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Abstract

This chapter is devoted to the theory of radiative ionization of target atoms in
energetic collisions with highly stripped projectiles. It is set into context with the si-
multaneously occurring processes of nonradiative electron capture to continuum and
radiative capture to bound projectile eigenstates. Among other processes linked by
inverse kinematics, particular emphasis is laid on the relation between radiative ioniza-
tion and electron-nucleus bremsstrahlung. Specific features of the electron and photon
spectra and their angular distributions as well as the photon linear polarization are
reviewed. In addition, new results are presented and are compared with experiments
using relativistic uranium beams. The validity of the theoretical model is also inferred
from a comparison with accurate partial-wave calculations for bremsstrahlung and ra-
diative electron capture.
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1 Introduction

The interaction of charged particles by means of the Coulomb field as well as their coupling
to weak photon fields are basically well-understood processes. Nevertheless, the atomic
collision physics has kept its fascination all over the years. A particularly intriguing aspect
is the close relation between specific processes which usually are treated isolated from each
other. This interrelation allows for experimental tests of the theory from a different point
of view, maybe even at conditions which never could be met in the isolated process. On the
other hand, previously unexplained experimental features suddenly become clear if viewed
from another frame of reference.

There exist several possible relations between atomic processes in collision physics. The
first is that the physical process induced by the interaction between the active particles
is the same, but the initial or final states differ from each other. Restricting ourselves to
radiation physics, an example is radiative recombination (where the electron is initially free)
in relation to radiative electron capture (REC, where the electron is quasifree, i.e. in a loosely
bound initial state) [1]. As another case we have REC (with a bound electronic final state)
and radiative ionization (RI, sometimes also termed RECC, where the electron is released),
respectively. A second type of interrelation concerns different possible processes under the
restriction of the same initial and final states. Such processes usually occur simultaneously
and often require coincidence experiments to separate them. As examples may serve the
two processes RI and the nonradiative electron capture to continuum (ECC) [2, 3], but also
REC and Coulomb capture to bound states (EC) [4], where either the Coulomb field or the
radiation field induces the transition. Like REC and RI, also EC and ECC are linked by
means of the continuity across the projectile’s ionization threshold [5].

A very important type of interrelation is the one by inverse kinematics. In processes
related in this way the initial and final states are interchanged; one might also view one pro-
cess as the time-reversed second process. For instance we have photoionization (incoming
photon, emitted electron) and radiative recombination (incoming electron, emitted photon),
respectively [6, 7]. Relaxing the requirement that the initial state of one process be com-
pletely the same as the final state of the second process, one may also view photoionization
(with a free outgoing electron) and REC (with a quasifree incoming electron) as processes
linked by inverse kinematics [7]. Likewise, photoionization (with an initially bound electron)
and bremsstrahlung (with a free outgoing electron) have been considered as inverse processes
[8]. However, the phrase inverse kinematics is also applied to processes which are linked by a
frame transformation. For these not only the physics is the same, but also their observation
provided the reference frame is changed accordingly. The show-piece is target ionization and
electron loss, respectively, in H + H collisions but, again relaxing the condition of identical
initial states, RI and bremsstrahlung can be viewed as inverse processes too [9]. In particu-
lar, this is true for the short-wavelength limit of bremsstrahlung and the radiative electron
capture to the continuum threshold which leads to cusp electrons, respectively [10, 11].
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Once two reactions are identified as being linked by one of the above-mentioned relations,
the same theoretical model can be applied to their description. If, for instance, a process
initiated by a free electron is well described by some theory T , the impulse approximation
(IA) will give an excellent description for the same process initiated by a quasifree electron,
provided the collision is sufficiently energetic. In fact, the frame-transformed RI for rela-
tivistic collision velocities and a hydrogen target leads to results which are very close to
those for bremsstrahlung under the condition that the underlying theory T is the same [12].
Similarly, the radiative recombination provides a very good approximation to the impulse
approximation for REC at relativistic collision velocities [7]. There remains, however, a
basic difference between processes initiated by a free and a quasifree electron if multiply
differential cross sections are considered. In the quasifree case, the momentum provided by
the parent nucleus adds to the momentum balance and changes a sharp photon line (in the
case of a free electron) to a broad energy distribution governed by the Compton profile.
That becomes evident in the REC spectra (see e.g. [13]).

This chapter is devoted to the relativistic formulation of the theory for radiative ioniza-
tion, nonradiative electron capture to continuum and radiative electron capture to bound
states using the formal scattering theory as a common starting point. The competition
between RI and ECC in the electron spectra is reviewed in section 2, supplemented with
the interpretation of new experimental results for the forward peak. The close relation be-
tween RI and the elementary process of bremsstrahlung is discussed in section 3. Particular
emphasis is laid on the influence of the collision parameters, such as projectile and target
nuclear charge as well as the collision velocity, on the angular distribution of the emitted
photons and their degree of polarization. Furthermore, in section 4, the relativistic theory
for REC is derived in some detail. This theory is compared to an existing REC theory that
is based on the inverse photoeffect, and the calculated photon yield is contrasted to that
from RI near the continuum threshold of the projectile. A summary of all results is given
in section 5.

2 Radiative ionization: The model and its comparison
with ECC

RI, interpreted as capture of a target electron into the continuum of an ionized, ideally bare,
projectile with the simultaneous emission of a photon, is the dominant background process
in photon spectra from fast, asymmetric collisions (ZP � ZT , ZP and ZT being the nuclear
charges of the projectile and target, respectively) for photon energies ~ω below the threshold
T0. This threshold is related to the fact that an electron at rest in the target frame cannot
radiate more than its complete kinetic energy relative to the projectile frame. One has
T0 = (E′0 −mc2)/[γ(1 − v

c cosϑk)] where v is the collision velocity, mc2 the electron’s rest
energy, γ = (1 − v2/c2)−

1
2 , E′0 =

√
(γmvc)2 +m2c4 the electronic collision energy in the

projectile reference frame, and ϑk the photon emission angle. As such RI was first identified
by Kienle et al [14] and correctly interpreted soon afterwards [15, 16]. Later, RI became
directly visible as a ridge near T0 in the continuous photon spectra in very fast collisions
([17]; for recent work see e.g. [10]). The breakthrough for RI came, however, just now
with a coincidence experiment where U88+ was collided with nitrogen and where the photon
and electron momenta were recorded simultaneously [11]. There, a photon spectrum, due
entirely to RI, was measured for the first time and interpreted by theory.

2.1 The impulse approximation for relativistic collisions

Within the semiclassical independent-particle approximation, the general expression for the
transition amplitude from an initially bound target state to a projectile continuum state

ψ
(σf )′

f,P (x′) = ψ
(σf )′+
f,P (x′) γ0 of momentum k′f and spin σf is given by (in atomic units,
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~ = m = e = 1)

afi = − i
c

∫
d4x′ ψ

(σf )′

f,P (x′) d+
λ

(
Ŝ A(x) Ŝ−1

)
Ŝ Ψ(σi)

i (x). (2.1)

The RI and ECC processes differ only in the choice of the electromagnetic transition field
A(x) and in the presence (RI) or absence (ECC) of the photon creation operator d+

λ in
(2.1). Projectile-frame related quantities are denoted by a prime, and we have chosen this
frame as our frame of reference. Ψ(σi)

i (x) is the exact electronic scattering state which
relates asymptotically to a target eigenstate ψ(σi)

i,T (x) with spin σi and space-time vector
x = (ct,x). x is connected to x′ by a Lorentz transformation, x = Γx′ + b, where b is the
impact parameter. The scattering state as well as the field A(x) have to be transformed into
the projectile frame by means of the Lorentz boost operator Ŝ. If the z-axis (respectively
the unit vector ez) is chosen along v, then

Ŝ(v) =

√
1 + γ

2

(
1 − γv/c

1 + γ
αz

)
(2.2)

with its inverse Ŝ−1(v) = γ0Ŝ(v) γ0 = Ŝ(−v). αz, γ0 are Dirac matrices [18].

For asymmetric collisions with ZT � ZP one may expand the scattering state Ψ(σi)
i (x)

in terms of the weak target field while retaining the correct asymptotics. The lowest-order
term in this expansion leads to the strong potential Born approximation [19, 60],

Ŝ Ψ(σi)
i (x) =

1
c

4∑
s=1

∫
dq dE ψ

(s)′

q,off (x′)
(
q′s(x

′), Ŝ ψ(σi)
i,T (x)

)
. (2.3)

Here, q′s(x
′) is a relativistic plane wave of energy E characterized by the four-spinor u(s)

q

[21]. s = 1, 2 denotes the spin directions of the particle states, and s = 3, 4 those of the
antiparticle states. Furthermore, ψ(s)′

q,off (x′) is an off-shell projectile continuum state with
momentum q. The deviation from the energy shell is determined by the binding energy
of the initial target state. Therefore the target potential is included to some extent in the
transition operator. The off-shell effects vanish for ZT = 0.

For sufficiently high collision velocities (v � ZT /ni with ni the initial-state main quan-
tum number) an on-shell approximation can be made. This replacement of ψ(s)′

q,off (x′) by

a projectile continuum eigenstate ψ(s)′

q,P (x′) leads to the impulse approximation. Since the
differences between the on-shell and off-shell approximation relates to the target field, they
can be used as an indicator of validity of the strong potential Born theory itself. In the
nonrelativistic case where the IA was tested against the strong potential Born theory, the
difference between the two theories was on the level of 10 percent in the cusp region, getting
smaller when v increases [20].

In the case of radiative ionization the interaction in (2.1) arises from the photon field,
defined in the projectile frame, γ0 Ŝ A(x) Ŝ−1 = −αA′λeik

′x′d+
λ with A′λ = c eλ/(2πω

′1/2)
where k′ = (ω′/c,−k′) is the 4-momentum of the photon and eλ its polarization direction.
α = (αx, αy, αz) is the vector of the Dirac matrices. In the IA, the transition amplitude is
thus governed by the radiation matrix element

Wrad(σf , s, q) =
∫
dx′ ψ

(σf )′+
f,P (x′) α e−ik

′x′ ψ
(s)′

q,P (x′) (2.4)

and is given by [22]

aRIfi,λ =
2πi
γ

√
1 + γ

2
A′λ

4∑
s=1

∫
dq eiq⊥bWrad(σf , s, q)

·
[
u(s)+
q

(
1 − γv/c

1 + γ
αz

)
ϕ

(σi)
i,T (q0)

]
δ (E′f + ω′ − ETi /γ + qzv) (2.5)
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where ϕ(σi)
i,T (q0) is the initial-state wavefunction in momentum space, q0 = (q⊥, q0z) with

q⊥ perpendicular to v and q0z = ETi v/c
2 + qz/γ, ETi and E′f being the electron energy in

its initial and final state, respectively1.

For the nonradiative capture, the interaction in (2.1) results from the target Coulomb
potential VT (x), viz. γ0 Ŝ A(x) Ŝ−1 = γ VT (x)

(
1 + v

c αz
)
, which is conventionally de-

composed into its Fourier components with weight factor 1/p2. Using the IA, we define the
transition matrix element T00/p

2 with

T00(s, q,p) =
∫
dx′ ψ

(σf )′+
f,P (x′) eip⊥x

′
⊥+ipzγz

′
(

1 +
v

c
αz

)
ψ

(s)′

q,P (x′). (2.6)

Then the transition amplitude for ECC is given by [3]

aECCfi =
iZT
π

√
1 + γ

2

4∑
s=1

∫
dq

∫
dp

p2
ei(p⊥+q⊥)b T00(s, q,p) (2.7)

·
[
u(s)+
q

(
1 − γv/c

1 + γ
αz

)
ϕ

(σi)
i,T (q0)

]
δ(E′f + pzγv + qzv − ETi /γ),

where q0 = (q⊥, q0z) is defined as above.

The differential cross section for the emission of an electron with energy Ef into the solid
angle dΩf is obtained by means of integrating over impact parameter and by averaging and
summing, respectively, over the initial and final spin states. For ECC, one has

d2σECC

dEfdΩf
=

kfE
′
f

2c2
∑
σi,σf

∫
d2b

∣∣aECCfi

∣∣2 . (2.8)

Concerning RI, this prescription leads to the fourfold differential cross section for a photon
of frequency ω ejected into the solid angle dΩk with a fixed polarization direction eλ and a
simultaneously emitted electron,

d4σRIλ
dEfdΩfdω dΩk

=
kfE

′
fωω

′

2c5
∑
σi,σf

∫
d2b

∣∣aRIfi,λ∣∣2 . (2.9)

For the comparison with ECC, (2.9) has to be summed over the two polarization directions
and integrated over the photon momentum degrees of freedom,

d2σRI

dEfdΩf
=
∫
dω dΩk

∑
λ

d4σRIλ
dEfdΩfdωdΩk

. (2.10)

For the numerical evaluation, a semirelativistic approximation is used for the wavefunc-
tions in order to deal with analytic, closed expressions for the transition matrix elements
(2.4) and (2.6). It involves Darwin functions for the bound states [23] and Sommerfeld-
Maue functions for the continuum states [24]-[26] which are accurate up to first order in
Z/c, where Z is the respective nuclear charge (for their explicit form, see section 4.1). They
coincide with the exact Coulomb eigenstates in the nonrelativistic limit. Tests of their va-
lidity by comparing the results with those obtained from accurate relativistic wavefunctions
are provided in sections 3 and 4.

In order to understand the features in the momentum distribution of the photons and
electrons given below we will analyze the fourfold differential RI cross section in somewhat
more detail. To do so, we apply for the sake of demonstration a peaking approximation.
This approximation relies on the fact that the bound-state wavefunction ϕ

(σi)
i,T (q0) is (for

1In previous work [3, 22] this spin sum was erroneously truncated at s = 2. However, the contribution of
s = 3, 4 is negligibly small in the weakly relativistic regime considered.
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s-states) strongly peaked at q0 = 0. According to the δ-function in (2.5), the z-component
q0z vanishes if the photon energy takes the value

ωpeak(ϑk) =
ω′peak

γ(1− v
c cosϑk)

, ω′peak = γETi − E′f . (2.11)

For photons with ω ≈ ωpeak we set q = (0,−γETi v/c2) corresponding to q0 = 0 everywhere
in the transition amplitude (2.5) except in ϕ

(σi)
i,T (q0) and in the δ-function. Splitting the

Darwin function into a scalar part ϕ̃i,T (q0) times a spinor function which can be taken at
q0 = 0 (see the expression above (4.2)), the differential cross section becomes proportional
to

v

∫
dq |ϕ̃i,T (q0)|2 δ(E′f + ω′ − ETi /γ + qzv) = Ji

(
ETi /v −

1
γv

(E′f + ω′)
)

(2.12)

which is the target Compton profile. Hence one obtains a peak in d4σRIλ /dEfdΩfdωdΩk at
ω = ωpeak(ϑk), shaped by this Compton profile.

While in the actual RI calculations no such peaking approximation is made we have,
however, resorted to a transverse peaking approximation in the case of ECC. This approxi-
mation is applied to handle the multiple integral in the transition amplitude (2.7). For fast
collisions it is well justified, the more so, the higher the collision velocity [3].

2.2 RI photon spectra and angular distributions in comparison
with experiment

Fig.1 shows the photon spectrum from collisions of U90+ with N2 at a fixed photon emission
angle in comparison with theory. The experimental RI spectrum is obtained from the singles
photon spectrum by subtracting the REC spectrum (which was recorded in coincidence with
U89+ ejectiles) as well as the background radiation [10]. Its absolute scale results from a
fit of the measured L-REC spectrum to an accurate REC theory [27]. In order to obtain
the theoretical doubly differential RI cross section, (2.9) is summed over the polarization
directions and integrated over the electron degrees of freedom. Here and in the following, if
not stated otherwise, partly stripped projectiles are treated as bare projectiles with the ionic
charge. Also, for the states of a multielectron target atom, an average over the subshells, a
Slater-screened charge and experimental binding energies are used. The molecular character
of N2 is disregarded (i.e. the result for N is multiplied by 2). In the figure the one-electron
contributions from the target K- and L-shell are shown separately.

The threshold ridge at T0 = 70.4 keV is clearly identified in experiment and theory.
While there is qualitative agreement, theory underestimates experiment by a global factor
of 2 which we ascribe to the use of semirelativistic wavefunctions for the heavy uranium
projectile (see Figs.15 and 16).

In Fig.2 the angular distribution of the photons is shown. The frequency ω = 65 keV
was chosen such that the threshold ridge is present (T0 = 65 keV for ϑk = 150.1◦). In
comparison with experiment the RI theory provides cross sections which are a factor of 3
too low, and the slope is also not well reproduced. The origin of this discrepancy remains
unclear.

2.3 Characteristics of the RI and ECC electron spectra

For electrons emitted close to the beam direction there are three prominent structures in
the electron spectra. One is the binary encounter peak at a kinetic electron energy of
Ef,kin = (2v2 cos2 ϑf − 2EB)/(1− v2

c2 cos2 ϑf ) where EB = mc2−ETi is the binding energy
of the target state [28, 29]. This energy is the maximum energy which can be transferred
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from the projectile nucleus to an electron at rest. Having a classical origin, the peak rises the
higher above the background the larger v. Its shape is determined by the target Compton
profile, the width increasing with γv. The second structure is the cusp-shaped forward peak
near Ef,kin = (γ−1)mc2 which is the energy of the projectile continuum threshold measured
in the target frame of reference. The forward peak was first observed by Rudd et al [30] and
originates from the long-range Coulomb interaction between the ejected electron and the
projectile which manifests itself in the normalization constant of the final-state electronic
wavefunction. This normalization constant introduces a divergence ∼ 1/k′f into the target-
frame doubly differential cross section [31, 32]. If ϑf = 0 and kf = v, the shape of the
measured peak is governed by the detector resolution (the consideration of which renders
the cusp maximum finite). The underlying background with its discontinuity at kf = v
(which is only correctly described in a higher-order theory with respect to the electron-
projectile interaction [33, 34]) leads to an asymmetry of the forward peak. Finally, the
third structure in the electron spectra is the increase of intensity towards Ef,kin → 0, the
so-called soft-electron peak. Such electrons with a small kinetic energy can be released in
distant collisions and usually represent the main portion of the total ionization cross section.

In Fig.3a the spectra of the forward electrons (ϑf = 1.5◦) resulting from Ar18++ H
collisions are shown. The cross sections for RI and ECC were calculated from (2.10) and
(2.8), respectively. The collision velocity (v = 33.85 a.u., γ = 1.03) is on the border to the
nonrelativistic regime. The three structures are clearly seen in both processes, the binary
encounter peak at Ef,kin = 66.3 keV, the cusp near Ef,kin = 16.3 keV and the rise when
Ef,kin → 0. At the chosen collision energy ECC is dominant for the soft electrons and the
binary encounter electrons, but the cusp intensity is larger for RI than for ECC. While the
ECC cusp is skewed to the low-energy side and is rather weak, the RI cusp rises much higher
above the background, and its high-energy wing is enhanced.

The reason for the different cusp intensities lies in the fact that ECC requires a high
momentum transfer (qECCmin = | 1

γv (E′f − γETi ) + pz|) to the target nucleus, while in RI the
emitted photon carries away the excess energy (qRImin = 1

γv |E
′
f + ω′ − γETi |). Therefore

the dominant cusp contribution for RI comes from the maximum of the target Compton
profile. On the other side, qECCmin increases with collision velocity (for pz = 0) such that
for ECC mainly the outer wing of the Compton profile contributes. As a consequence,
ECC decreases much faster with v than RI. We remark that for ECC the matter is actually
more complicated because the interaction potential VT can help to supply the necessary
momentum (pz 6= 0). The inference given above remains correct, however.

The analysis given above may also help to explain the different cusp asymmetries of the
two processes. For ECC, in the projectile frame of reference, the incoming electron moves
close to the target nucleus because it has to exchange a large momentum. It is then dragged
along with the target nucleus after colliding quasielastically with the projectile. Thus it is
ejected predominantly along −v. In contrast, in the RI process the electron is quasifree
and thus only subject to the projectile field. The loss of nearly all its energy to the photon
requires a deeply inelastic scattering in the vicinity of the nucleus. The electron is thereby
guided around the projectile by the attractive potential and emerges in the direction of v.
Therefore, in the target frame of reference, the ECC and RI electrons tend to appear slightly
below and above the cusp maximum, respectively.

Fig.3b depicts the (single-electron) spectra from Kr36++ He collisions at the same ve-
locity but for a larger angle (ϑf = 15◦). At this angle the ECC cusp has disappeared while
the RI forward peak has broadened but is still clearly visible above the background. For
the heavier He target, ECC largely dominates the soft-electron and binary encounter peak
(the latter having shifted to 61.6 keV). In the forward peak region, ECC and RI are now of
comparable importance. The reason is that ECC from the target K-shell strongly increases
with ZT because the momentum distribution is broadened. On the other hand, the doubly
differential RI cross section is approximately independent of ZT since (2.10) involves an
integration over the target Compton profile.
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Fig.4 shows the RI and ECC spectra from U88++ N at ϑf = 3◦ for a higher collision
velocity (v = 56.24 a.u., γ = 1.1). For this heavy projectile the cusp asymmetry is clearly
visible in both processes since this asymmetry (as well as the peak intensity) increases with
ZP [3, 22]. Moreover, ECC is now also dominating in the cusp region because of the larger
ZT . The RI contribution from the nitrogen L-shell is approximately 5 times that for one
K-shell electron while for ECC, the L-shell contribution is only about 5 percent of the K-
shell yield at this velocity (due to the stronger fall-off of the bound-state momentum space
wavefunction for the less tightly bound L-electrons). Therefore, the curves in Fig.4 were
obtained by calculating the capture of an electron from the target K-shell and multiplying
it with a factor of 7 and 2 for RI and ECC, respectively.

A comparison with (relative) experimental data for this collision system [11] is made
in Fig.5. At an electron emission angle of 0◦, the RI spectrum was directly recorded in
coincidence with photons emitted at ϑk = 90◦. The ECC spectrum was obtained from
the singles electron spectrum by subtracting the simultaneously measured electron loss to
continuum (ELC, in coincidence with U89+ ejectiles) and RI spectra (the latter extrapolated
to a 4π solid angle for the emitted photon [35]). In the calculations the target subshells were
treated separately, using Hartree-Fock states (and experimental binding energies) in the
case of RI. The difference to the results from Slater-screening is small, however. Theory
is averaged over the spectrometer resolution (in order to facilitate the calculations, ECC is
calculated for ϑf = 1◦ instead of averaging over the angular resolution of 1.9◦, and is only
averaged over the energy resolution). In the case of RI, the fourfold differential cross section
is in addition integrated over the energy and angular acceptance of the photon detector.
Experiment is normalized to theory in the peak maximum. It is seen that the theoretical
peak positions and widths compare fairly well with these pioneer data.

As mentioned above the shape of the cusp is strongly influenced by the spectrometer
resolution. In Fig.6 the RI cusp cross section (2.10) for one electron from the K-shell in
U88++ N collisions at ϑf = 0◦ is shown for several different angular resolutions θ0. There is
a shift of the peak maximum to higher electron energies and the peak becomes broader, the
more, the larger θ0. A similar effect is observed when θ0 is kept fixed at a small value whereas
the energy resolution ∆Ef of the spectrometer is increased. The peak shift is exclusively
due to the strong asymmetry of the cusp.

2.4 Crossing velocity of RI/ECC

For low collision energies ECC is strongly dominant since the coupling to the radiation field
is suppressed because of the smallness of the fine structure constant. However, due to the
slower decrease of RI with velocity as compared to ECC, RI eventually gains importance in
the cusp region. Therefore there exists a velocity where the RI and ECC processes provide
equal electron intensities in the cusp maximum. This crossing velocity vcr marks the change
of shape in the singles cusp spectra (for bare projectiles where ELC is not present) from left-
hand skewed to right-hand skewed. Moreover, when v � vcr, the singles cusp spectra will
exclusively be due to RI. The crossing velocity was first estimated within a nonrelativistic
approach by Shakeshaft and Spruch [2] for a hydrogen target. Scaling properties of vcr
were derived in [3] using the relativistic theory. The crossing velocity is independent of the
electron emission angle (for ϑf in the forward region). Also, it is only weakly dependent on
the projectile charge because RI and ECC increase with approximately the same power of
ZP (lying between 2 and 3 [3]).

In Fig.7 the doubly differential cross section in the peak maximum at ϑf = 3◦ for ECC
respectively RI from U88++ N collisions is shown as a function of collision momentum γv.
The calculations are done in the same way as described in the discussion of Fig.4. One
obtains vcr = 72.64 a.u. ( from γvcr = 85.67 a.u.). Since at γv = 61.67 a.u. the ratio of
the ECC and RI peak intensities is known experimentally, we have in Fig.7 normalized the
experimental RI peak intensity to theory and derived from this an experimental ECC peak
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intensity which lies a factor of 1.5 above the ECC theory. This is in good accord with the
estimated accuracy of the present model: Taken into consideration that for uranium the RI
theory is approximately a factor of 2 too low (see Fig.1 and Fig.16) ECC is underpredicted by
a factor of 3. In fact, the Sommerfeld-Maue functions lack the relativistic spatial contraction
such that the high momentum tails of the target bound state are underestimated more
severely than the centroid of the Compton profile. Therefore, these functions are not so
good for ECC than for RI.

The crossing velocity depends strongly on the target. This is displayed in Fig.8 for
one-electron capture by Xe54+ from the target K-shell. The increase of γvcr with ZT is
approximately linear in the weak-relativistic regime (γ . 1.5). A similar behaviour is found
if the total capture from neutral targets is considered (in the figure, the RI 1s-capture cross
section is multiplied by the number N of target electrons, and the ECC 1s-capture cross
section by a factor of 2). The crossing velocity is, however, lower if all target electrons are
considered. This is so because RI gains the factor N/2 as compared to ECC2.

3 Radiative ionization in terms of inverse bremsstrah-
lung

The elementary process of bremsstrahlung occupies a very important place in physics [36].
Due to the simultaneous observation of the decelerated electron and the emitted photon, a
stringent test of the underlying theory, describing the coupling of the radiation field with
the field of electrons and nuclei, becomes possible. There exists a vast literature on the
(electron-nucleus) bremsstrahlung theory in comparison with experiment, starting with the
work of Bethe and Heitler [37] using the Born approximation, and followed later by Bess
[25], Maximon and Bethe [26] and Elwert and Haug [38] who employed the Sommerfeld-
Maue wavefunctions. Nowadays, calculations with accurate relativistic wavefunctions have
become feasible, based on the work of Tseng and Pratt [39].

The measurements of the triply differential cross section d3σbrems
′
/dΩ′fdω

′dΩ′k for a free
electron scattering from a (screened) nucleus, which we identify with the heavy projectile,
are theoretically well understood. However, they do not cover the short-wavelength limit
(SWL) of bremsstrahlung, ω′ = (γ − 1)mc2, where the electron has given all its kinetic
energy to the photon. The SWL is of particular interest since it requires a large momentum
transfer to the nucleus which necessitates close collisions. This allows for a test of the
electronic wavefunction in the vicinity of heavy nuclei. The detection of electrons with near-
zero kinetic energy in the rest frame of the nucleus is a very difficult task. It can, however,
be made feasible by performing the experiment in a moving reference frame. Here lies the
importance of radiative electron capture to near-threshold continuum projectile states.

3.1 Radiative ionization in inverse kinematics

The change of reference frame for a given process proceeds in two steps. First we note that
the particle momenta in a reference frame moving with a constant velocity v are subject
to a Lorentz transformation. Switching from the (unprimed) target reference frame (where
RI is observed) to the (primed) projectile reference frame (which is the natural choice for
bremsstrahlung), the energies and polar angles of electron and photon are transformed
according to

E′f = γ (Ef − vkf cosϑf ), ω′ = γω (1 − v

c
cosϑk) (3.1)

k′f cosϑ′f = γ

(
−vEf

c2
+ kf cosϑf

)
, cosϑ′k =

cosϑk − v
c

1− v
c cosϑk

.

2Due to an error in the RI code (only present for relativistic velocities) the numerical results given in the
three earlier papers [3, 9, 22] are in part incorrect.

9



The inverse transformation (from primed to unprimed quantities) is obtained by replacing
in (3.1) v with −v throughout.

In the second step we have to account for the reversal of the direction of v, i.e. of the
z-axis, since a projectile moving with v corresponds to the target moving with −v when the
reference frame is changed. The polar angles θ′f and θ′k of the decelerated electron and the
emitted photon, respectively, in the projectile frame of reference are connected to ϑ′f and
ϑ′k from the Lorentz transformation (3.1) by means of

θ′f = π − ϑ′f , θ′k = π − ϑ′k. (3.2)

Finally, the cross section has to be transformed. We use the relativistic invariance of
the phase space elements c2dkf/Ef and c2dk/ω of electron and photon, respectively [18,
p.124], when changing between the primed and unprimed reference frames. Then the fourfold
differential cross section (2.9) is transformed into the projectile frame of reference by means
of

d4σRI
′

λ

dE′fdΩ′fdω′dΩ′k
=

ω′k′f
ωkf

d4σRIλ
dEfdΩfdωdΩk

. (3.3)

3.2 The bremsstrahlung limit of RI

In the bremsstrahlung process the initial electron is free and therefore the energy conserva-
tion requires

E′0 = γc2 = E′f + ω′ (3.4)

which fixes the electron energy E′f once ω′ and v are given. In contrast, one has for RI

E′f = γETi − ω′ − q0zγv (3.5)

with q0z distributed according to the bound-state target Compton profile (2.12). Therefore,
the comparison with bremsstrahlung necessitates the integration of (3.3) with respect to E′f .
This leads to the correspondence, valid for ω′ below the SWL [12],

d3σbrems
′

λ

dΩ′fdω′dΩ′k
= lim

ZT→0

d3σRI
′

λ

dΩ′fdω′dΩ′k
= lim

ZT→0

∫ ∞
c2

dE′f
d4σRI

′

λ

dE′fdΩ′fdω′dΩ′k
(3.6)

and in this limit, the RI theory from section 2.1 agrees with the Elwert-Haug theory [38] for
bremsstrahlung.

In the following we display the transition from RI to bremsstrahlung by varying the
target nuclear charge. In Fig.9 the differential cross section for K-shell RI in Xe54+ + T
collisions at Ẽ0 ≡ E′0 −mc2 = 100 keV as a function of photon emission angle θ′k is shown.
The nuclear charge of the one-electron target T is varied from 18 to 0. If one is far from the
SWL (e.g. at ω′ = 60 keV) the bremsstrahlung limit is approached monotonically when ZT
is decreased, and for a hydrogen target, RI is already indistinguishable from bremsstrahlung.
At the SWL, however (ω′ ≈ 100 keV), the integral on the r.h.s. of (3.6) for any small, but
finite ZT is a factor of 2 below the bremsstrahlung result. This is due to the fact that for
non-zero ZT only one half of the peak shaped by the Compton profile lies in the integration
regime (i.e. above c2) whereas for ZT = 0 one has a δ-type singularity at c2 in the fourfold
differential RI cross section [12]. From Fig.9 it is also evident that the radiation is stronger
when electron and photon are emitted to the same side of the beam axis (0◦ < θ′k < 180◦),
a feature which is generally true for bremsstrahlung [36].

Fig.10 provides the dependence of RI on the electron emission angle θ′f for the same
collision parameters and a (one-electron) hydrogen, carbon and argon target. The photon
angle θ′k = 30◦ is chosen close to the maximum of the photon distribution (which is located
in the forward hemisphere because of the relativistic retardation). It is seen that for the
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lower frequencies, the electron distribution is also strongly peaked at small angles, and its
shape is only weakly influenced by the target. This sharp peak for the lower frequencies is
well-known from the bremsstrahlung experiments [40], whereas the angular variations are
considerably weakened, but do not vanish, when the SWL is approached [36]. In fact, at
the SWL the maximum for forward angles changes to a maximum at backward angles when
ZT is decreased from 18 to 1. We note that, by the inverse kinematics, the SWL backward-
to-forward intensity ratio A ≡ d4σ′(θ′f = 180◦)/d4σ′(θ′f = 0◦) determines the asymmetry of
the RI cusp [12]. In contrast to the ratio calculated from the triply differential cross section
as given in Fig.10, A is larger than one (at θ′k = 30◦, translating to a cusp skewed to the
high-energy side) and approximately target independent.

Let us now consider the case when the electron is not ejected into the collision plane
spanned by v and the photon momentum, but forms an angle ϕ with the collision plane.
In Fig.11 the triply differential RI cross section is shown for this noncoplanar geometry,
using again the same collision parameters (and one-electron targets) as before. For the
Xe projectile, the variation with ϕ is quite smooth and the strong target dependence for
electrons emitted into the forward hemisphere persists. The ϕ-dependence of the photon
intensity near ϕ = 180◦ increases, however, considerably when lighter projectiles are used
[12].

Figs.10 and 11 can help to understand the dependence of the doubly differential RI cross
section, obtained by integrating over the electron angles, on the target nuclear charge (or
on the target shells, respectively). The large difference between Ar and H at small angles θ′f
is suppressed by the weight factor sin θ′f when performing the integration. Well below the
SWL these differences diminish at the larger θ′f such that the doubly differential cross section
is nearly independent of the initial target state (see Fig.1). In contrast, at the SWL, the
intensity for the larger θ′f is much lower for Ar than for H and therefore also the integrated
cross section (see again Fig.1). This is due to the fact that the electrons corresponding to
the SWL are very sensitive to the target Compton profile (the tip of which decreases with
increasing binding energy).

3.3 Photon linear polarization

The most detailed observable quantity in the radiative electron capture to continuum pro-
cess is the fourfold differential cross section including the polarization correlations. This
corresponds to a coincidence experiment where in addition to the momentum distributions
of electron and photon, also the spin polarization of the electron in its initial and final state
as well as the photon polarization are measured. Such a so-called complete experiment pro-
vides the most stringent test of theory. In the case of electron-nucleus bremsstrahlung this
goal has not entirely been achieved, although there exist measurements on the photon linear
polarization induced by unpolarized electrons as well as on the photon emission asymmetry
for polarized electron beams (for an overview, see [41]).

Here we will only consider electrons which are unpolarized in their initial state which
is the usual situation for electron capture from neutral targets in their ground state. Then
the emitted photons can be linearly (but not circularly) polarized [42, 43]. Taking the (x, z)
plane as the collision plane, the photon momentum is given by k′ = k′ (sinϑ′k, 0, cosϑ′k). The
two polarization directions of the photon, which have to be perpendicular to k′, are chosen
as

eλ1 = (0, 1, 0), eλ2 = (− cosϑ′k, 0, sinϑ
′
k). (3.7)

eλ2 lies in the collision plane while eλ1 is perpendicular to it. For any multiply differential
cross section, abbreviated by dσλ, the degree P of the photon linear polarization is defined
by

P =
dσλ2 − dσλ1

dσλ2 + dσλ1

(3.8)
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which coincides with the Stokes parameter C03 [42]. In the bremsstrahlung literature, P is
usually defined with a negative sign (see e.g. [36, 43, 44]). The definition (3.8) holds also
for the projectile reference frame since the transformation (3.1) - (3.3) does not affect the
polarization degree of freedom.

It is well-known that for the coplanar geometry (where v, k′ and k′f lie in the (x, z)
plane) the nonrelativistic bremsstrahlung theory predicts an in-plane polarization (P = 1,
[45]). Any deviation from P = 1 is thus based on relativistic effects [46] or, in the case of
RI, on the binding of the initial electron.

Fig.12 compares the polarization relating to the projectile-frame doubly differential cross
section for RI from Au79++ H and one-electron Ar with the bremsstrahlung result [47] for
e+ Au at Ẽ0 = 500 keV and ω′ = 450 keV as a function of photon angle θ′k. The RI
result for Au79++ H is indistinguishable from the bremsstrahlung theory for e+ Au79+.
The deviations between this theory and experiment may partly be ascribed to the screening
by the passive electrons in the neutral Au target used in the experiment, and partly to the
inaccuracy of the Sommerfeld-Maue functions for Au79+. When a heavier target is used in
the RI calculations, P decreases. This is true in most cases [12].

The determination of the degree of photon polarization when the outgoing electron is not
observed can be interpreted as a kind of averaging procedure. Thereby some information on
the elementary process of bremsstrahlung is lost [36]. In fact, the polarization of the photons
which are detected in coincidence with the outgoing electrons is much different from the one
obtained by integrating over the electron emission angles [48]. Fig.13a depicts P resulting
from the projectile-frame triply differential RI cross section, defined in (3.6), for the same
collision parameters (and one-electron targets) as in Fig.12. The target dependence of P
is largest for photons emitted close to the beam direction (θ′k near 0◦ or 360◦) and it gets
stronger when the SWL is approached. In comparison with d3σ′/dΩ′fdω

′dΩ′k (summed over
λ, Fig.13b) one notes that a large depolarization coincides with the cross section minima.
The explanation is simple. When the momenta of the outgoing particles are chosen such
that a large momentum transfer to the (projectile) nucleus is required, this can only be
achieved by a close collision for which the cross section is small. In close collisions, on the
other hand, relativistic effects become particularly important, such that P is lowered. This
behaviour is different for the noncoplanar geometry. There is a strong variation of P with ϕ
such that the correspondence between the cross section minima and the minima in P is lost
[12]. In fact, for ϕ 6= 0 one can have strong deviations from P = 1 even in the nonrelativistic
case. A striking feature in Fig.13a is the asymmetry of P (with respect to reflection at
θ′k = 180◦) because the electron momentum k′f is slightly tilted away from the beam axis.
This asymmetry is much larger than that of the underlying cross section and emphasizes
the supplementary information contained in a polarization measurement.

Let us now turn to the polarization related to the fourfold differential RI cross section,
and to its dependence on the projectile and the target. In Fig.14 the polarization for
RI from Ag47+ colliding with H, C, Ar and from U92+, C6+ colliding with H is given.
The electron energy (at the SWL) is fixed, as is ϑf (in the forward direction). At each
photon emission angle ϑk, the frequency ω is chosen to coincide with the peak frequency
(2.11) determined from the tip of the target Compton profile. Under this condition the
polarizations corresponding to the triply and fourfold differential cross sections, respectively,
show a similar dependence on the photon angle, and for a hydrogen target there is even
complete agreement if ω is not too close to the SWL. The dependence of P on the target-
frame emission angle ϑk changes, however, again drastically if an additional integration over
the electron angles is made (see e.g. Fig.2 and Fig.20).

From Fig.14 it follows that the depolarization and the ϑk-variation of P is reduced
when the projectile charge increases, a fact confirmed by bremsstrahlung experiments [49].
When the target gets heavier the depolarization increases, as mentioned earlier. If ϑf =
0◦, P drops to zero at ϑk = 0◦ and 180◦. In that case of collinear particle emission one
has cylindrical symmetry with respect to the beam axix, causing dσλ1 = dσλ2 in (3.8).
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We note that the shape of the angular distribution of the photons and of their degree of
polarization changes strongly when one switches between the target and the projectile frame
of reference [12]. This frame dependence arises from the fact that the threshold T0 and the
peak frequency ωpeak depend on ϑk (in contrast to the nonrelativistic case) whereas these
quantities are angular independent in the projectile frame of reference.

3.4 Sommerfeld-Maue results in comparison with accurate calcu-
lations

In section 3.2 we have established the close relation between RI from a hydrogen target and
the elementary process of bremsstrahlung. The bremsstrahlung results using accurate rela-
tivistic wavefunctions can therefore serve as a test for the applicability of the semirelativistic
Sommerfeld-Maue functions for the unbound projectile electron. There is a considerable
number of publications where the two theoretical approaches are compared with experiment
(see e.g. [39, 50, 51]). Below we compile some representative bremsstrahlung literature
results for very heavy nuclei which we have supplied with RI calculations (that extend the
published Elwert-Haug bremsstrahlung results [38]).

In Fig.15 the singly differential bremsstrahlung cross section dσ′/dω′ from 50 keV and
500 keV e+ Au79+ is shown as a function of photon energy. The calculations from Lee
et al [52] employ a partial-wave expansion of the relativistic electronic states in the field
of Au79+. Comparison is made with the experiments by Motz [53]. We have included
the frame-transformed RI results from Au79++ H at the same collision energies (which are
indistinguishable from the Elwert-Haug results given in [54] for this system). It is seen that
at the lower collision energy (γ = 1.1) the Sommerfeld-Maue functions do quite well, but
they get worse when the SWL is approached. At the higher energy (γ = 2) the deviations
reach a factor of 2. For a systematic investigation of the different models at the SWL, see
[55].

Now we proceed from the singly differential cross section to the doubly differential cross
section for the same system (Fig.16). The accurate bremsstrahlung calculations [39] which
compare well with the experimental data from Aiginger are, nearly independently of the
photon emission angle, underestimated in our model by roughly a factor of 2 for ω′ = 480 keV
(which is slightly below the SWL). In Fig.16 are included the results for an Al13+ nucleus.
For this smaller charge, the Sommerfeld-Maue functions provide a good approximation even
at this high collision energy.

Finally, in Fig.17 the triply differential bremsstrahlung cross section for 300 keV e+ Au
at a photon energy well below the SWL (ω′ = 150 keV) is displayed [51]. For the forward
electrons considered, there is quite good agreement between the Elwert-Haug theory and
the accurate calculations for an Au79+ nucleus if θ′k is not too large. From this figure it is
also seen that accounting for the presence of the passive electrons in Au0 lowers the cross
section in the peak region. To our knowledge, a comparison of the two theoretical models
for the triply differential cross section near the SWL covering the whole angular range has
not yet been made.

4 Radiative electron capture and its relation to RI

The radiative electron capture, in which a bound target electron is captured into a bound
state of a fast, highly stripped projectile with the simultaneous emission of a photon, plays
an important role in spectroscopic studies of highly stripped heavy ions and has been inves-
tigated in great detail. The early work on REC started with a close collaboration between
experimentalists and theoreticians [1, 14, 56]. Relativistic kinematics was first considered
by Spindler et al [57]. Their predictions concerning the approximate cancellation between
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the relativistic retardation and the frame transformation (3.1) in the target-frame photon
angular distribution was further verified experimentally by Anholt et al [58] in the case of
highly relativistic projectiles.

A consistent relativistic prescription of REC was put forth by Eichler and coworkers
[7, 27] who extended the nonrelativistic Kleber model [1]. The differential cross section for
photoionization serves as their starting point from which, employing inverse kinematics, the
differential cross section for radiative recombination, dσ′RR/dΩ′k, is obtained. This cross
section has eventually to be convoluted with the momentum distribution of the target state,
as dictated by the impulse approximation. Relativistic kinematics leads to [7]

d2σREC
dωdΩk

=
ω

ω′γ

∫
dq

dσ′RR(q′0)
dΩ′k

|ϕ̃i,T (q0)|2 δ(E′f + ω′ − ETi /γ + qzv) (4.1)

where the prefactor arises from d2σ
dωdΩk

= ω
ω′

d2σ′

dω′dΩ′k
and dq0z = dqz/γ (recall the relation

q0z = ETi v/c
2 + qz/γ). ϕ̃i,T (q0) is the nonrelativistic target function and q′0 the Lorentz

transform of q0. By means of this step-by-step method, accurate relativistic calculations of
the photoionization process [59] are sufficient for the determination of REC.

4.1 Relativistic theory for REC

In the following a relativistic REC theory is outlined which is strictly derived from the formal
scattering theory ([18, 22], without employing the photoelectric effect) and which extends
the nonrelativistic formalism developed earlier [1, 60]. The Kleber-Eichler formula (4.1) is
then recovered by means of additional approximations.

Starting point of the theory is the transition amplitude (2.1), where now ψ
(σf )′

f,P (x′)
represents a bound projectile eigenstate. For heavy projectiles the off-shell approximation
(2.3) is made which retains some influence of the target potential that is not accounted for
in the Kleber-Eichler method. The impulse approximation is recovered by going on-shell,
and the deviations between the (nonrelativistic) on-shell and off-shell results are somewhat
larger than for RI [20]. For relativistic velocities they are not expected to play any significant
role, however.

The IA transition amplitude aRECfi,λ derived in this way has the form (2.5) where now
E′f is the energy of the bound final state and WREC

rad (σf , s, q) describes the free-bound
transition mediated by the photon field. For light targets we can describe the initial-state
momentum-space function by a Darwin function [23]. For spherically symmetric states it
has a simple product form [22], ϕ

(σi)
i,T (q0) = NT

i a
(σi)
i (q0) ϕ̃i,T (q0), where

NT
i =

[
1 +

(
ZTµ

ni

)2
]− 1

2

, a
(1)
i (q0) =


1
0

µq0z

µq+

 , a
(2)
i (q0) =


0
1
µq−
−µq0z

 (4.2)

with q± = qx ± iqy, µ = c/(ETi + c2).

Then the doubly differential cross section for REC follows from

d2σREC

dωdΩk
=

ωω′

2c3
∑

λ,σi,σf

∫
d2b

∣∣aRECfi,λ

∣∣2
=

ω

ω′γ

∫
dq F (q) |ϕ̃i,T (q0)|2 δ(E′f + ω′ − ETi /γ + qzv) (4.3)

where

F (q) =
(2π)4 ω

′2

2c3 v

∑
λ,σi,σf

∣∣∣∣∣NT
i

4∑
s=1

A′λW
REC
rad (σf , s, q) (4.4)
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·
[
u(s)+
q

√
1 + γ

2γ

(
1 − γv/c

1 + γ
αz

)
a

(σi)
i (q0)

]∣∣∣∣2 .
For the sake of comparison we furnish the differential cross section for the radiative recom-
bination of a free electron with momentum q′0,

dσ′RR
dΩ′k

(q′0) =
(2π)4 ω

′2
0

2c3 v

∑
λ,σi,σf

∣∣∣A′λWREC
rad (σf , σi, q′0)

∣∣∣2 . (4.5)

Here, ω′0 = γ0c
2 − E′f follows from energy conservation and γ0c

2 =
√

(q′0c)2 + c4 is the
collision energy of the electron.

In the limit of vanishing target field, where ϕ̃i,T (q0) turns into a δ-function and q′0z =
γ (−vEq0/c2 + q0z) → −γv, the integral of (4.1) with respect to ω′ provides, as expected,
the differential cross section for radiative recombination,

lim
ZT→0

∫ ∞
0

dω′
d2σ′REC
dω′dΩ′k

=
dσ′RR
dΩ′k

(−γv). (4.6)

A straightforward calculation, following the lines of the derivation of the bremsstrahlung
limit of RI [12], shows that the r.h.s. of (4.6) is also the ZT → 0 limit of F (q) as required.
In this limit one has ω′ = ω′0 = γc2 − E′f > 0. When ZT is finite, the deviations between
(4.1) and (4.3) depend on γ and increase with ZT .

In the evaluation of the radiation matrix element WREC
rad (σf , s, q) in (4.4) we use the

semirelativistic wavefunctions to obtain a closed expression. The Darwin function for the
final 1s1/2 ground state is given by

ψ
(σf )′

f,P (x′) = NP
f a

(σf )
f ψ̃′f,P (x′) e−iE

′
f t, (4.7)

a
(1)
f =


1
0

−iλ∂z′
−iλ∂+

 , a
(2)
f =


0
1

−iλ∂−
iλ∂z′

 , NP
f =

1√
1 + (ZPλ)2

where λ = c
E′f+c2 , E′f = c2

√
1− (ZP /c)2 and ∂± = ∂x′±i∂y′ . ψ̃′f,P (x′) = π−1/2 Z

3/2
P e−ZP r

′

with r′ = |x′|, is the nonrelativistic bound-state function.

The Sommerfeld-Maue function for the intermediate unbound state is defined in terms
of the derivative of a confluent hypergeometric function [38],

ψ
(s)′

q,P (x′) = Nqe
iqx′(1 − ic

2Eq
α∇) 1F1(iηq, 1, i(qr′ − qx′)) u(s)

q , (4.8)

u(1)
q =

√
Eq + c2

2Eq


1
0
νqz
νq+

 , u(2)
q =

√
Eq + c2

2Eq


0
1
νq−
−νqz

 ,

with Nq = (2π)−
3
2 eπηq/2 Γ(1 − iηq), Eq =

√
q2c2 + c4, ν = c/(Eq + c2) and the

Sommerfeld parameter ηq = ZPEq/(qc2).

In consistency with the accuracy of the semirelativistic functions, only terms up to O(α2)
are kept in the radiation matrix element (like in the bremsstrahlung theory [38]). This means
that for the small components of ψ(σf )′

f,P , the α∇ term in (4.8) is disregarded.

We make use of the relations r′e−ZP r
′

= − ∂
∂ZP

e−ZP r
′

and ∇1F1(iηq, 1, i(qr′−qx′)) =
− q
r′ [∇s0 1F1(iηq, 1, i(s0r

′ − s0x
′)]s0=q . Then the radiation matrix element can be based

on a single integral [61]

I0(ZP ,p, s0) ≡
∫
dx′

1
r′
e−ZP r

′
eipx

′

1F1(iηq, 1, i(s0r
′ − s0x

′))
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= 4π
1

[Z2
P + p2]1−iηq

[
(p− s0)2 − (s0 + iZP )2

]−iηq
. (4.9)

We write the 4-spinor a(σf )
f from ψ

(σf )′

f,P in the following way,

a
(σf )
f =

(
χ(σf )

0

)
+
(

0
1
r′ g

(σf )

)
with χ(1) =

(
1
0

)
, χ(2) =

(
0
1

)
, (4.10)

where g(σf ) contains the derivatives (which act only on e−ZP r
′
) according to (4.7). One

obtains from (2.4) with (4.7) and (4.8),

WREC
rad (σf , s, q) =

Z
3/2
P√
π
Nq N

P
f (M1 +M2 +M3), (4.11)

M1 = −

[(
χ(σf )

0

)+

αu(s)
q

]
∂

∂ZP
I0(ZP , q − k′, q)

M2 =
icq

2Eq

{[(
χ(σf )

0

)+

α (α∇s0)u(s)
q

]
I0(ZP , q − k′, s0)

}
s0=q

M3 =

{[(
0

g(σf )

)+

αu(s)
q

]
I0(ZP ,%− k′, q)

}
%=q

.

The evaluation of M3 is done by means of ∂z′e−ZP r
′

= −ZPr′ z
′e−ZP r

′
followed by z′ei%x

′
=

−i ∂
∂%z

ei%x
′

and[
− ∂

∂%
I0(ZP ,%− k′, q)

]
%=q

=
8π

[Z2
P + (q − k′)2]2−iηq

[
k
′2 − (q + iZP )2

]−iηq
·
{
q(1− iηq) − k′

(
1− iηq + iηq

Z2
P + (q − k′)2

k′2 − (q + iZP )2

)}
. (4.12)

This leads to the doubly differential REC cross section for the emission of a photon with
polarization direction eλ,

d2σRECλ

dωdΩk
=

(2π)3(1 + γ)ωω′Z3
P

2c3γ2v
|NT

i N
P
f |2

∫
dq |ϕ̃i,T (q0)|2 δ(E′f + ω′ − ETi /γ + qzv)

· |Nq|2
∑
σi,σf

∣∣∣∣A′λ (M̃1 + M̃2 + M̃3) (1 − γv/c

1 + γ
αz) a

(σi)
i (q0)

∣∣∣∣2 , (4.13)

where M l ≡ M̃ lu
(s)
q , l = 1, 2, 3 and the completeness relation for u(s)

q was used.

The present theory has to be contrasted against the Sauter formula [62, 63] for the
photoionization in the Kleber-Eichler model. Sauter also employs the Sommerfeld-Maue
wavefunctions, but in addition makes an expansion in ηq to lowest order which invalidates
his theory for the heavy projectiles.

4.2 Sommerfeld-Maue results in comparison with accurate calcu-
lations

There exists a systematic investigation of the angular dependence of the REC photons
using accurate relativistic wavefunctions [7]. At the relativistic collision energies considered
the binding of the initial-state electron plays only a minor role (if an integration over the
photon energies is performed [7, Fig.32]). Therefore these calculations are actually done for
the radiative recombination instead of REC.
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In Fig.18 REC induced by 100 MeV/amu bare projectiles of charge ZP = 50 and 70 is
shown. For ZP = 50, the difference between the Sommerfeld-Maue result and the accurate
partial-wave calculations is very small except for the forward photons. At the velocity v =
58.68 a.u. (γ = 1.1) the deviations from the nonrelativistic impulse approximation [20] are
already quite strong. For ZP = 70 (Fig.18b) the Sommerfeld-Maue functions become poor
for ϑk < 20◦. In particular they fail to correctly reproduce the strong spin-flip transitions
which are responsible for the entire REC photon intensity at ϑk = 0◦ [7]. The high forward
cross sections predicted by the partial-wave theory were recently verified experimentally for
K-shell REC by U91+ and U92+ projectiles [64, 65]. The failure of the Sommerfeld-Maue
functions in correctly predicting the spin-flip contributions for REC into strongly bound
projectile eigenstates is due to their missing relativistic spatial contraction. Therefore the
electron is not adequately described when being close to the nucleus. In this context we
remark that spin-flip transitions during RI are of lesser importance than for REC because
in RI the final state is unbound and therefore not localized so close to the nucleus.

4.3 REC in comparison with radiative ionization

In Fig.19 the photon angular distribution for RI in 100 MeV/amu Xe54++ H collisions,
resulting from an integration over the electronic degrees of freedom, is compared to the
REC results. This system was chosen because, according to Fig.18a, the Sommerfeld-Maue
functions provide reliable REC results for all ϑk except in a small forward cone. Since the
relativistic effects are more important for REC than for RI, it follows that the Sommerfeld-
Maue wavefunctions are then also appropriate for RI.

The plotted RI results are for photon energies ωpeak corresponding, respectively, to the
SWL and to electrons with a kinetic energy of approximately half the Xe53+ ground-state
binding energy (E′f,kin = 21.8 keV). For the doubly differential REC cross section we have
also chosen ω = ωRECpeak . This REC peak position is obtained from (4.13) – in analogy to
(2.11) – as

ωRECpeak (ϑk) =
γETi − E′f

γ(1− v
c cosϑk)

(4.14)

with E′f < mc2 the ground-state energy. It is seen that the angular distribution of the
REC photons in the peak maximum differs very much from the RI results at the ionization
threshold. In contrast, the RI into higher-lying continuum states has a photon distribution
similar to the one at the SWL. This shows that it is not the final-state energy E′f but the
final-state momentum distribution which is the decisive quantity in determining the shape
of the cross section. For the sake of comparison we have included the REC angular distri-
bution obtained from the photon-energy integrated cross section. The similarity between
dσREC/dΩk and the angular distribution from the doubly differential REC cross section
in the peak maximum is obvious. This behaviour corresponds to the previously discussed
similarity between the triply and fourfold differential RI cross sections below the SWL.

4.4 Photon linear polarization

For the photoionization process the polarization correlations were studied in great detail
[66], using the relativistic partial-wave formalism [67]. These investigations were motivated
by realizing that the photoeffect can serve as a polarizer of electrons, a transmitter of
polarization from photons to electrons, or an analyzer of polarized radiation. It is the
latter effect which translates to the observation of linearly polarized REC photons caused by
unpolarized quasifree electrons. Within the Kleber-Eichler model, the correlation parameter
C10 of photoionization [66] corresponds to the degree P of linear polarization in REC.

Compared to photoionization the REC process has the advantage that the photon es-
capes from the target more or less unperturbed whereas in the inverse process the emitted
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electron may undergo successive collisions inside the target. As an application of REC it
was suggested [68] to use the polarization of the emitted photon to gain information on the
spin polarization of ion beams. In a recent pilot experiment, P was measured for K-shell
REC in 400 MeV/amu U92++ N2 collisions [69] and was found to be in accord with the
predictions from accurate REC calculations [70, 71].

Aiming at a comparison of the angular dependence of P which results from REC and
threshold-RI, respectively, we recall a common property of P which renders the deviations
between the two processes smaller than in the case of the photon distributions. For symmetry
reasons the RI polarization vanishes when the photon is emitted parallel or antiparallel to
the beam axis (ϑk = 0◦, 180◦) provided the emitted electron – if observed – is ejected into
the beam direction too. For the photoeffect it was shown that a consistent relativistic theory
also leads to a vanishing P for ϑk = 0◦ and 180◦ [66], and the same is true for REC [68, 71].
When Sommerfeld-Maue functions are used, P decreases strongly near 0◦ and 180◦ but
does not vanish, whereas for RI, one does get P = 0. This is another indication that the
semirelativistic functions are more appropriate for RI than they are for REC.

From Fig.20 where P resulting from K-shell REC and threshold-RI in 300 MeV/amu
Ar18++ H collisions is shown, it is seen that at photon angles between 40◦ and 130◦ the
photon degree of polarization is indeed quite similar for the two processes. However, its
decrease to zero towards 0◦ and 180◦ is much steeper in the case of REC. For a heavier
projectile the angular dependence of P from REC and threshold-RI is similar to the one in
Fig.20 (see [7, Fig.54]), but the two processes differ somewhat more from each other [12]. A
comparison with REC results using accurate wavefunctions [7] shows that the semirelativistic
wavefunctions are appropriate for an argon projectile (except for photons ejected into the
forward direction), whereas they start to deteriorate for ZP > 50.

5 Conclusion

We have discussed the significant features of the momentum distributions of the outgoing
photon and electron in the process of radiative electron capture to the projectile continuum.
The underlying model was the relativistic impulse approximation, derived from scattering
theory, with the use of semirelativistic Sommerfeld-Maue functions for the electronic states
as the only additional approximation. Relying on the fact that bremsstrahlung is the inverse
process of RI for a vanishing target field, the accuracy of our model, agreeing with the Elwert-
Haug theory in this limit, could be tested against available theoretical results which use an
accurate relativistic partial-wave representation of the wavefunctions. We conjecture that
for collision velocities in the weak-relativistic regime (γ . 2) our model is accurate for not
too heavy projectiles (ZP . 50) in the region where the cross sections are large, but it
may underestimate the cross sections when they are very small. For uranium projectiles
the structures in the momentum distributions are qualitatively correctly predicted, but
the absolute values come out a factor of 2 too low. This underprediction for uranium is
confirmed by the comparison with experimental singles photon spectra which have been put
on an absolute scale by normalizing to the well-established REC peak maxima.

Concerning the process occurring simultaneously with RI, the Coulomb capture into the
projectile continuum, we have given predictions for which collision parameters both processes
provide comparable electron intensities in the forward peak (cusp) region. The importance
of this particular region of the electron spectrum is, on the one hand, its sensitivity to
relativistic effects resulting from the close electron-projectile collisions. On the other hand,
it seems to be the only region where radiative ionization can be the dominating process.
We have established the strong dependence of the ratio between RI and ECC on the target
species and on the collision velocity by using the same theoretical model for both processes.
Recent coincidence experiments on 90 MeV/amu U88++ N2, allowing for the detection of the
RI and ECC cusp electron spectra in one measurement, have confirmed the strong dominance

18



of ECC predicted by theory for this collision system. In addition, they have established the
shape of the RI cusp with its skewness to the opposite side of the ECC cusp. They have
thus proven the feasibility of measuring the short-wavelength limit of bremsstrahlung with
the tool of inverse kinematics.

If comparison is made between the frame-transformed RI and the bremsstrahlung results,
there are considerable differences in the photon and electron angular distributions as well as
in the photon linear polarization for the heavier targets. These differences increase when the
photon frequency approaches the short-wavelength limit. When the target field is decreased
to zero and the photon frequency well below the SWL, there is a smooth transition to the
bremsstrahlung limit. At the SWL, on the other hand, the RI limit for vanishing target
charge falls a factor of 2 below the bremsstrahlung theory. A related phenomenon concerns
the deviations in the (photon or electron) angular distributions when calculated, respectively,
from the triply and fourfold differential RI cross sections (the latter taken at the electron
energy that provides the peak value of the cross section) which are present at the SWL but
absent at lower frequencies. All these SWL-pecularities arise from the fact that the cusp-like
forward peak structure is superimposed on a background which is shaped by the Compton
profile [22].

For the radiative electron capture to bound states we have derived a relativistic for-
mulation of the impulse approximation and have again employed the Sommerfeld-Maue
wavefunctions for the electron. We have compared it to results from the nonrelativistic
impulse approximation and have found similar photon angular distributions, but a lower
global intensity if the proper relativistic prescription is used. We have also contrasted the
REC photon angular distributions to those from the doubly differential RI cross section at
the short-wavelength limit. Whereas for the collision system investigated the RI angular
distribution is comparatively flat with shallow minima near 0◦ and 180◦, the REC distri-
bution has a pronounced maximum near 100◦ with very deep minima at 0◦ and 180◦. We
ascribe this dissimilarity to the different momentum distributions of the outgoing electron
in the ground state and near the ionization threshold, respectively. The supplementary
comparison of our model with available partial-wave results for REC is not so conclusive
for RI as in the case of bremsstrahlung. We attribute the considerable deviations between
our model and the literature results for the forward-emitted REC photons in collisions with
very heavy projectiles to the necessity of very close collisions when the electron is captured
into the K-shell. For electrons in unbound final states, on the contrary, the small-distance
part of the wavefunction, where the semirelativistic functions fail, is expected to be not so
important.

We conclude that the radiative ionization presents itself indeed as a link between brems-
strahlung and radiative capture to bound states. However, RI exhibits a good deal of pecu-
liarities which make it worth while an object of study for its own sake. Further experiments,
in particular on an absolute scale which is independent of theory, are highly desirable.
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Figure Captions

Fig.1
Doubly differential RI cross section from 223.2 MeV/amu U90++ N2 (v = 80.77 a.u.) for an
emission angle ϑk = 132◦ as a function of photon energy ω. Shown are RI from the K-shell
(——– ) and L-shell (– – – ) of N as well as the total RI from N2 (− ·− · −) as described in
the text. Experimental data (�) from Ludziejewski et al [10].

Fig.2
Doubly differential RI cross section per electron from 223.2 MeV/amu U90++N2 at ω = 65
keV as a function of photon emission angle ϑk. Theory: ——– . Experiment: �, Ludziejewski
et al [10]. Also shown is the photon linear polarization P relating to d2σ/dωdΩk for this
process (left-hand scale without dimension, − · − · −).

Fig.3
Doubly differential cross section for electron emission at ϑf = 1.5◦ in 30 MeV/amu Ar18++
H collisions (a) and at ϑf = 15◦ in 30 MeV/amu Kr36++ He collisions (b) as a function of
kinetic electron energy Ef,kin = Ef −mc2. ——– , RI; − · − · −, ECC.

Fig.4
Doubly differential cross section for electron emission at ϑf = 3◦ in 90 MeV/amu U88++ N
collisions as a function of Ef,kin. ——– , RI; − · − · −, ECC.

Fig.5
Doubly differential cross section for RI (a) and ECC (b) from 90 MeV/amu U88++ N2 at
ϑf = 0 ± 1.9◦. Experiment (�, from Nofal et al [11, 35]) is normalized to theory in the
maximum.

Fig.6
Doubly differential RI cross section for one target K-shell electron in 90 MeV/amu U88++ N
collisions at ϑf = 0 averaged over the detector resolution θ0 as a function of kinetic electron
energy. θ0 = 0.5◦ (− · − · −), 1◦ (– – – – ), 3◦ (——– ), 5◦ (· · · · · ·) and 10◦ (- - - - ). The
peak maxima are marked by vertical lines, and the vertical line on the abscissa marks the
cusp energy (γ − 1)c2 = 49.37 keV.

Fig.7
Doubly differential cross section for electron emission at ϑf = 3◦ from U88++ N collisions in
the respective peak maximum for RI (——– ) and ECC (− ·− ·−) as a function of collision
momentum γv. The experimental data for γv = 61.67 a.u.(�) are from Nofal [35]. The RI
datum point is normalized to theory; ECC is calculated from the measured ratio.

Fig.8
Crossing momentum γvcr as a function of target nuclear charge ZT . Shown is γvcr as ob-
tained from the doubly differential RI and ECC cross sections evaluated in the RI-peak
maximum at ϑf = 5◦ for one-electron capture from the target K-shell (− · − · −) and for
the summed capture from all shells of a neutral target (——— ) by a Xe54+ projectile. The
black dots are the calculated values and the lines are eye-guides.

Fig.9
Projectile-frame triply differential cross section for K-shell RI from Xe54+ + T in coplanar
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geometry for Ẽ0 = (γ − 1)mc2 = 100 keV, θ′f = 10◦, ϕ = 0 as a function of photon angle
θ′k. θ′k > 180◦ corresponds to 2π − θ′k for ϕ = 180◦. ϕ is the relative azimuthal angle
between photon and electron. T = Ar (− · − · −), C (– – – –), H (· · · · · ·), ZT = 0.3 (- -
- - ) and the bremsstrahlung result (ZT = 0, ——– ). The upper bunch of curves is for
ω′ = 60 keV, the lower bunch is at the SWL (ω′ = 94.71, 99.4, 99.97, 99.984, 99.985 keV
for ZT = 18, 6, 1, 0.3, 0, respectively).

Fig.10
Projectile-frame triply differential cross section for K-shell RI from Xe54++ T in coplanar
geometry (ϕ = 0) for Ẽ0 = 100 keV, θ′k = 30◦ as a function of electron angle θ′f . The steep
upper curves correspond to ω′ = 60 keV, the lower curves to the SWL. T = Ar (− · − · −),
C (- - - - - ) and H (——— ).

Fig.11
Projectile-frame triply differential cross section forK-shell RI from Xe54++ T in noncoplanar
geometry for Ẽ0 = 100 keV, θ′f = 10◦, θ′k = 30◦ as a function of ϕ. The upper curves
correspond to ω′ = 60 keV, the lower curves to the SWL. T = Ar (− · − · −) and H (——–
).

Fig.12
Polarization corresponding to d2σ′λ/dω

′dΩ′k for K-shell RI from collisions of Au79+ with H
(——– ) and Ar (− ·− ·−) at Ẽ0 = 500 keV, ω′ = 450 keV as a function of θ′k. Comparison
is made with the polarization of bremsstrahlung from equivelocity (v = 118.25 a.u.) e+
Au0 collisions (•, [47]).

Fig.13
Polarization P (a) and projectile-frame triply differential cross section d3σ′/dΩ′fdω

′dΩ′k (b)
for K-shell RI from collisions of Au79+ with H (—— ), C(– – – ) and Ar (− · − · −) at
Ẽ0 = 500 keV, ω′ = 450 keV, θ′f = 10◦ and ϕ = 0 as a function of θ′k.

Fig.14
Polarization corresponding to (target-frame) d4σλ/dEfdΩfdωdΩk for RI at the SWL from
collisions of Ag47+ with one electron targets H (—— ), C (– – –) and Ar (− ·− ·−) (a) and
of C6+ (– – – –), Ag47+ (——— ) and U92+ (− ·− · −) with H (b) as a function of ϑk. The
parameters are Ẽ0 = 300 keV = Ef,kin, ϑf = 1◦, ϕ = 0 and ω = ωpeak(ϑk) from (2.11).

Fig.15
Singly differential projectile-frame cross section dσ′/dω′ for bremsstrahlung from Au as a
function of ω′. Partial-wave results for 50 keV (—— ) and 500 keV (− · − · −) electrons
colliding with Au79+ [52, 54]. Experimental data for 500 keV e+ Au0 (�, [53]). Frame-
transformed RI results for Au79++ H at Ẽ0 = 50 keV (– – – –) and 500 keV (- - - - -).

Fig.16
Doubly diffferential projectile-frame cross section d2σ′/dω′dΩ′k for bremsstrahlung from Au
(upper curves) and Al (lower curves) at a collision energy of Ẽ0 = 500 keV and ω′ = 480
keV as a function of photon emission angle. Partial-wave results (—— ) for Au79+ and
Al13+, respectively [39]. The experimental data for Au0 are from Aiginger (�, taken from
[39]) and from Motz (•, [53]). The data for Al0 are from Motz (◦, [53]). Frame-transformed
RI results for equivelocity Au79++ H (− · − · −) and Al13++ H (– – – –).

Fig.17
Triply differential bremsstrahlung cross section d3σ′/dΩ′fdω

′dΩ′k from 300 keV e+ Au colli-
sions at ω′ = 150 keV and θ′f = 0. Shown are the partial-wave results (– – –) and Elwert-Haug
results (- - - -) for Au79+ as well as for a screened target (——–, partial-wave result; · · · · · · ,
modified Elwert-Haug theory). Taken from [51].

Fig.18
Singly differential cross section for REC into the K-shell of bare projectiles with ZP = 50 (a)
and 70 (b) at 100 MeV/amu as a function of photon angle ϑk. The partial-wave results from
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[7] are for a free initial electron (——– ), the present REC results use a hydrogen target (–
– – –). For comparison, the nonrelativistic result for ZP = 50 colliding with H (− ·− · −) is
included in (a). In (b), the spin-flip contributions to the singly differential cross section are
shown separately (− · − · −, partial-wave expansion; - - - -, Sommerfeld-Maue functions).

Fig.19
Doubly differential cross section for photons from the K-shell REC in 100 MeV/amu Xe54++
H collisions at the REC peak frequency (4.14) (——– ) and for RI photons at threshold (ω
from (2.11) for E′f,kin = 10−3 keV, − · − · −) and for E′f,kin = 21.8 keV (– – – –). Included
is the singly differential REC cross section dσ/dΩk (left-hand scale in b/sr, · · · · · ·). All
calculations use semirelativistic wavefunctions.

Fig.20
Polarization of photons from collisions with a 300 MeV/amu Ar18+ projectile as a function
of photon emission angle. Shown are accurate REC results for capture of a free electron
into the argon K-shell (——– ) and REC results using Sommerfeld-Maue functions and a
hydrogen target (– – – –). The difference between P relating to d2σ/dωdΩk at ωRECpeak and
to dσ/dΩk is indistinguishable. Included are RI results relating to d2σ/dωdΩk for ω from
(2.11) corresponding to the SWL (E′f,kin = 10−3 keV, − · − · −).
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