = Im( �t (x)r t(x))= Im(��(x; t)r�(x; t) + ��(x; t)r�(x; t) + ��(x; t)r�(x; t)+ ��(x; t)r�(x; t))= xt t�3j ̂(xt )j2 +N(x; t); (23)5



withN(x; t) := Im�t�4 ̂�(xt )r ̂(xt ) + ��(x; t)r�(x; t) + ��(x; t)r�(x; t)+ ��(x; t)r�(x; t)�:(24)Thus to obtain (14) we need only show that (11) is satis�ed for some T > 0 and j1� j2given by (24). We shall make use of the boundssupv2IR3;t>0 jf(v; t)j � 2(2�)�3=2k k1 =: cf ; (25)supv2IR3;t>0 jg(v; t)j � 2(2�)�3=2ky (y)k1 =: cg (26)(k � k1 denotes the norm in L1) and the fact thatlimR!1 f(v; Rv ) = 0 8v 2 IR3: (27)(Note that f(v; Rv ) is well de�ned even for v = 0 by (17).) (25) and (26) hold sinceje iy22t � 1j � 2 for all v;y 2 IR3; t > 0. Since  2 L1(IR3) and limR!1 jei y2v2R � 1j = 0 forall v;y 2 IR3, (27) follows by dominated convergence.We analyze the contribution of the expressions on the r.h.s. of (24) term by term. Forthe �rst term we obtain, using jImzj � jzj, the substitution v = Rt , and the SchwarzinequalityjIm Z 1T dt Z@BR t�4 ̂�(xt )n � r ̂(xt )d�j � Z 1T dt Z� d
R2t�4j ̂(xt )jjr ̂(xt )j� Z 10 dvv2 Z� d
R�1j ̂(v)jjr ̂(v)j� R�1k ̂k2kjr ̂jk2 ! 0 (28)as R!1, since  ̂ 2 S.For the second termIm��r� = Im t�3f�(xt ; t)�ixt  ̂(xt ) + 1t (r ̂)(xt )� (29)we obtain, similarly using (25),jIm Z 1T dt Z@BR ��r� � nd�j � Z 1T dt Z� d
R2t�3jf�(xt ; t)j(jRt  ̂(xt )j+ 1t jr ̂(xt )j)� Z 10 dv Z� d
v2jf�(v; Rv )j(j ̂(v)j+ 1R jr ̂(v)j)� Z 10 dv Z� d
v2jf�(v; Rv )jj ̂(v)j+ 1Rcfkjr ̂jk1:The second term tends to zero as R ! 1, and the �rst term also vanishes: using (25)and the fact that  ̂ 2 L1(IR3) we see that the integrand is dominated by an integrable6



function uniformly in R, so that with (27) the integral vanishes for R!1 by dominatedconvergence.For Im��r� = Im t�3 ̂�(xt )�ixt f(xt ; t) + 1t g(xt ; t)� (30)we may proceed in an analogous manner and obtainjIm Z 1T dt Z@BR ��r� � nd�j � Z 1T dt Z� d
R2t�3j ̂�(xt )j(jRt f(xt ; t)j+ 1t jg(xt ; t)j)� Z 10 dv Z� d
v2j ̂�(v)j(jf(v; Rv )j+ 1R jg(v; Rv )j)� Z 10 dv Z� d
v2j ̂�(v)jjf(v; Rv )j+ cg 1Rk ̂k1! 0 as R!1: (31)It remains to show that for some T > 0limR!1 Z 1T dt Z@BR j��r� � njd� = 0: (32)Now, ��r� = it�3f�(xt ; t) Z d3y(2�)3=2e�ixt �y(ei y22t � 1)(xt � yt ) (y) (33)= �it�3f�(xt ; t) Z d3y(2�)3=2e�ixt �y(xt � yt ) (y)+ it�3f�(xt ; t) Z d3y(2�)3=2e�ixt �yei y22t (xt � yt ) (y)= t�3f�(xt ; t) Z d3y(2�)3=2�rye�ixt �y� (y) (34)+ it�4f�(xt ; t)r ̂(xt ) (35)� t�3f�(xt ; t) Z d3y(2�)3=2ry�e�ixt �yei y22t � (y): (36)Treating (35) like (29) we see that (35) doesn't contribute. Partial integration of (34) +(36) yieldsa(x; t) := t�3f�(xt ; t) Z d3y(2�)3=2�e�ixt �yei y22try (y)� e�ixt �yry (y)�= t�3f�(xt ; t) Z d3y(2�)3=2e�ixt �y(ei y22t � 1)ry (y)= �t�3f�(xt ; t) Z d3y(2�)3=2 t2x2 (r2ye�ixt �y)(ei y22t � 1)ry (y)= �t�1x�2f�(xt ; t) Z d3y(2�)3=2e�ixt �yr2y�(ei y22t � 1)ry (y)�; (37)7



with two partial integrations in the last step.Now ry(ei y22t � 1) = it�1yei y22t ;r2y(ei y22t � 1) = (�y2t2 + 3it�1)ei y22t (38)and jei y22t � 1j � y22t ; (39)so that for t � T > 0 jr2y((ei y22t � 1)ry (y))j � jh(y)jt�1 (40)with some h 2 S(IR3) appropriately chosen. Hence,j Z d3y(2�)3=2e�ixt �y�r2y((ei y22t � 1)ry (y))�j � t�1 Z d3y(2�)3=2 jh(y)j =: ct�1: (41)Thus we arrive at ja(x; t)j � ct�2x�2jf(xt ; t)j; (42)and with R(�;  ) := x(R; �;  ) we obtainZ 1T dt Z@BR ja � njd� � c Z 1T dtt�2 Z� d
jf(Rt ; t)j: (43)On the one hand (cf. (25)) supt�T;R>0 jf(Rt ; t)j � cf ; (44)and on the other hand with the Riemann-Lebesgue lemmalimR!1 jf(Rt ; t)j = 0 8 t > 0: (45)Hence the r.h.s. of (43) tends to zero (dominated convergence) as R ! 1 and we havethus �nished the the proof of lemma (3.6).Corollary 3.7 For some T > 0, Theorem (3.1) holds .The analysis so far actually establishes the theorem for any T > 0. We now show thatthe restriction T > 0 can be removed.Lemma 3.8 For all �1 < T1 < T2 <1limR!1 Z T2T1 dt Z@BR jj t(x) � njd� = 0: (46)8



Proof: First observe thatZ T2T1 dt Z@BR jj t(x) � njd� � 4� Z T2T1 dtR2 supx2@BR j t(x)jjr t(x)j: (47)We want to apply dominated convergence. With t(x) = (2�)�3=2 Z d3keik�xe�i k2t2  ̂(k); (48)and r t(x) = i(2�)�3=2 Z d3keik�xe�i k2t2 k ̂(k); (49)we have that supx2IR3;t2IR jr t(x)j � (2�)�3=2kk ̂(k)k1: (50)Since  2 S(IR3) we may perform n partial integrations in (48) to obtain t(x) = (2�)�3=2x�n Z d3kh(1irk)neik�xie�i k2t2  ̂(k)= (�1)n(2�)�3=2x�n Z d3keik�xh(1irk)ne�i k2t2  ̂(k)i: (51)We estimate j(1irk)ne�i k2t2  ̂(k)j � jh(k)j(1 + tn) (52)for some h 2 S(IR3). For n = 2 we thus haveR2 supx2@BR j t(x)jjr t(x)j � (2�)�3=2kk ̂(k)k1 Z d3kj(1irk)2e�i k2t2  ̂(k)j� c0(1 + t2) 2 L1(T1; T2): (53)For n = 3 and any �xed t 2 [T1; T2] we obtainR2 supx2@BR j t(x)jjr t(x)j � (2�)�3=2R�1kk ̂(k)k1 Z d3kj(1irk)3e�i k2t2  ̂(k)j� c00R�1(1 + t3)! 0 (54)for R !1. Now we use dominated convergence in (47) and are done.Theorem (3.1) now follows directly from Cor.(3.7) and Lemma (3.8).Remark 3.9 The extension of our result to the free evolution of N particles is straight-forward. The extension to the interacting case, i.e. a proof of (2) (even for one-particlescattering), is open. The theory of generalized eigenfunction expansions [8] can beused to control the space-time behavior of  t(x) and of the 
ux j t. We may expand9



 t(x) = (2�)�3=2 R d3ke�i k2t2 �(x;k) d
y� (k), where �(x;k) are solutions of the Lippmann-Schwinger equation �(x;k) = eik�x � 12� Z d3ye�ikjx�yjjx� yj V (y)�(y;k); (55)(with incoming spherical waves). The important connection between the wave opera-tors, generalized eigenfunctions and the Fourier transform is expressed by d
y� (k) =(2�)�3=2 R d3x��(x;k) (x). For a proof of (2), relying essentially on a stationary phaseargument, we need additional smoothness properties of the eigenfunctions which, toour knowledge, have not yet been established. More precisely, we need to know that�(x; �) 2 C1(IR3 n f0g) for all x 2 IR3, �(�;k) 2 C1(IR3) for all k 2 IR3 n f0g, andsupx2IR3;k2IR3nf0g �(x;k) < 1. The closest we could get was, with [8] and [4] TheoremXI.41 and XI.70, that for V 2 L2(IR3) locally H�older continuous with the possible ex-ception of �nitely many singularities and jV (x)j = O(x�2�h) for some h > 0, �(x;k) isbounded and continuous for x 2 IR3 and k 2 D � IR3 n f0g, where D is compact. It iswell known that for V 2 C1(IR3) the solutions � of the stationary Schr�odinger equationobey � 2 C1(IR3) and thus the solutions �(�;k) of the Lippmann-Schwinger equation,which are special solutions of the stationary Schr�odinger equation parametrized by k,are in C1(IR3) (see [6], Theorem IX.62). It remains to be shown that for any x 2 IR3both �(x; �) 2 C1(IR3 n f0g) and supx2IR3;k2IR3nf0g j�(x;k)j <1. This should be true forpotentials which are su�ciently smooth and have su�ciently strong decay at in�nity [9].Remark 3.10 The mathematical physics of scattering theory is mainly concerned withthe existence and asymptotic completeness of wave operators 
� := s- limt!�1 eiHte�iH0t.The wave operators may be used to control the long-time behavior of wave packets  t :=e�iHt , in the sense of  t L2� e�iH0t
y� , i.e. the di�erence vanishes in L2 as t ! 1.Dollard's lemma implies that for �t := e�iH0t��t(x) L2� eix22t (it)�3=2�̂(xt ): (56)Asymptotic completeness of the wave operators implies, among other things, that for any 2 Hac(H) there is a � 2 L2 such that limt!1 ke�iHt � e�iH0t�k2 = 0, where � = 
y� with 
� unitary on Hac(H) (see, e.g., [4]). It then follows by the triangle inequality thatfor any  2 Hac  t(x) L2� eix22t (it)�3=2 d
y� (xt ): (57)From this the general scattering-into-cones theorem (1) follows easily (see. e.g. [2]). Thisis however not su�cient to prove the physically relevant 
ux-across-surfaces theorem. Thenotion of closeness which should be used here is the closeness of 
uxes in the sense of the10



asymptotic 
ux across surfaces introduced in de�nition (3.4), and not the closeness ofwave functions in L2.Remark 3.11 In the context of Bohmian mechanics [10, 11, 12, 13, 14], a theory of pointparticles moving along trajectories de�ned by an ODE arising from the wave function,with velocity j t=j j2, a theory that can be shown to underly the quantum formalism (see.e.g. [15, 16]), it follows easily from Theorem (3.1) thatlimR!1 IP (xRe 2 R�) = limR!1 Z 10 dt ZR� j t � nd� (58)where xRe is the position at which the trajectory �rst crosses the sphere @BR and IP is the quantum equilibrium measure, given by the density j j2. This provides a naturalde�nition of the cross section measure.AcknowledgmentsThis work was supported in part by the DFG, by NSF Grant No. DMS-9504556, and bythe INFN.References[1] J.-M. Combes, R.G. Newton, and R. Shtokhamer, Scattering into cones and 
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Figure 1: The initial wave packet evolves under the in
uence of the scatterer at the origin.In Bohmian mechanics (see remark 3.11) the 
ow lines of the corresponding 
ux representthe possible trajectories of the particle.
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