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Abstract
Based on inverse kinematics the close relation between radiative electron
capture to the projectile continuum, calculated within the impulse
approximation, and electron–nucleus bremsstrahlung is shown. Particular
emphasis is laid on the short-wavelength limit corresponding to cusp-electron
emission in the target frame of reference. Differential cross sections and the
degree of photon polarization are calculated for the coincident emission of
electron and photon. Coplanar and non-coplanar geometries are considered,
and the polarization is compared with that obtained from experiments on the
elementary bremsstrahlung process and on radiative electron capture to bound
states.

1. Introduction

The interest in radiation phenomena during heavy ion–atom collisions has been revived by the
feasibility of experiments where fast forward electrons are recorded in coincidence with the
emitted photons. Pioneer measurements of the cusp-electron spectrum and the accompanying
photon spectra for 90 MeV amu−1 U88+ + N2 collisions were carried out at the GSI Darmstadt,
Germany [1, 2]. The collision velocity was in a regime where the radiation process is still
strongly dominated by the nonradiative Coulomb capture to continuum [3]. Therefore, a
coincidence experiment is mandatory to single out the electrons related to radiation.

An important reason for studying the radiative capture of a loosely bound target electron
into a continuum projectile eigenstate close to threshold (the radiative ionization (RI) [4]
sometimes also termed RECC) is its relation—by inverse kinematics—to the short-wavelength
limit (SWL) of the elementary process of electron–nucleus bremsstrahlung. Since in the SWL
the electron is slowed down to near-zero energy and is thus hard to detect, the fact that it appears
as a cusp electron in the target frame of reference opens the possibility for an experimental
investigation of the SWL for bremsstrahlung on highly charged ions.

There exists a vast literature on the theory of bremsstrahlung which can be profited of
once the relation to RI is established. Early work dates back to Bethe and Heitler [5] using
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the Born approximation, and to Bess [6], Maximon and Bethe [7] apply Sommerfeld–Maue
wavefunctions for the electron. These functions got established in bremsstrahlung calculations
by the seminal work of Elwert and Haug [8], and their applicability for the differential cross
sections was supported by later calculations using exact relativistic wavefunctions [9–12]. An
overview of the calculations in comparison with experimental data (far off the SWL) can be
found in [13–16].

A second process related to RI by means of continuity across the ionization threshold [17]
is the radiative electron capture (REC) into bound states of heavy projectiles. Viewed as inverse
photoeffect, the REC has attracted much interest during the recent years both theoretically and
experimentally [18]. In particular, the impulse approximation combined with exact relativistic
wavefunctions [19] has proved to give an excellent description of the experimental photon
momentum distributions [20, 21].

The aim of the present work is, apart from studying cusp features, the investigation of the
angular distribution and linear polarization of the RI photons in the context of their relation to
bremsstrahlung and REC. Thereby future experiments should be stimulated which combine the
use of a Compton polarimeter [22] with the electron–photon coincidence detection technique
[1, 2].

As concerns the polarization studies we restrict ourselves to the photon linear polarization,
the only one which is accessible if electron polarization is disregarded [23]. There is
some early theoretical work on the photoeffect by polarized photons (see, e.g., [24]), and
recently also the REC photon polarization was calculated for a few cases [25, 26]. The
bremsstrahlung polarization, on the other hand, has been thoroughly investigated (see, e.g.,
[27–30]). However, most of these studies involve doubly differential cross sections (where
the electron angular distribution is integrated over). The polarization from the elementary
bremsstrahlung process (concerning triply differential cross sections) is much different [31]
which was confirmed by experiment [31, 32]. Since in the nonrelativistic limit (for coplanar
geometry) the bremsstrahlung photons are completely polarized in the plane spanned by the
incoming electron and the emitted photon [28], any depolarization points to the importance of
the relativistic dynamics or spin-flip effects [29].

The paper is organized as follows. In section 2, the relativistic RI theory is outlined and
some (target-frame) results on the photon angular distribution for forward emitted electrons
are given. The bremsstrahlung limit of RI is derived in section 3 and its approach with
decreasing target nuclear charge is investigated numerically. Section 4 is devoted to structures
in the projectile-frame differential cross section and to spin-flip effects. The cusp asymmetry
and its dependence on the photon emission angle is studied in section 5. In section 6, the
photon linear polarization and its dependence on the electron and photon momenta, on the
collision velocity as well as on the projectile and target nuclear charge, is investigated for
the coplanar geometry. Section 7 presents the results for the non-coplanar geometry and a
comparison with the experimental polarization of bremsstrahlung photons [31]. The relation
between RI and REC and the polarization results for the two processes in the case of bare
uranium projectiles are discussed in section 8. Concluding remarks are made in section 9.
Atomic units (h̄ = m = e = 1) are used unless otherwise indicated.

2. Radiative ionization in the laboratory frame

The relativistic formulation of radiative ionization in the impulse approximation (IA) is given
in a previous work [33]. Briefly, the four-fold differential cross section for the simultaneous
emission of a target electron with energy Ef (and momentum kf ) into the solid angle d�f
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and a photon with energy ω = kc and polarization direction eλ into the solid angle d�k is (in
the target frame of reference) given by

d4σλ

dEf d�f dω d�k

= kf ωω′E′
f

2c5

∑
σi,σf

∫
d2b

∣∣aIA
f i,λ

∣∣2 (2.1)

where the projectile is assumed to move along a straight-line path with impact parameter b.

Since the initial electron is unpolarized and the polarization of the ejected electron is not
observed, we have averaged over the initial spin states (σi) and summed over the final ones
(σf). For the transition amplitude we have

aIA
f i,λ = 2π i

γ

√
1 + γ

2
A′

λ

4∑
s=1

∫
dq eiq⊥bW rad(σf, s, q)

×
[
u(s)+

q

(
1 − γ v/c

1 + γ
αz

)
ϕ

(σi)
i,T (p)

]
δ
(
E′

f + ω′ − ET
i

/
γ + qzv

)
(2.2)

with the photon field A′
λ = ceλ

/(
2πω′ 1

2
)

and a relativistic 4-spinor u(s)
q (defined in the

appendix) characterized by momentum q and spin s(s = 1, 2 for the particle states and
s = 3, 4 for the antiparticle states)1. The initial-state wavefunction in momentum space is
denoted by ϕ

(σi)
i,T (p) with p = (

q⊥, ET
i v/c2 + qz/γ

)
in cylindrical coordinates, ET

i being the
initial-state energy of the electron. The radiation matrix element between the intermediate
(ψ

(s)
q,P ) and the final (ψ

(σf)
f,P ) projectile scattering eigenstates is given by

W rad(σf, s, q) =
∫

dx′ ψ(σf)+′
f,P (x′)α e−ik′x′

ψ
(s)′
q,P (x′) (2.3)

with the Dirac matrices α = (αx, αy, αz) and k the photon momentum. Primed quantities
refer to the projectile reference frame, and the momentum 4-vectors are interrelated by a
Lorentz transformation, namely

E′
f = γ (Ef − vkf cos ϑf ), ω′ = γω

(
1 − v

c
cos ϑk

)
cos ϑ ′

f = γ

k′
f

(
−vEf

c2
+ kf cos ϑf

)
, cos ϑ ′

k = cos ϑk − v
c

1 − v
c

cos ϑk

(2.4)

with γ = (1 − v2/c2)−1/2. Note that the inverse transformation is obtained upon replacing v

by −v throughout. The collision velocity v = vez is taken in the z-direction and the x-axis
is defined such that the photon momentum lies in the (x, z)-plane, k′ = k′(sin ϑ ′

k, 0, cos ϑ ′
k).

Then, the two photon polarization directions, perpendicular to k′, are taken as

eλ1 = (0, 1, 0), eλ2 = (− cos ϑ ′
k, 0, sin ϑ ′

k). (2.5)

We will refer to eλ2 as ‘in-plane’ linear polarization and eλ1 as ‘perpendicular’ polarization.
Following [34] we define the degree of the photon linear polarization by

P = dσλ2 − dσλ1

dσλ2 + dσλ1

(2.6)

where dσλi
abbreviates the (multiply) differential cross section corresponding to the

polarization direction eλi
, i = 1, 2. The denominator, dσλ1 + dσλ2 ≡ dσ, is the differential RI

cross section if the photon polarization is not observed. The definition (2.6) of P coincides
with the Stokes parameter C03 [23]. In the bremsstrahlung literature, P is usually defined with
a negative sign (see, e.g., [27, 30]).

1 In previous work [3, 33] this spin sum was erroneously truncated at s = 2. However, the contribution of s = 3, 4
in the weakly relativistic regime considered is negligibly small.
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(a) (b)

Figure 1. Four-fold differential cross section (a) and polarization (b) for K-shell RI from Ag47++Ar
as a function of ϑk. Long-broken curve, full curve and chain curve correspond to cusp electrons
with kinetic energy Ef,kin = Ẽ0 = 10, 100 and 300 keV, respectively, emitted at ϑf = 1◦, ϕ = 0.

Dotted curves in (a) Ef,kin = 12, Ẽ0 = 10 (upper curve) and Ef,kin = 110, Ẽ0 = 100 (lower
curve). Dotted curve in (b) Ef,kin = 110, Ẽ0 = 100. Photon energy ω = ωpeak(90◦) from (2.7):
ω = 5.4 for Ef,kin = Ẽ0 = 10; 5.31 for Ef,kin = 12, Ẽ0 = 10; 79.2 for Ef,kin = Ẽ0 = 100; 79.0
for Ef,kin = 110, Ẽ0 = 100; 184.5 for Ef,kin = Ẽ0 = 300 (all energies in keV).

Figure 1(a) shows the differential RI cross section (summed over λ) for bare Ag
impinging on a hydrogenic (one-electron) Ar target as a function of the photon emission
angle. The collision velocity, or equivalently the kinetic energy of a free target electron in
the projectile reference frame, Ẽ0 ≡ E′

0 − mc2 = (γ − 1)mc2, is treated as parameter. Then
v = 26.72, 75.13, 106.42 au correspond, respectively, to Ẽ0 = 10, 100, 300 keV. The photon
frequency is kept fixed, and the electron (which is either a cusp electron, E′

f ≈ mc2, or has
a kinetic energy of a few keV) is ejected into the forward direction. The coplanar geometry
is chosen where the electron is emitted into the (x, z)-plane (i.e. electron, photon and the
beam axis lie in one plane). Then 0◦ < ϑk < 180◦ (and ϕ ≡ ϕf − ϕk = 0 where ϕf and
ϕk denote the azimuthal angles of electron and photon, respectively) means emission of both
particles into the same hemisphere, while 180◦ < ϑk < 360◦ and ϕ = 0 (or, respectively,
180◦ > ϑk > 0◦ and ϕ = 180◦) refer to the case where electron and photon are emitted into
opposite sides of the beam axis. There is a rather strong left–right asymmetry, although ϑf is
very small (but �= 0).

Moreover, as expected, the cross section decreases with velocity and the peak near
ϑk = 90◦ gets narrower. To understand the second item, we recall that the differential RI cross
section (2.1) with (2.2) is basically proportional to the Compton profile of the target electron.
For spherically symmetric initial states the energy-conserving delta function (together with
the requirement p = 0 for the peak maximum) leads to the condition ω′ = ET

i

/
γ − qzv −E′

f

with qz/γ = −ET
i v
/
c2. For fixed E′

f , this translates to the peak condition for the photon
energy (in the projectile and target frame, respectively, cf (2.4))

ω′ = γET
i − E′

f ≡ ω′
peak, ω = γET

i − E′
f

γ
(
1 − v

c
cos ϑk

) ≡ ωpeak(ϑk). (2.7)

Whereas nonrelativistically (v/c → 0, γ → 1)ωpeak is a constant, (2.7) shows its dependence
on the photon emission direction. One has ωpeak(0) = γ 2ωpeak(90◦)

(
1 + v

c

)
and, therefore,
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(a) (b)

Figure 2. Four-fold differential cross section (a) and polarization (b) for RI from P + H at
Ẽ0 = 300 keV as a function of ϑk. P = C6+ (— — —), Ag47+ (———–), U92+(− · − · −·).
Spin-flip contribution for uranium (- - - - -). The parameters are Ef,kin = 300 keV, ϑf = 1◦, ϕ = 0
and ω = ωpeak(ϑk).

ωpeak(0) − ωpeak(90◦) ∼ vγ 2. This has to be compared with the width of the Compton profile
which behaves like ω − ωpeak(90◦) ∼ v [33] and thus increases much slower with v. If at
ϑk = 0 the RI cross section is calculated with ω = ωpeak(90◦), it sits on the wing of the
Compton profile (the farther away from the maximum the higher the v).

Figure 2(a) shows the differential RI cross section for a series of bare projectiles colliding
with H as a function of ϑk. Probed is again the cusp region, but now at each ϑk, ω is chosen
according to (2.7). This corresponds to the experimental situation where all photons are
recorded which are emitted into a fixed direction (the main contribution coming from those
with ω ≈ ωpeak(ϑk)). The cross section maximum has shifted to a slightly higher angle as
compared to the case of the fixed ω, and there is hardly any decrease of the peak width with
v. An increase of the projectile charge leads only to a slight increase of the width, but to
considerably larger cross sections.

3. The bremsstrahlung limit of RI

When the target potential decreases to zero the electron becomes free. Viewed from the
projectile frame of reference, this electron scatters with velocity −v inelastically from the
projectile, emitting a photon. In this section, we give a derivation of the bremsstrahlung limit.

To start with, the differential RI cross section (2.1) is transformed into the projectile frame
of reference by using the fact that the phase space element c2 dk/E is a relativistic invariant
[35, p 124],

d4σ ′
λ

dE′
f d�′

f dω′ d�′
k

= ω′k′
f

ωkf

d4σλ

dEf d�f dω d�k

= ω′2k′
f E′

f

2c5

∑
σi,σf

∫
d2b

∣∣aIA
f i,λ

∣∣2 , (3.1)

with aIA
f i,λ from (2.2).
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In the bremsstrahlung case we know from energy conservation that E′
f = E′

0 − ω′ is
fixed if ω′ is fixed. In order to derive the bremsstrahlung limit from (3.1) we therefore have to
integrate over E′

f , keeping in mind that the target function ϕ
(σi)
i,T (p) becomes proportional to

δ(p) for ZT → 0.
When ZT approaches 0 the relativistic bound-state function turns into a Darwin function

[36] (which is exact up to first order in ZT /c and which is used in our calculations throughout).
For an li = 0 state its momentum representation reads

ϕ
(σi)
i,T (p) = NT

i a
(σi)
i (p)ϕ̃i,T (p)

(3.2)

NT
i =

[
1 +

(
ZT µ

ni

)2
]− 1

2

, a
(1)
i (p) =

⎛
⎜⎜⎝

1
0

µpz

µp+

⎞
⎟⎟⎠ , a

(2)
i (p) =

⎛
⎜⎜⎝

0
1

µp−
−µpz

⎞
⎟⎟⎠

with p± = px±ipy, µ = c
/(

ET
i + c2

)
and ϕ̃i,T (p) the nonrelativistic bound-state momentum-

space wavefunction (with quantum numbers ni, li = 0,mi = 0).

Introducing Fq(E
′
f , ω′) by means of

aIA
f i,λ ≡

∫
dq eiq⊥bFq(E

′
f , ω′)ϕ(σi)

i,T (p)δ
(
E′

f + ω′ − ET
i

/
γ + qzv

)
, (3.3)

we obtain

Qλ(ω
′) ≡

∫ ∞

c2
dE′

f k′
f E′

f

∫
d2b

∣∣aIA
f i,λ

∣∣2
= (2π)2

v2

(
NT

i

)2
∫ ∞

c2
dE′

f k′
f E′

f

∫
dq⊥

∣∣Fq(E
′
f , ω′)a(σi)

i (p)ϕ̃i,T (p)
∣∣2 (3.4)

with qz = − 1
v

(
E′

f + ω′ − ET
i

/
γ
)
. From the definition of pz, we can substitute pz for E′

f by
means of

E′
f = −pzγ v − ω′ + γET

i (3.5)

such that
∫∞
c2 dE′

f = γ v
∫ p1

−∞ dpz with p1 = (−c2 − ω′ + γET
i

)/
γ v. We note that p1 = 0

if ω′ = γET
i − c2 which is the largest possible photon energy if the width of the initial-state

momentum distribution is neglected, and p1 > 0 for smaller ω′.
Let us restrict ourselves to the target 1s state. Then for small ZT , ϕ̃i,T (p) is strongly

peaked at p = 0 where qz takes the value qz(0) = −γET
i v/c2 �= 0. Thus for sufficiently small

ZT , the function Fq(E
′
f , ω′)a(σi)

i (p) is continuous in p and therefore can be taken outside the
integral at p = 0 (this peaking approximation becomes exact in the limit ZT → 0). Using the
definition of Fq(E

′
f , ω′) by identification of (3.3) with (2.2) this results in

Qλ(ω
′) ≈ (2π)2γ

v

(
NT

i

)2
k′
f E′

f

∣∣Fqz(0)ez
(E′

f , ω′)u(σi)
0

∣∣2 ∫ p1

−∞
dpz

∫
dq⊥|ϕ̃i,T (q⊥, pz)|2,

(3.6)

Fqz(0)ez
(E′

f , ω′) = 2π i

γ

√
1 + γ

2
A′

λ

4∑
s=1

W rad(σf, s, qz(0)ez)u
(s)+
qz(0)ez

(
1 − γ v/c

1 + γ
αz

)
,

with E′
f from (3.5) for pz = 0. We have used a

(σi)
i (0) = u

(σi)
0 = (1, 0, 0, 0)+ for σi = 1 and

(0, 1, 0, 0)+ for σi = 2.
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Recalling that
∫

dq⊥|ϕ̃i,T (q⊥, pz)|2 is equal to the Compton profile, J̃i (pz) = 8Z5
T

3π

[
Z2

T +

p2
z

]−3
(for a 1s state), the integral in (3.6) gives 1

2 for p1 = 0. For p1 > 0 on the other hand,
it approaches 1 in the limit ZT → 0. For the prefactor in (3.6) we have the identity (cf (A.2))√

1 + γ

2γ

(
1 − γ v/c

1 + γ
αz

)
u

(σi)
0 = u

(σi)−γv. (3.7)

Thus, the bremsstrahlung limit reads for ω′ < (γ − 1)c2, using the orthogonality of the
4-spinors, u

(s)+
−γvu

(σi)−γv = δs,σi ,

d3σ ′brems
λ

d�′
f dω′ d�′

k

= lim
ZT →0

d3σ ′
λ

d�′
f dω′ d�′

k

= lim
ZT →0

ω′2

2c5

∑
σi,σf

Qλ(ω
′)

= 8π4ω′2k′
f E′

f

c5v

∑
σi,σf

|A′
λW rad(σf, σi,−γv)|2 (3.8)

where (3.5) now turns into E′
f = γ c2 − ω′. (One has to keep in mind that at the SWL,

ω′ = (γ − 1)c2, the rhs of (3.8) is smaller by a factor of 2.)
When Sommerfeld–Maue functions are used (which is done throughout in the present

work) one gets a closed expression for the radiation matrix element [7, 8]. Then, the
bremsstrahlung limit reduces to

d3σ ′brems
λ

d�′
f dω′ d�′

k

= ω′k′
f E′

f

8π2c3v

ηq

1 − e−2πηq

ηf

1 − e−2πηf

∑
σi,σf

∣∣(u(σf)+
k′

f

(eλI)u(σi)
q

)∣∣2 (3.9)

with q = −γv, ηq = ZP Eq/qc2 and ηf = ZP E′
f /k′

f c2 the Sommerfeld parameters (where

Eq = (q2c2 + c4)
1
2 ) and I an analytic expression (see the appendix). (3.9) is identical to the

Elwert–Haug bremsstrahlung formula [8].
Rather than to reverse the beam direction in the comparison of RI with the bremsstrahlung

results it is more convenient to redefine the emission angles. We define the projectile-frame
emission angles θ ′

f and θ ′
k by

θ ′
f = π − ϑ ′

f , θ ′
k = π − ϑ ′

k (3.10)

where ϑ ′
f and ϑ ′

k are the Lorentz-transformed target-frame emission angles.
In figure 3(a), the triply differential RI cross section is shown for bare Xe colliding with

various (one-electron) targets at Ẽ0 = 100 keV as a function of θ ′
k. The cross section is peaked

at smaller angles than in the target frame (due to relativistic retardation effects, i.e. non-dipole
transitions [37]). At the short-wavelength limit the peak intensity decreases with decreasing
ZT . However, it passes the bremsstrahlung limit and falls a factor of 2 short for ZT � 1 as
expected from the discussion above. On the other hand, if one moves away from the cusp (e.g.
for ω′ = 60 keV, also shown in figure 3(a)), the bremsstrahlung limit is already reached for
ZT = 1 (the cross section resulting from ZT = 1 is indistinguishable from the limit ZT = 0
in figure 3(a)).2 It is worthwhile noting that, in contrast to the behaviour at the SWL, the
cross section maximum increases with decreasing ZT due to the underlying Compton profile.
The reason for the different behaviour of photons when emitted simultaneously with cusp
electrons is the superposition of the cusp structure in the electron spectrum on the Compton-
profile background [33]. As concerns the corresponding photon polarization (shown in
figure 3(b)), the bremsstrahlung limit is reached for ZT = 1 at all photon energies (except at
the SWL for θ ′

k ≈ 0).

2 The contradictory behaviour found in figure 5 of [38] is due to a numerical error in the relativistic code. In fact,
the correct RI result is indistinguishable from the Elwert–Haug theory.
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(a) (b)

Figure 3. Projectile-frame triply differential cross section (a) and polarization (b) for K-shell
RI from Xe54+ + T as a function of θ ′

k. Chain curve, T = Ar (ZT = 18); long-broken curve,
C (ZT = 6); dotted curve, H (ZT = 1); short-broken curve, ZT = 0.3 and full curve, ZT = 0. The
parameters are Ẽ0 = 100 keV, θ ′

f = 10◦, ϕ = 0. The upper bunch of curves is for ω′ = 60 keV, the
lower bunch is at the SWL (ω′ = 94.71, 99.4, 99.97, 99.984, 99.985 keV for ZT = 18, 6, 1, 0.3, 0,

respectively). In (b) all curves correspond to the SWL.

4. Structure of the cross section and spin-flip transitions

In order to get a better understanding of the RI process we have to look more closely at the
radiation matrix element (A.1) which is governed by the operator I .

From the inspection of the explicit formulae (A.3)–(A.5) for I one expects a maximum
in the differential cross section when the prefactor |N0| becomes large. One possibility is that
α̃ tends to zero, which for example is related to a cross section maximum in (e, 2e) reactions
[39, 40]. However, due to the smallness of the photon momentum (in the weak-relativistic
regime considered here) this is not the case for RI; in fact, the differential cross section
is largest if photon and electron are emitted into the same half-plane [16, p 15] (see also
figure 3(a)).

As a second possibility, a maximum in the differential cross section could be produced
when γ̃ → 0. One has (with ε = +0)

γ̃ = 1
2 [q2 − (k′ + k′

f )2] + iεq (4.1)

where in the bremsstrahlung limit q2 = γ 2v2 is a large quantity. If one considers the coplanar
geometry, γ̃ small requires θ ′

k ≈ θ ′
f (for ϕ = 0) or θ ′

k + θ ′
f ≈ 0 (for ϕ = 180◦). If θ ′

k ≈ θ ′
f ≈ 0

then α̃ is small in addition.
Figure 4 shows the ω′-dependence of the pair (θ ′

k, θ
′
f ) which leads to the maximum in

the triply differential cross section d3σ ′
d�′

f dω′ d�′
k

for an Ag47+ projectile colliding with various

targets. It is seen that in the SWL (ω′ ≈ 300 keV) the corresponding angles are quite large
for a hydrogen target, but they decrease when ω′ gets smaller and also when the target gets
heavier. Note that when ω′ decreases, k′

f increases (see (2.7)) such that the dependence of
γ̃ on θ ′

k + θ ′
f gets stronger. This produces the ω′-dependent shift to smaller angles (which

is also known from bremsstrahlung investigations [16, p 124]). The reason why, particularly
for loosely bound electrons, both angles are still quite large (except for the smallest values
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Figure 4. Pair of angles (θ ′
k, θ

′
f ) at ϕ = 0 leading to the maximum of the projectile-frame

triply differential K-shell RI cross section for Ag47+ + T and Ẽ0=300 keV. The targets are H
(— — —), C (———–) and Ar (− · − · −). The crosses on each curve, starting from the left
end, mark the sequence of frequencies ω′ = 50, 100, 150, 200, 250, 270, 290 keV and the SWL
(ω′ = 299.9, 299.2, 293 keV, respectively, for H, C, Ar). The curves are guides to the eye.

of ω′) is the strong reduction of zero-angle differential cross sections since they are basically
induced by spin-flip transitions.

The influence of spin-flip transitions is most readily explained in the bremsstrahlung limit
(3.9). The spin-flip contributions to the differential cross section, originating from the two
pairs (σi, σf) = (1, 2) and (2, 1), are due to the occurrence of α-matrices in the transition
operator eλI. One has αlαk = (

σlσk

0
0

σlσk

) = −αkαl with σk, k ∈ {x, y, z}, a Pauli matrix and
σxσy = iσz (with cyclic permutations). If the presence of the small components in the Dirac
spinors u(σ)

q is neglected, only the combinations αxαz and αyαz lead to spin-flip transitions.
In the particular case of collinear particle emission (when k′

f and k′ are aligned with v),
the bremsstrahlung limit, q = −γv, leads to an alignment of the momentum transfer p0 and
hence of I1 with the z-axis (see (A.6)). Since the polarization directions eλ now lie in the
(x, y)-plane, the contribution of eλI proportional to I0 and to the last term of (A.3) cause spin
flip, whereas eλI1 = 0. Therefore, in the nonrelativistic (bremsstrahlung) theory the cross
section for collinear particle emission is zero [29].

Let us now consider the non-collinear case and allow for arbitrary q. With the choice
of coplanar geometry and λ = λ1 (perpendicular polarization) we have p0 = (p0x, qy, p0z)

and from (A.6) I1 = (I1x, qy(I10 + I11), I1z) with I1x = p0xI10 + qxI11 + k′
f xI12 (and the

corresponding definition for the z-component I1z).
Insertion into (A.3) and using α2

y = 1 leads to

eλ1I = αyI0 +

[
cp0z

2E′
f

I0 +
icq

2

(
1

E′
f

− 1

Eq

)
I1z

]
αzαy

+ qy

[
c

2E′
f

I0 +
icq

2

(
1

E′
f

+
1

Eq

)
(I10 + I11)

]

+

[
c

2E′
f

(p0xI0 + iqI1x) − icq

2Eq

I1x

]
αxαy. (4.2)
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(a) (b)

Figure 5. Projectile-frame four-fold differential RI cross section (a) and polarization (b) from
Ag47+ + H at Ẽ0 = 300 keV as a function of θ ′

f at θ ′
k = 0◦ (———–), 39◦ (corresponding to

ϑk = 90◦, — — —), 90◦(− · − · −). The short-broken and dotted curves give, respectively, the
spin-flip contributions for θ ′

k = 0◦ and 90◦. The parameters are ϕ = 0, E′
f,kin = 10−3 keV and

ω′ = ω′
peak. In (b), the polarization for θ ′

k = 140◦ is included (- - - -).

The terms of the first line cause spin-flip transitions whereas the remaining terms are spin
conserving (if the small components are neglected).

Figure 5(a) shows the differential RI cross section from Ag47+ + H collisions at the
SWL as a function of the electron emission angle. For θ ′

k = 0, the cross section is indeed
purely spin flip if θ ′

f = 180◦ whereas it is strongly reduced near θ ′
f = 0. Since the four-fold

differential RI cross section for a hydrogen target shows a similar angular dependence as the
bremsstrahlung limit [38], one may adopt the Fano et al [29] result that the forward radiation
for θ ′

f ≈ 0 is suppressed because of a mutual cancellation of the Feynman terms corresponding
to radiation before, respectively after the electron–nucleus interaction (strictly speaking, the
Born approximation of [29] is not applicable at the SWL, but similar results are also found for
smaller values of ω′).

At larger θ ′
k , the spin-flip contribution is mostly one order of magnitude smaller than the

(non-flip) contribution from the orbital currents. The general unimportance of spin-flip effects
is globally true in the weak-relativistic regime considered here (see, e.g., figure 2(a)).

Figure 6(a) depicts the differential RI cross section at θ ′
f = 10◦ as a function of the

photon emission angle for different collision energies. The minima near 0 and 180◦ are very
pronounced, and the spin-flip contribution increases with projectile velocity. This reflects the
fact that the higher the γ , the more important become the small components of the Dirac
spinors such that additional spin-flip transitions come into play. In contrast, a higher projectile
charge does not necessarily lead to an increase of the spin-flip effects.

5. Cusp asymmetry

When studying the cusp electrons one has to keep in mind that the nonradiative electron
capture to continuum (ECC) occurs simultaneously with the RI, in particular for the lower
collision energies and the heavier targets. As a guideline, the velocity vcr may be defined
where in the cusp maximum the RI integrated over the photon degrees of freedom provides the
same intensity as ECC. For v > vcr, RI will then be dominating. Considering the continuum
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(a)

(b)

Figure 6. Projectile-frame four-fold differential RI cross section (a) and polarization (b) from
Ag47+ + H as a function of θ ′

k for Ẽ0 = 100 keV (− · − · −), 200 keV (- - - -) and 500 keV
(——–) as well as the spin-flip contribution for 100 keV (· · · · · · · · ·) and 500 keV (— — —). The
parameters are E′

f,kin = 1.5 × 10−2 keV, θ ′
f = 10◦, ϕ = 0 and ω′ = ω′

peak. In (b), polarization for

Ẽ0 = 300 keV is included (— — —).

capture of a target 1s electron, the dependence of vcr on the target nuclear charge may be
approximated by the linear formula γ vcr = aZT + b (with a = 11.3 and b = 9 au), which is
accurate to 5% for ZT � 10 and to 10% for ZT � 18 within the impulse approximation (and
Sommerfeld–Maue wavefunctions) for both processes. A detailed discussion of RI and ECC
as competing processes is provided in [3].

As concerns the specific cusp features, we will concentrate on the cusp asymmetry.
In contrast to the ECC, the RI cusp is skewed to the high-energy side [33]. This feature
has just been confirmed by experiment, colliding 90 MeV amu−1 U88+ beams with nitrogen
[1, 2]. Such a comparison with experiment requires the averaging of the doubly differential
cross section d2σ/dEf d�f over the detector resolution.

A more direct access to the cusp phenomena, unveiled by the detector resolution, is
provided by using inverse kinematics: the bremsstrahlung process of quasifree electrons
in the short-wavelength limit as viewed from the projectile reference frame. Due to the
transformation rules (2.4) and (3.10) the forward electrons on the high-energy side of the
cusp correspond in the projectile frame to electrons with k′

f ≈ 0 and θ ′
f = 180◦ whereas

the electrons on the low-energy side refer to k′
f ≈ 0 and θ ′

f = 0. From figure 5(a), it is clearly
seen that the four-fold differential cross section at the cusp (E′

f,kin ≡ E′
f − mc2 = 10−3 keV)

is higher at θ ′
f = 180◦ than at θ ′

f = 0, particularly for θ ′
k = 0.

However, this behaviour changes with electron energy. Figure 7 displays the θ ′
k-

dependence of the ratio A = d4σ ′(180◦)/d4σ ′(0). At the cusp, this ratio is above unity
for all photon emission angles, but when the electron energy E′

f is increased there is an
angular region where the ratio falls below 1. The higher the E′

f the more extended this region,
reflecting the fact that in the target frame the low-energy electrons are ejected with a much
higher intensity than the fast electrons.

Figure 8 shows the backward-to-forward ratio at the cusp for different projectiles and
different collision velocities. At the values of θ ′

k corresponding to the cross section maximum
(and thus giving the dominant contribution to the doubly differential cusp cross section),
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Figure 7. Asymmetry ratio A of the projectile-frame four-fold differential cross section
d4σ ′/dE′

f d�′
f dω′ d�′

k for K-shell RI from Ag47+ + (one-electron) C taken at θ ′
f = 180◦ and

0◦, respectively, as a function of θ ′
k. The kinetic electron energy E′

f,kin is, respectively, 10−3 keV
(——–), 5 keV (— — —), 50 keV (- - - -), 100 keV (· · · · · · · · ·) and 200 keV (− · − · −). The
parameters are Ẽ0 = 300 keV, ϕ = 0, ω′ = ω′

peak. The interval on the abscissa bounded by the
vertical lines marks the θ ′

k-region where the maximum of the four-fold differential cross sections
is located (for θ ′

f = 0◦, 180◦).

Figure 8. Asymmetry ratio A for K-shell RI from Ag47+ + (one-electron) C at Ẽ0 = 300 keV
(— — —) and 500 keV (——–) and from U92+ + (one-electron) C at Ẽ0 = 500 keV (− · − · −)

as a function of θ ′
k. The parameters are E′

f,kin = 10−3 keV, ϕ = 0, ω′ = ω′
peak. For the meaning of

the vertical lines see the caption of figure 7.

the ratio decreases with the collision velocity and increases with projectile charge. A more
systematic investigation of this feature (for doubly differential RI cusp cross sections) can be
found in [3]. However, the velocity dependence of the backward-to-forward ratio changes
with θ ′

k. The target dependence is rather weak (except for θ ′
k near 0 or 180◦ where a H target

leads to a higher ratio than, e.g., a C target).

6. Photon polarization

For coplanar geometry (where v,k′
f and k′ lie in the (x, z)-plane) the photon is polarized

in-plane in the nonrelativistic bremsstrahlung theory. Recall that this is based on the fact that,
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Figure 9. Polarization corresponding to the projectile-frame four-fold differential RI cross section
for P + H as a function of θ ′

k . The projectiles are C6+ (———–), Ag47+ (— — —) and U92+(−·−·−).

The parameters are Ẽ0 = 300 keV, E′
f,kin = 1.5 × 10−2 keV, θ ′

f = 10◦, ϕ = 0, ω′ = ω′
peak.

nonrelativistically, eλI from (3.9) has the structure

eλI
nr = eλ

(
qI nr

0 + Inr
1

)
(6.1)

where I nr
0 is a scalar function and Inr

1 has the form of (A.6) with I1k replaced by I nr
1k, k = 0, 1, 2

(and p0 ≡ q − k′
f ). Since q = −v,p0 lies in the (x, z)-plane and so does Inr, resulting

in eλ1I
nr = 0 and hence P = 1. Any deviation from P = 1 in RI is thus based either on

relativistic effects or on the binding of the electron in its initial state. From (4.2) it follows
that for increasing collision velocity the spin-conserving terms in the last line increase in
magnitude since they are of order v/c. For the same reason, the spin-flip terms increase but
also the small components of the wavefunctions gain more importance. When, on the other
hand, the initial-state momentum distribution of the electron is broadened such that qy attains
larger values, eλ1I increases too. This causes the decrease of P with γ and for the heavier
targets.

Figure 3(b) shows the ZT -dependence of the polarization. For hydrogen, deviations from
the bremsstrahlung limit occur only for near-zero degree photons. However, when the target
gets heavier, P drops considerably. It thereby follows the rule, known from bremsstrahlung
investigations ([8, 30] for the SWL, [31, 41] for an experimental overview), that photon
angles for which the cross section shows minima provide the largest deviation of P from
unity, whereas the location of the cross section maxima corresponds to the highest in-plane
polarization. This is related to the fact that cross section minima arise from high momentum
transfer, necessitating close collisions where both relativistic and binding effects are probed
most effectively.

The projectile-charge dependence of P, again in the SWL, is given in figure 9 for the
projectile reference frame and in figure 2(b) for the target reference frame. Clearly,
the more dominant the in-plane polarization, the heavier the projectile. The decrease of
the perpendicular polarization with increasing ZP has been discussed and observed
experimentally for bremsstrahlung from 300 keV e + C, Cu, Au (at a lower frequency,
ω′ = 160 keV [32]).
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(a) (b)

Figure 10. Projectile-frame triply differential cross section (a) and polarization (b) for K-shell
RI as a function of azimuthal angle ϕ. Considered are C6+ + H at θ ′

k = 20◦ (———–) and
10◦(· · · · · · · · ·) as well as Ag47+ + H (— — —) and Ag47+ + Ar (− · − · −) at θ ′

k = 20◦. The other
parameters are Ẽ0 = 300 keV, θ ′

f = 20◦, ω′ = 160 keV. In (b), the measurement of Behnke and
Nakel [31] for 300 keV e + C and θ ′

k = 20◦ is included (•).

For collinear particle emission one has rotational symmetry leading to eλ1I = eλ2I and
hence P = 0 (see figure 5(b) for θ ′

k = 0, θ ′
f ∈ {0, 180◦}, but also figure 11(b) relating to the

target-frame differential cross sections for ϑf = 0, ϑk ∈ {0, 180◦}). However, the decrease
of P from near unity to 0 is confined to a very small angular region close to 0◦ and 180◦,
respectively. Any slight breaking of rotational symmetry (figures 1(b) and 2(b) for ϑf = 1◦)
fills the minimum and shifts it to higher ϑk.

The depolarization with increasing γ is shown in figure 6(b) at the SWL where v is
increased from 75.13 au (γ = 1.2) to 118.25 au (γ = 2). The transformation to the target
frame of reference destroys this monotonicity of decrease (see figure 1(b)) but also there the
more prominent the oscillations of P, the higher the v. Note that for the heavy Ar target even
v = 26.72 au (γ = 1.02) leads to a 15% deviation from P = 1.

7. Non-coplanar geometry

To our knowledge, the case where the electron is not ejected into the plane determined by v
and k′ has not yet been considered in the study of the polarization of bremsstrahlung photons.
The variation of the azimuthal angle ϕ in the interval 0◦ < ϕ < 180◦ provides another realm
of structures both of the differential cross section and of P. The most striking feature is the
loss of correspondence of the cross section minima to maximum depolarization. In fact, even
in the nonrelativistic bremsstrahlung limit, strong deviations of P from unity occur when ϕ

is varied. Figure 10 shows RI for the collision of C6+ with H at v = 106.4 au (γ = 1.6)

which in the inverse kinematics corresponds to 300 keV e + C, the system investigated by
Behnke and Nakel [31] in their polarization study. Clearly, the triply differential cross section
at the experimental choice of parameters (θ ′

k = θ ′
f = 20◦, ϕ = 180◦, ω′ = 160 keV) remains

approximately constant up to ϕ ≈ 140◦. The largest depolarization is found near ϕ = 150◦

where the cross section is only a factor of 2 below its value at ϕ = 0. This feature is preserved
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(a) (b)

Figure 11. Doubly differential SWL cross section (a) and polarization (b) for RI from U92+ + H as a
function of photon angle ϑk. Shown is the cross section (summed over λ, ———–) and its spin-flip
contribution (− · − · −) for Ẽ0 = 300 keV and ω = ωpeak(ϑk) determined from Ef,kin = Ẽ0.

Also shown is the four-fold differential cross section d4σ/dEf d�f dω d�k (in b/keV2 sr2) for the
same system at ϑf = 1◦, ϕ = 0 and Ef,kin = Ẽ0 (— — —). In (b), the polarization corresponding
to the four-fold differential cross section at ϑf = 0, ϕ = 0 and Ef,kin = Ẽ0 is shown instead
(— — —), and the polarization resulting from the doubly differential cross section at Ẽ0 =
218 keV (· · · · · · · · ·) and 350 keV (- - - -) is included. Comparison is made with rigorous
relativistic polarization calculations for K-shell REC from 400 MeV amu−1 U92+ colliding with
an electron target (− · − · −, [25]) and with experiment using a nitrogen target (�, [22]).

when projectile and target are varied. Whereas P decreases with decreasing projectile charge
for nearly all values of ϕ, it is no longer generally true that P also decreases with ZT .

8. Comparison with radiative electron capture

Consider the differential cross section from (2.1) integrated over the electron degrees of
freedom with a photon emitted at the short-wavelength limit,

d2σλ

dω d�k

=
∫ ∞

c2
dEf

∫
d�f

d4σλ

dEf d�f dω d�k

, (8.1)

and define the (linear) polarization according to (2.6). Continuity across the ionization
threshold assures that (8.1) agrees with the doubly differential cross section for REC into a
bound projectile state of main quantum number n (summed over the quantum numbers l, m)
as n → ∞. Incidentally, REC by a fast heavy projectile leads predominantly to ground-state
capture, for which the relativistic (spin-flip) effects and the ZP -dependence are expected to
be stronger than for capture into the continuum states. However, since both processes, RI at
the SWL and REC into the K-shell, require close collisions with the projectile since they are
highly inelastic processes, some similarities are expected.

For the comparison between RI and REC (figure 11) we have chosen a collision system
where pioneer measurements of the REC photon polarization have been carried out [22]. The
experiment was performed for 400 MeV amu−1 U92+ on a nitrogen target. The experimental
points result from photon intensities which comprise all photons in the REC peak region
and thus correspond to singly differential REC cross sections obtained by integrating over
the projectile Compton profile. However, when the peak frequency is selected in the doubly
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differential cross section, the ϑk-dependence should not be much different. The target species
is not important for the doubly differential RI cross section since (8.1) implies an integration
over the target Compton profile. Therefore, we have compared with RI using a hydrogen
target. The impact energy is varied from 400 MeV amu−1 (corresponding to Ẽ0 = 217.9 keV)
to 643 MeV amu−1 (corresponding to Ẽ0 = 350 keV, i.e. to electrons the energy of which is
increased by the U K-shell binding energy). The effect on the polarization is only minor (see
figure 11(b)). We note that the ϑk-dependence of P is quite similar for RI and REC, except at
very large angles.

The spin-flip contribution to the RI differential cross section (figure 11(a)) is,
independently of ϑk , one order of magnitude below the spin-conserving contribution. This
should be contrasted to the REC results for the singly differential K-shell capture cross section
where for the forward photon emission angles (and also at 180◦) the spin-flip contribution is
strongly dominant [21].

In figure 11(a), we have included the result from the four-fold differential RI cross section
for the same collision system at ϑf = 1◦ and Ef = 300 keV. The ϑk-dependence of the
doubly and the four-fold cross section is much alike. However, the corresponding polarization
(figure 2(b)) is very different. This is similar to the findings in the bremsstrahlung theory [31].

9. Conclusion

We have investigated the dependence of the differential cross section for radiative ionization
on the momenta of the emitted electron and photon when both particles are observed
simultaneously. The discussion is much simplified if the momentum distributions are viewed
from the projectile frame of reference because there electron and photon energy approximately
add up to γmc2, without involving the emission angles.

Using the correspondence between the cusp electrons and the photons at the short-
wavelength limit, we have found that the cusp asymmetry strongly depends on the photon
emission angle. The asymmetry is particularly large at angles near 0◦ or 180◦, where it
even increases with collision velocity in contrast to the results obtained when the photon is
not observed. If the electrons acquire a finite kinetic energy E′

f,kin, the asymmetry can get
reversed at specific angles.

This decisive difference between RI cusp electrons and electrons with finite E′
f,kin (say,

�5 keV) becomes also visible in the way how the bremsstrahlung limit is reached when
the target nuclear charge is decreased to zero. Whereas for ‘off-cusp’ electrons this limit is
approached monotonically for all photon angles and is reached at ZT ≈ 1, the differential cross
section for the cusp electrons lies a factor of 2 below the bremsstrahlung limit for ZT � 1.

A related phenomenon is the excellent agreement of the (photon or electron) angular
distribution for ‘off-cusp’ electrons when calculated, respectively, from the triply and four-
fold differential cross section (where E′

f is integrated over, respectively fixed at the peak
value), whereas there occur deviations for the cusp electrons. All these derivations can be
traced back to the fact that on a background which is shaped by the target Compton profile
there the cusp-like peak structure is superimposed.

As concerns the photon polarization we have, in the coplanar geometry, confirmed
the results from investigations of the elementary bremsstrahlung process that the maximum
depolarization correlates to the minima in the differential cross section. This correspondence
is lost, however, in the non-coplanar geometry where large depolarization and large differential
cross sections can coexist.

We have carried out a systematic study of the dependence of P on the photon energy
as well as on the photon angle for fixed electron emission angle, restricting ourselves to the
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coplanar geometry. When at fixed electron energy (e.g. at the cusp) the photon energy is varied
across the Compton profile, there is hardly any change of P (in the region where the differential
cross section has dropped by two orders of magnitude). When the photon energy moves away
from the SWL (and the electron energy takes the peak value for each ω′), there is hardly
any change of P either except possibly for heavier targets (where the depolarization increases
when ω′ is lowered). On the other hand, P varies strongly with photon angle and this feature
depends in addition on the choice of reference frame. We have confirmed the findings from
the elementary bremsstrahlung process that in the minima of P the depolarization decreases
with the projectile charge and increases with γ. We have also found that P decreases with the
target nuclear charge (for the one-electron targets considered here). But again, this behaviour
may change with photon emission angle.

Finally, the photon-angle dependence of P from RI is in qualitative agreement with
experiments on the elementary bremsstrahlung process and on the radiative electron capture
into the projectile ground state, as expected from the similarity of these three processes. This
makes us confident that the Sommerfeld–Maue wavefunctions, applied in the present work,
provide at least a qualitative description of both the differential RI cross section and the
associated photon polarization.
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Appendix

We give the result for the radiation matrix element when Sommerfeld–Maue wavefunctions
are used. For its derivation see [33].

We define I by means of

W rad(σf, s, q) = 1

(2π)3
eπηq/2�(1 − iηq)e

πηf /2�(1 − iηf )
(
u

(σf)+
k′

f

Iu(s)
q

)
(A.1)

where the 4-spinors are given by

u(1)
q =

√
Eq + c2

2Eq

⎛
⎜⎜⎝

1
0

νqz

νq+

⎞
⎟⎟⎠ , u(2)

q =
√

Eq + c2

2Eq

⎛
⎜⎜⎝

0
1

νq−
−νqz

⎞
⎟⎟⎠ (A.2)

with Eq =
√

q2c2 + c4, ν = c/(Eq + c2) and q± = qx ± iqy. Then

I = α

[
1 +

c

2E′
f

(αp0)

]
I0 +

icq

2

[
2

E′
f

I1 − α

(
1

E′
f

− 1

Eq

)
(αI1)

]
(A.3)

where p0 = q − k′ − k′
f is the momentum transferred to the projectile nucleus, and

I0 = N0

{
− 2F1

(
1 − iηq, iηf , 1; α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

)
[ηf (k′

f γ̃ − qδ̃) + ηqq(γ̃ + δ̃)]

− 2F1

(
2 − iηq, 1 + iηf , 2; α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

)
(1 − iηq)γ̃ ηf

α̃(γ̃ + δ̃)
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× [qδ̃(α̃ + β̃) − k′
f γ̃ (α̃ + β̃ + γ̃ + δ̃)]

}
N0 = 2πe−πηq α̃iηq−1γ̃ iηf −iηq−1(γ̃ + δ̃)−iηf −1. (A.4)

2F1 is a hypergeometric function and α̃ = 1
2 (p2

0 + ε2), β̃ = k′
f p0 − iεk′

f , γ̃ = qp0 + iεq − α̃,

δ̃ = qk′
f + qk′

f − β̃ with ε = +0. Further,

I1 = N0

{
2F1

(
1 − iηq, iηf , 1,

α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

)

×
[
−iηf γ̃

(
p0 + k′

f

q

q
+ k′

f

)
+ i(ηf − ηq)p0(γ̃ + δ̃)

]

+ 2F1

(
2 − iηq, 1 + iηf , 2,

α̃δ̃ − β̃γ̃

α̃(γ̃ + δ̃)

)
iηf (1 − iηq)

(α̃ + β̃)γ̃

α̃(γ̃ + δ̃)

×
[
γ̃ k′

f

q

q
+ γ̃k′

f − δ̃p0

]}
. (A.5)

Note that I1 is a linear combination of the vectors p0, q and k′
f , i.e. it can be written in the

following form:

I1 = p0I10 + qI11 + k′
f I12 (A.6)

where I10, I11 and I12 are the corresponding coefficients.
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[20] Stöhlker Th et al 1997 Phys. Rev. Lett. 79 3270
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Endnotes

(1) Author: Please update reference [2].
(2) Author: Please check the figure 10 caption symbol (•) here. Do you mean (�)?
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