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Abstract

By means of a unitary transformation scheme, the Coulomb-Dirac operator for two
electrons in a central potential is transformed into a pseudo-relativistic operator which
allows for the decoupling of the electron and positron degrees of freedom to arbitrary
order n in the potential strength. In case of n = 2, relative boundedness properties
and positivity of the resulting operator are shown for subcritical potential strength.

PACS: 03.65.Pm, 03.65.Db, 02.30.Tb, 02.30.Mv

1 Introduction

Due to the positron degrees of freedom, the one-electron Dirac operator as well as its gen-
eralisation to more particles has a spectrum which is unbounded from below. However, in
the spectroscopy of static ions, negative energy states play no role. One therefore aims at
constructing an operator with positive spectrum, but otherwise with similar properties as
the Dirac operator. Such an operator allows for the application of conventional variational
principles to determine its ground state and low lying excited states.

The first approach to eliminate the positron degrees of freedom was made by Pauli [1]
who invented a systematic procedure to reduce the 4-spinor (one-electron) Dirac equation
to a Schrödinger-type equation. The idea of reducing the Dirac operator to a semibounded
operator with the same ground-state properties by means of elimination and substitution
methods applied to the Dirac equation, or by constructing appropriate Hamiltonians which
become exact in the nonrelativistic case, was pursued further (see e.g. [2] and references in
[3]).

An alternative approach, to decouple the electron and positron degrees of freedom by
means of a unitary transformation scheme applied to the Dirac operator, was put forth by
Douglas and Kroll [4]. For a helium atom, they derived explicitly the transformed Coulomb-
Dirac operator up to second order in the potential strength. Such a Douglas-Kroll-type
operator was used later by Hess and coworkers [5, 6] in atomic structure calculations for
multi-electron atoms.

1



For a single electron with mass m in a central Coulomb field of strength γ the Dirac
equation is exactly solvable [7], with ground-state energy given by m

√
1− γ2. This restricts

the potential strength to γ ≤ 1. Moreover, this exact reference value can be used to test
perturbative approaches. Indeed, the Douglas-Kroll transformation scheme was carried out
up to the n = 5-th order in the potential strength, and it was shown numerically [6] that the
respective ground-state energies calculated for n increasing from 1 to 5 approach the exact
value in an alternating way.

In the present work we use a transformation scheme which is based on the perturbation
theory of Morse and Feshbach [8], see also [9]. By introducing projectors onto the positive
and, respectively, negative spectral subspace of a free electron, unitary transformations are
constructed in such a way that the resulting operator is block-diagonal to any given order
in the potential strength with respect to these spectral projections. The transformation
scheme used by Douglas and Kroll [4] is a special case of the scheme described here, and
their resulting operator for n = 2 is unitarily equivalent to the operator derived below.
However, the present representation of the operator is much simpler and therefore allows
not only for a detailed mathematical analysis, but also for its generalisation to the multi-
electron case.

The layout of the paper is as follows. In section 2 the transformation scheme is described
and in section 3 the operator is explicitly constructed for n = 2. Section 4 deals with the form
boundedness of the potential terms of this operator relative to the free Dirac operator, and
in section 5 the subdominance of the second-order potential terms relative to the first-order
terms is demonstrated. The latter property is a necessary requirement for convergence of
the perturbation series. Finally, in section 6, positivity of the operator is shown. The work
is concluded by an outlook to the N -particle case (section 7). The mathematical proofs
will only be outlined; details can be found in [10]. Relativistic units (~ = c = 1) are used
throughout.

2 The Coulomb-Dirac operator and the transformation
scheme

The Coulomb-Dirac operator which describes two interacting electrons in a central Coulomb
field is given by

H =
2∑
k=1

(D(k)
0 + V (k)) + P++ V

(12) P++ (2.1)

where D(k)
0 + V (k) is the Dirac operator for electron k,

D
(k)
0 = −iα(k)∇xk + β(k)m, V (k) = − γ

xk
, γ = Ze2 (2.2)

where α(k) and β(k) are the Dirac matrices for electron k [7], m is the electron mass and
e2 ≈ 1/137 the fine structure constant. xk = |xk| gives the location of the electron with
respect to the nucleus. The nucleus is assumed to have infinite mass, charge number Z and
to sit in the origin.

It is an important fact that interacting relativistic electrons cannot adequately be de-
scribed by an operator where the electron-electron interaction

V (12) =
e2

|x1 − x2|
(2.3)
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is simply added to the sum of single-particle operators. This is so because, due to the cou-
pling of negative- and positive-energy continuum states by V (12), no stable bound states
would exist [11]. Instead, an appropriate operator has to be derived from quantum electro-
dynamics (QED). The operator (2.1) is due to Sucher who derived it from the Bethe-Salpeter
equation of QED by neglecting pair creation and the radiation field [12] (see also [4]). The
two-particle operator P++ projects onto the positive spectral subspace of

∑2
k=1(D(k)

0 +V (k))
and is defined by the product of the single-electron projectors [9]

P++ = P
(1)
+ P

(2)
+ , P

(k)
± =

1
2

(1 ± 1
π

∫ ∞
−∞

dη
1

D
(k)
0 + V (k) + iη

), k = 1, 2. (2.4)

The projectors P (k)
+ and P (k)

− = 1−P (k)
+ (which projects onto the negative spectral subspace)

are well-defined because of the existence of a gap in the spectrum of the (single-particle)
Dirac operator. For later purpose we define P+− = P

(1)
+ P

(2)
− , P−− = P

(1)
− P

(2)
− and P−+ =

P
(1)
− P

(2)
+ .

H acts on the Hilbert space of antisymmetrised two-electron 4-spinors,H2 := A(H1(R3)⊗
C

4)2 where H1(R3) is the Sobolev space of first order,

H1(R3) = {ϕ ∈ L2(R3) :
∫
R3

(1 + p2) |ϕ̂(p)|2 dp <∞}, (2.5)

L2(R3) being the space of of square-integrable one-electron functions, p = |p| and ϕ̂ denoting
the Fourier transform of ϕ.

The way to construct the desired operator is most readily displayed in the one-electron
case. Let D(k)

V := D
(k)
0 + V (k). Then one has the decomposition

D
(k)
V = P

(k)
+ D

(k)
V P

(k)
+ + P

(k)
− D

(k)
V P

(k)
− (2.6)

because P (k)
± commutes with D

(k)
V . We apply a unitary transformation U (k) to D(k)

V with
the property

U (k)−1D
(k)
V U (k) = Λ(k)

+ (U (k)−1D
(k)
V U (k)) Λ(k)

+ + Λ(k)
− (U (k)−1D

(k)
V U (k)) Λ(k)

− (2.7)

where the operators Λ(k)
± ,

Λ(k)
± =

1
2

(1 ± D
(k)
0

Epk
), Epk =

√
p2
k +m2, (2.8)

project onto the positive/negative spectral subspace of the free Dirac operatorD(k)
0 satisfying

D
(k)
0 (Λ(k)

± ϕ) = ±Epk(Λ(k)
± ϕ), and pk = −i∇xk . (2.7) is a consequence of (2.6) if U (k) fulfils

U (k)−1P
(k)
+ U (k) = Λ(k)

+ , but U (k) is not uniquely determined [9] (see also [6]). Once U (k)

is found (which in fact is done perturbatively according to the scheme described below), a
second transformation U

(k)
0 , introduced by Foldy and Wouthuysen [13] (see also [4]),

U
(k)
0 = A(pk) (1 + β(k) α(k)pk

Epk +m
), A(pk) =

(
Epk +m

2Epk

) 1
2

(2.9)

with its inverse U (k)−1
0 = (1 − β(k) α

(k)pk
Epk+m )A(pk), casts D(k)

V into a block-diagonal form
such that the electron’s positive and negative spectral subspaces are decoupled,

M := U
(k)
0 U (k)−1D

(k)
V U (k)U

(k)−1
0 =

1
2

(1+β(k))M
1
2

(1+β(k)) +
1
2

(1−β(k))M
1
2

(1−β(k)),

(2.10)
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since U (k)
0 Λ(k)

± U
(k)−1
0 = 1

2 (1 ± β(k)) =
(
I 0
0 0

)
resp.

(
0 0
0 I

)
∈ C4,4 for the plus

resp. minus sign, with I the unit matrix in C2,2. Note that each of the two operators in
(2.10) effectively acts on a 2-spinor space, because for

(
u+
u−

)
∈ H1(R3) ⊗ C4, one has e.g.

1
2 (1 + β(k))

(
u+
u−

)
=
(
u+
0

)
. Unitary transformations preserve the spectrum such that we have

1
2 (1 + β(k))M 1

2 (1 + β(k)) ≥ 0 from P
(k)
+ D

(k)
V P

(k)
+ ≥ 0. This positive operator is therefore

the desired one-particle operator for describing solely the electronic degrees of freedom.

Let us turn to the two-electron case. We follow Douglas and Kroll [4] to work with
products of single-particle projectors. We have P++ + P+− + P−+ + P−− = 1 as well as
P+−P++ = P−+P++ = P−−P++ = 0 and the decomposition

H = P++H P++ + P+−H P+− + P−+H P−+ + P−−H P−− (2.11)

where it is used that single-particle operators acting on electron 1 commute with those
acting on electron 2. One should keep in mind that (2.11) differs from the decomposition
H = P

(12)
+ HP

(12)
+ + P

(12)
− HP

(12)
− if P (12)

± were chosen to project onto the positive/negative
spectral subspace of H (including the electron-electron interaction). Now we translate the
step from (2.6) to (2.7) to the two-particle case, i.e. we search for a unitary transformation
U which casts H into an operator that does not couple the positive and negative spectral
subspaces of any of the free electrons. This is done by means of a perturbative approach in
terms of the coupling constant e2 which determines the strength of V (12) as well as (enhanced
by the nuclear charge number) of the single-particle potentials V (k). We make the ansatz
U = eiB , B = B1 +B2 + ...+Bn, and require that the transformed Coulomb-Dirac operator
has the desired block-diagonal shape to order n in e2,

U−1H U = H(n) + R(n+1) (2.12)

H(n) = Λ++ (
n∑
l=0

Hl) Λ++ + Λ+− (
n∑
l=0

Hl) Λ+− + Λ−+ (
n∑
l=0

Hl) Λ−+ + Λ−− (
n∑
l=0

Hl) Λ−−

where Hl is an operator depending on U and containing the potential strength e2 to l-th
order, l = 0, 1, ..., n, while R(n+1) is a remainder which still allows for transitions between
the positive and negative spectral subspaces of the electrons and which is of (n+ 1)-st order
in e2 relative to the free Dirac operator. The two-particle projectors are defined in terms of
products of the single-particle projectors as before (e.g. Λ+− = Λ(1)

+ Λ(2)
− ).

For U(t) = eiBt, t ∈ R, we have the operator identity (see e.g. Sobolev [14])

U(−t)H U(t) = H + i

∫ t

0

dt′ U(−t′) [H,B]U(t′)

=⇒ U−1H U = H + i[H,B] +
i2

2
[ [H,B], B] + ... (2.13)

where U = U(1). The commutator [H,B] = HB−BH, and the second line in (2.13) results
from iterating the operator identity and subsequently setting t = 1. By using 1 = Λ(k)

+ +Λ(k)
− ,

any operator A can be decomposed into

A = proj (A) + off (A), (2.14)

proj (A) = Λ++AΛ++ + Λ+−AΛ+− + Λ−+AΛ−+ + Λ−−AΛ−−,

where proj(A) does not couple the spectral subspaces while off(A) consists of all 12 off-
diagonal terms (such as Λ++AΛ+−, Λ++AΛ−+, Λ++AΛ−−, ...). The operators B1, ..., Bn
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defining U are determined in the following way. We decompose the potential in H into
diagonal and off-diagonal terms according to (2.14) and consider B1, ..., Bn as expansion
coefficients of B in the potential strength e2, Bl being of order (e2)l, l = 1, ..., n.

In order to obtain a consistent perturbative expansion we also have to expand P
(k)
+ in

powers of e2. This is done by inserting the resolvent identity, (D(k)
0 + V (k) + iη)−1 =

(D(k)
0 + iη)−1 − (D(k)

0 + iη)−1V (k) (D(k)
0 +V (k) + iη)−1, repeatedly into the definition (2.4),

P
(k)
+ = Λ(k)

+ − 1
2π

∫ ∞
−∞

dη
1

D
(k)
0 + iη

V (k) 1

D
(k)
0 + V (k) + iη

(2.15)

= Λ(k)
+ − 1

2π

∫ ∞
−∞

dη
1

D
(k)
0 + iη

V (k)

(
1

D
(k)
0 + iη

− 1

D
(k)
0 + iη

V (k) 1

D
(k)
0 + iη

+ ...

)
=: Λ(k)

+ + F
(k)
0 + F

(k)
1 + ...

This leads to the expansion of the electron-electron interaction term,

P++ V
(12) P++ = Λ++ V

(12) Λ++ + W2 + W3 + ... (2.16)

W2 = F
(1)
0 Λ(2)

+ V (12)Λ++ + Λ(1)
+ F

(2)
0 V (12)Λ++ + Λ++V

(12)F
(1)
0 Λ(2)

+ + Λ++V
(12)Λ(1)

+ F
(2)
0

with corresponding expressions for the terms Wl of l-th order in e2, l > 2. Then (2.13) is
written in the following way

U−1H U =
2∑
k=1

D
(k)
0 + proj (

2∑
k=1

V (k)) + off (
2∑
k=1

V (k)) + Λ++ V
(12) Λ++

+ W2 + ...+ i [
2∑
k=1

D
(k)
0 , B1 + ...+Bn] + i [

2∑
k=1

V (k), B1 + ...+Bn] (2.17)

+ i [Λ++V
(12)Λ++, B1 + ...+Bn] + ...+

i2

2
[ [

2∑
k=1

D
(k)
0 , B1 + ...+Bn], B1 + ...+Bn] + ...

where ... symbolise terms of at least third order in e2. The operator B1 is determined from
the requirement that the linear off-diagonal term in (2.17) is cancelled,

off (
2∑
k=1

V (k)) + i [
2∑
k=1

D
(k)
0 , B1] = 0 (2.18)

and it follows that B1 is linear in the potential (i.e. in e2).

We continue by collecting all terms on the r.h.s. of (2.17) which contain the poten-
tial to second order (and call them V2 := W2 + i[

∑2
k=1 V

(k), B1] + i[Λ++V
(12)Λ++, B1] +

i2

2 [ [
∑2
k=1D

(k)
0 , B1], B1] ) and split them into V2 = proj(V2)+ off(V2). Then B2 is deter-

mined from the condition that the second-order off-diagonal term disappears,

off (V2) + i [
2∑
k=1

D
(k)
0 , B2] = 0. (2.19)

This procedure, continued to order n, determines successively all operators Bl, l = 1, ..., n.
It can be shown that all Bl are bounded self-adjoint operators on (L2(R3)⊗C4)2, such that
the transformation U is well-defined.
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3 The transformed pseudo-relativistic second-order op-
erator

For n = 2, we obtain the transformed operator (to order (e2)3) in terms of B1, using (2.18)

H(2) = proj (
2∑
k=1

(D(k)
0 + V (k)) + i [proj (

2∑
k=1

V (k)), B1] +
i

2
[off (

2∑
k=1

V (k)), B1]

+ i [Λ++V
(12)Λ++, B1] + W2 + Λ++V

(12)Λ++). (3.1)

Since Λ(k)
± commutes with D

(k)
0 one has off(

∑2
k=1D

(k)
0 ) = 0, and from (Λ(k)

± )2 = Λ(k)
± one

has Λ++V
(12)Λ++ = proj(Λ++V

(12)Λ++).

It remains to determine B1. From the defining equation (2.18) it is easily seen that
one can decompose B1 into a sum of one-particle operators, B1 = B

(1)
1 +B

(2)
1 , each obeying

Λ(k)
+ V (k)Λ(k)

− +Λ(k)
− V (k)Λ(k)

+ +i[D(k)
0 , B

(k)
1 ] = 0, k = 1, 2. In order to obtain B1 explicitly it

is convenient to work in Fourier space and to consider B(k)
1 as a pseudodifferential operator.

It is defined by its symbol φ(k)
1 and acts on ϕ ∈ L2(R3)⊗ C4,

(B(k)
1 ϕ)(x) =

1
(2π)3

∫
dp
∫
dq ei(p+q)x φ

(k)
1 (q,p) ϕ̂(p) (3.2)

where ϕ̂ is the Fourier transform of ϕ and if not denoted explicitly, the integration is
over the whole space R3. Using the Fourier representation of the Coulomb potential,
1/x = (2π2)−1

∫
dq eiqx/q2, and recalling that D(k)

0 and Λ(k)
± are multiplication operators

in momentum space, one obtains the (unique) solution

φ
(k)
1 (q,p) = − iγ√

2πq2

1
Ep + E|q+p|

(D̃(k)
0 (q + p) − D̃

(k)
0 (p)) (3.3)

where D̃(k)
0 (p) = D

(k)
0 (p)/Ep = (α(k)p + β(k)m)/Ep. There is a close relation between

B
(k)
1 and F

(k)
0 which helps to simplify the operator H(2). From (2.15) we have the Fourier

representation

(F (k)
0 ϕ)(x) =

γ

(2π)
5
2

∫ ∞
−∞

dη
1

D
(k)
0 + iη

∫
dq eiqx 1

2π2q2

1

D
(k)
0 + iη

∫
dp eipx ϕ̂(p). (3.4)

Using (D(k)
0 + iη)−1eisx = (D(k)

0 (s) − iη)/(E2
s + η2) eisx, the theorem of residues can be

applied to evaluate the η-integral. Defining the symbol f (k)
0 of F (k)

0 by means of a (3.2)-type
equation, one obtains f (k)

0 (q,p) = −iD̃(k)
0 (q + p)φ(k)

1 (q,p). This leads to the operator
relations

F
(k)
0 = −i D̃(k)

0 B
(k)
1 , B

(k)
1 = i D̃

(k)
0 F

(k)
0 = −i F (k)

0 D̃
(k)
0 (3.5)

since (D̃(k)
0 )2 = 1. With (3.5), B1 can be eliminated from the second-order terms of H(2).

In the following we restrict H(2) to the positive spectral subspace of the two (free)
electrons, H+,2 := Λ++ (A (H1(R3) ⊗ C4)2). Then one obtains for ψ ∈ H+,2 the identity
Λ++ψ = ψ = Λ(1)

+ ψ = Λ(2)
+ ψ and only the first term of proj(A) in (2.14) survives. Elim-

inating B1 with the help of (3.5) from the two-particle second-order term, the expectation
value of H(2) can be reduced to the following expression

(ψ,H(2) ψ) = (ψ,

(
2∑
k=1

(D(k)
0 + V (k) +

i

2
[off (V (k)), B(k)

1 ]) + V (12) + C(12)

)
ψ) (3.6)
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C(12) =
2∑
k=1

(V (12)Λ(k)
− F

(k)
0 + F

(k)
0 Λ(k)

− V (12)).

We note that the expectation value of [proj(V (k)), B(k)
1 ] can be shown to vanish since B(k)

1

induces an off-diagonal coupling of the spectral subspaces. In the analysis below we identify
H(2) restricted to H+,2 with the operator given on the r.h.s. of (3.6).

For numerical purposes it is sometimes convenient to construct from H(2) an operator
h(2) which acts on A (H1(R3)⊗C2)2 rather than on H+,2. This corresponds to the step from
(2.7) to (2.10) in the single-particle case and relies on the fact that any single-particle state
ϕ in the positive spectral subspace Λ(k)

+ (H1(R3)⊗ C4) can be expressed by

ϕ = U
(k)−1
0

(
u+

0

)
= U

(k)−1
0

1
2

(1 + β(k))
(
u+

u−

)
(3.7)

with u+, u− ∈ H1(R3)⊗ C2 and U
(k)
0 the Foldy-Wouthuysen transformation from (2.9). In

the two-particle case we define for u ∈ A (H1(R3)⊗ C2)2 the operator h(2) by means of

(ψ,H(2) ψ) = (u, h(2) u) (3.8)(
h(2) 0

0 0

)
=

1
2

(1 + β(1))
1
2

(1 + β(2)) U (1)
0 U

(2)
0 H(2) U

(1)−1
0 U

(2)−1
0

1
2

(1 + β(1))
1
2

(1 + β(2))

where h(2) is a 4,4 matrix-valued operator. It can be shown that h(2) agrees with the second-
order operator derived in [4] (except for an error corrected by Jansen and Hess [15]). The
single-particle part of h(2) is termed Jansen-Hess operator and its semiboundedness and
spectral properties are derived in [16, 17].

4 The relative form boundedness of the potential

For a mathematical analysis the pseudo-relativistic operator in its representation H(2) is
more appropriate than the representation h(2), in particular because the two-particle con-
tribution to h(2) is very involved (its second-order term has up to now been dropped in all
atomic structure calculations, while the first-order term has been replaced by the untrans-
formed operator V (12) [6]).

The operator H(2) defined in (3.6) is for brevity written in the following way

H(2) = T + W, (4.1)

T = D
(1)
0 + D

(2)
0 , W =

2∑
k=1

(V (k) + V
(k)
2 ) + V (12) + C(12)

with V
(k)
2 = i

2 [Λ(k)
+ V (k)Λ(k)

− + Λ(k)
− V (k)Λ(k)

+ , B
(k)
1 ].

In this section we will show the |T |-form boundedness of W and determine the potential
strength γ = Ze2 such that the form bound c is less than one,

|(ψ,W ψ)| ≤ c (ψ, Tψ) + C (ψ,ψ) (4.2)

with ψ ∈ H+,2 and C ≥ 0 a real number. This proves that H(2) is bounded from below,

(ψ, (T +W )ψ) ≥ (1− c) (ψ, Tψ) − C (ψ,ψ) ≥ −C (ψ,ψ) (4.3)
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since 1 − c > 0 and |T | ≥ 0. Therefore, the symmetric operator H(2) is well-defined
in the form sense, and there exists its Friedrichs extension to a self-adjoint operator on
Λ++ (A(L2(R3)⊗ C4)2).

We recall that for any state ψ in the positive spectral subspace H+,2 one has (ψ, Tψ) =
(ψ, (Ep1 + Ep2)ψ). Since Epk =

√
p2
k +m2 ≥ pk it is therefore sufficient to show that

all contributions to W are form bounded relative to p1 + p2. Moreover, the bounds of an
operator are not changed by a unitary transformation, such that the single-particle estimates
can be taken from existing work on the Jansen-Hess operator.

For the one-particle operator D(k)
V acting on ϕ ∈ Λ+(H1(R3)⊗C4) (known by the name

Brown-Ravenhall operator), Burenkov and Evans [18] derived the following bound,

(ϕ, (D(k)
0 − γ

xk
)ϕ) ≥ (1 − γ

γBR
) (ϕ,Epk ϕ) (4.4)

with γBR = 2
π/2+2/π = 0.906. When D

(k)
V is estimated by using a two-particle function

ψ ∈ H+,2, we set ψ(x1,x2) =: ψx2(x1) and consider x2 as parameter. Then (4.4) holds
for ϕ := ψx2(x1) and k = 1, and subsequent integration over x2 proves the general result
that the estimates of single-particle operators are unchanged if two-particle functions are
used. The estimate of the electron-electron interaction follows immediately from (4.4) for
ψ ∈ H+,2,

(ψ, V (12) ψ) ≤ e2

γBR
(ψ,Ep1 ψ) =

e2

2γBR
(ψ, (Ep1 + Ep2)ψ), (4.5)

where in the last step the antisymmetry of ψ with respect to particle exchange is used.

Next we estimate the potential C(12). It is sufficient to prove the relative boundedness
for the k = 1 contribution to C(12), V (12)Λ(1)

− F
(1)
0 + F

(1)
0 Λ(1)

− V (12) =: C(12)
1 . The estimate

is performed in momentum space where T is diagonal. C(12)
1 is represented by its kernel kC ,

( ̂C(12)
1 ψ)(p1,p2) =

∫
dp′1 dp

′
2 kC(p1,p2; p′1,p

′
2) ψ̂(p′1,p

′
2) (4.6)

where the integral is over 6-dimensional space R3 × R3. Equivalently, C(12)
1 can be defined

through its symbol φC ,

(C(12)
1 ψ)(x1,x2) =

1
(2π)6

∫
dp′1 dp

′
2 dp1 dp2 e

i(p′1+p1)x1 ei(p
′
2−p2)x2 (4.7)

·φC(p1,p2; p′1,p
′
2) ψ̂(p′1,p

′
2)

and kC is related to the symbol via kC(p1,p2; p′1,p
′
2) = (2π)−3 φC(p1−p′1,p

′
2−p2; p′1,p

′
2).

With the help of (3.5), (3.3) and the Fourier representation of V (12), one obtains

kC(p1,p2; p′1,p
′
2) = − γe2

(2π)4

1
|p2 − p′2|2

1
|p2 − p′2 + p1 − p′1|2

·

{
1

E|p2−p′2+p1| + Ep′1
(1 − D̃

(1)
0 (p2 − p′2 + p1)) (1 + D̃

(1)
0 (p′1)) (4.8)

+
1

Ep1 + E|p′2−p2+p′1|
(1 + D̃

(1)
0 (p1)) (1 − D̃

(1)
0 (p′2 − p2 + p′1))

}
.
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For the estimate of C(12)
1 , the Lieb and Yau formula is used, which is a consequence of the

Schur test for the boundedness of integral operators, and which can be derived from the
Schwarz inequality [19] (see also [10, Lemma II.1])

|(ψ,C(12)
1 ψ)| = |(ψ̂, ̂C(12)

1 ψ)|

≤
∫
dp1 dp2 dp′1 dp

′
2 |ψ̂(p1,p2)| |kC(p1,p2; p′1,p

′
2)| |ψ̂(p′1,p

′
2)|

≤
∫
dp1 dp2 |ψ̂(p1,p2)|2 · J0(p1,p2) (4.9)

J0(p1,p2) =
∫
dp′1 dp

′
2 |kC(p1,p2; p′1,p

′
2)| f(p1)

f(p′1)
g(p2)
g(p′2)

since the estimate of |kC | is symmetric with respect to the interchange (p1,p2)↔ (p′1,p
′
2).

The functions f(p) > 0 and g(p) > 0 for p > 0 are suitably chosen convergence generating
functions. We take f(p) = p2 and g = 1 and use spherical coordinates, i.e.

∫
R3 dp =∫∞

0
p2dp

∫
S2 dω with

∫
S2 dω = 2π

∫ 1

−1
d(cosϑ). Estimating 1

Ep
≤ 1

p and |1 ± D̃0| ≤ 2, one
can use the formulae∫

R3

dp′1
p′21

1
q + p′1

1
|q + p′1|2

=
2π
q

∫ ∞
0

dp′1
p′1

1
q + p′1

ln
q + p′1
|q − p′1|

=
π3

2q2∫
R3

dq
q2

1
|q + p1|2

=
π3

p1
(4.10)

to obtain J0(p1,p2) ≤ γe2π2

4 p1 and therefore

|(ψ,C(12) ψ)| = 2 |(ψ,C(12)
1 ψ)| ≤ γe2 π

2

2

∫
dp1 dp2 |ψ̂(p1,p2)|2 p1

= γe2 π
2

4
(ψ, (p1 + p2)ψ). (4.11)

For an upper estimate of the single-particle potential V (k) + V
(k)
2 we use that for γ ≤ 4/π

the massless (m = 0) version of this potential fulfils V (k)
m=0 +V

(k)
2,m=0 ≤ 0 [17]. In addition one

has the relative form boundedness of V (k) and V
(k)
2 with respect to the m = 0 potentials,

|(ψ, (V (k)−V (k)
m=0)ψ)| ≤ 3

2mγ(ψ,ψ) and |(ψ, (V (k)
2 −V (k)

2,m=0)ψ)| ≤ md0γ
2(ψ,ψ), respectively

[20, 16] with d0 = 8 + 12
√

2. Then one obtains

(ψ,W ψ) ≤ (3mγ + 2md0γ
2) (ψ,ψ) + (

e2

2γBR
+
γe2π2

4
) (ψ, (Ep1 + Ep2)ψ). (4.12)

For the lower bound we use V (12) ≥ 0 and (ψ, V (k)
2 ψ) ≥ −md0γ(ψ,ψ) since (ψ, V (k)

2,m=0ψ) ≥ 0
[16]. Then with (4.4) and (4.11),

(ψ,W ψ) ≥ − γ

γBR
(ψ, (Ep1 +Ep2)ψ) − 2md0γ (ψ,ψ) − γe2 π

2

4
(ψ, (Ep1 +Ep2)ψ). (4.13)

Combining (4.12) and (4.13) we obtain the final result

|(ψ,W ψ)| ≤ c (ψ, T ψ) + (3mγ + 2md0γ
2) (ψ,ψ) (4.14)

with c = γ( 1
γBR

+ e2π2

4 ) for γ > e2/2, and c � 1 for γ ≤ e2/2. When γ < 0.89
(corresponding to Z ≤ 122), the form bound c is smaller than one which proves the assertion
(4.2).
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5 Subdominance of the second-order poptentials

We wish to establish up to which central field strength γ the single-particle as well as two-
particle second-order potentials are controlled by the respective first-order potentials, i.e.
we want to prove for ψ ∈ H+,2,

|(ψ, V (k)
2 ψ)| ≤ c1 (ψ, (−V (k))ψ) (5.1)

and
|(ψ,C(12) ψ)| ≤ c2 (ψ, V (12) ψ) (5.2)

with constants c1 and c2 smaller than one. In contrast to the previous section where we
relied on D(k)

0 being a multiplication operator in momentum space to carry out all estimates
in Fourier space, we are now in the situation that V (k) as well as V (12) are diagonal operators
in coordinate space. This poses the problem tht the kernels of V (k)

2 and C(12) which are
known in momentum space have to be transformed to coordinate space. The method of
proof will be displayed for the one-particle case (5.1).

From the definition of V (k)
2 in (4.1), the explicit expression (3.3) for the symbol of B(k)

1

and the Fourier representation of the Coulomb field V (k), one obtains for the kernel k(k)
V of

V
(k)
2 ,

k
(k)
V (p,p′) =

γ2

16π4

∫
dp′′

1
|p′′ − p|2

1
|p′′ − p′|2

(1− D̃(k)
0 (p′′)) (

1
Ep′′ + Ep

+
1

Ep′′ + Ep′
)

(5.3)
where the relation k(k)

V (p,p′) = (2π)−3/2 φ
(k)
V (p−p′,p′) between the kernel and the symbol

φ
(k)
V of V (k)

2 was used. We write for k = 1

(ψ, V (1)
2 ψ) =

∫
dx1 dx2 ψ(x1,x2)

∫
dx′ ǩ(1)

V (x1,x′) ψ(x′,x2) (5.4)

with
ǩ

(1)
V (x1,x′) =

1
(2π)3

∫
dp eipx1

∫
dp′ k(1)

V (p,p′) e−ip
′x′ . (5.5)

Making use of the Fourier representations∫
dq eiqx 1

q2
=

2π2

x
,

∫
dq eiqx 1

q
=

4π
x2
, (5.6)

(5.5) reduces to a 6-dimensional integral

ǩ
(1)
V (x1,x′) = 2π2 γ2

(2π)7

[
1
x′
I1(x1,x′) +

1
x1

I1(−x′,−x1)
]

I1(x1,x′) =
∫
dp dp′′ eipx1 e−ip

′′x′ 1
|p′′ − p|2

(1− D̃(1)
0 (p′′))

1
Ep′′ + Ep

. (5.7)

We did not find it possible to evaluate the integral analytically, but instead apply a peaking
approximation. We make the substitution q = p′′ − p for p which leads to the factor
1
q2 (Ep′′ + E|p′′−q|)−1. This enhances small values of q and we therefore drop q in the

energy denominator. Additionally we set the mass to zero and use that ‖1− D̃(1)
0 (p′′)‖ = 2

to replace (1 − D̃(1)
0 (p′′)) by 2. The convergence properties of the integral remain thereby
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unchanged, but one picks up an additional multiplicative constant C (of order unity) in the
estimate of |ǩ(1)

V (x1,x′)|. The result is

|I1(x1,x′)| ≤ C

(∫
dq e−iqx1

1
q2

)(∫
dp′′ eip

′′(x1−x′) 1
p′′

)
= C

2π2

x1
· 4π
|x1 − x′|2

. (5.8)

Going back to the desired estimate of V (1)
2 , we apply the Lieb and Yau formula for the

one-particle case to (5.4) and obtain

|(ψ, V (1)
2 ψ)| ≤

∫
dx1 dx2 |ψ(x1,x2)|2

∫
dx′ |ǩ(1)

V (x1,x′)|
f(x1)
f(x′)

≤
∫
dx1 dx2 |ψ(x1,x2)|2 · C πγ2

4
1
x1

(5.9)

where f(x) = x and (4.10) was used. The same estimate holds for V (2)
2 . Hence we get

|(ψ, V (k)
2 ψ)| ≤ c1 (ψ, (−V (k))ψ) (5.10)

with c1 = C γπ/4 which is less than one for γ < 4
πC . This proves that the total one-particle

interaction is negative,

(ψ, (V (k) + V
(k)
2 )ψ) ≤ (1− c1) (ψ, V (k) ψ) < 0 (5.11)

if c1 < 1. We recall that in the massless case, (5.11) holds for γ < 4/π i.e. C = 1. However,
the proof for m = 0 is done in a very different way, involving the partial wave representation
of the operators and their Mellin transforms [16, 17]. This method is not applicable in the
m 6= 0 case.

In a similar way, the two-particle estimate is obtained,

|(ψ,C(12) ψ)| ≤ C̃ γπ (ψ, V (12) ψ), (5.12)

again with C̃ a constant of order unity. Thus c2 = C̃γπ is smaller than one for γ < 1
πC̃

which for C̃ = 1 gives γ < 1
π (corresponding to Z ≤ 43). We note that this rather low

estimate for the critical γ is not sharp: We have estimated the factors in the kernel of C(12)

of the type (1− D̃(1)
0 (q + p′)) (1 + D̃

(1)
0 (p′)) by 4 while the peaking value (q = 0) would be

(1− D̃(1)
0 (p′)) (1 + D̃

(1)
0 (p′)) = 0. Therefore, we conjecture that the value for c2 is smaller

than γπ.

6 Positivity of the pseudo-relativistic operator H(2)

The operator which we have selected by means of restriction to the positive spectral sub-
space H+,2 of the free Dirac operator, Λ++H

(2)Λ++, is not from the outset a positive
operator. Whereas in the single-particle case one has P (k)

+ D
(k)
V P

(k)
+ ≥ 0 and hence also

Λ(k)
+ U (k)−1D

(k)
V U (k) Λ(k)

+ ≥ 0 for an exact choice of U (see section 2), the neglect of the in-
terelectronic interaction in the two-particle projectors as well as the perturbative treatment
of the unitary transformation U can in principle destroy this property. Therefore we give a
proof of positivity by using the explicit representation of H(2).
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Again we make use of a single-particle estimate [21]

(ψ, (D(k)
0 + V (k) + V

(k)
2 )ψ) ≥ (1 − γ

γBR
− dγ2) (ψ,Epk ψ) (6.1)

where d = 1
8 (π2 −

2
π )2. Estimating V (12) ≥ 0 as before and applying the estimate (4.11) for

C(12), one gets

(ψ,H(2) ψ) ≥ (1 − γ

γBR
− dγ2) (ψ, T ψ) − γe2 π

2

4
(ψ, T ψ). (6.2)

The r.h.s. is positive if c0 := 1 − γ( 1
γBR

+ e2π2/4) − dγ2 > 0 which is the case for
γ < 0.825 (Z ≤ 113). We conjecture that this bound for H(2) is not sharp, because for the
massless single-particle operator one obtains (1 − γ

γBR
+ dγ2) (ψ, pkψ) in place of the r.h.s.

of (6.1) (this result is again found with the help of Mellin transform techniques [16]). This
bound for m = 0 leads to positivity of H(2) for γ < 0.986, which is very close to the limiting
value γ = 1 from the exact one-electron Dirac theory.

7 Concluding remarks

We have established a pseudo-relativistic operator H(2) which describes two electrons in a
central Coulomb potential of strength γ. This operator, which includes terms up to second
order in the coupling constant e2, is well-defined for potential strengths γ < 0.89. Moreover,
the terms of H(2) describing interaction potentials of second order in e2 are shown to be
smaller than the corresponding first-order terms for at least γ < 1/π, which assures that
the single-particle potential of H(2) is attractive and the two-particle potential repulsive as
is the case for the Coulomb-Dirac operator. The spectrum of H(2) is positive for γ < 0.825.

It is straightforward to derive a pseudo-relativistic operator for the N -electron ion
with N ≤ Z, applying the same transformation scheme. It can be shown that to sec-
ond order in e2, potentials affecting more than two electrons simultaneously do not oc-
cur. Rather, we get a simple generalisation of H(2), if acting on the positive spectral sub-
space H+,N = Λ+,N (A(H1(R3) ⊗ C4)N ) of antisymmetrised N -electron spinors, where
Λ+,N = Λ(1)

+ Λ(2)
+ · · ·Λ

(N)
+ is the product of the free single-particle projectors. The operator

is given by

H
(2)
N =

N∑
k=1

(D(k)
0 + V (k) + V

(k)
2 ) +

N∑
n,k=1
n<k

{
V (nk) + V (nk) (Λ(n)

− F
(n)
0 + Λ(k)

− F
(k)
0 )

+ (F (n)
0 Λ(n)

− + F
(k)
0 Λ(k)

− )V (nk)
}

(7.1)

where V (nk) is the Coulomb repulsion between electrons n and k. Thus, our earlier estimates
can be used when determining the bounds for the N -electron operators. In particular, using
the antisymmetry of ψN ∈ H+,N with respect to interchange of any two electrons, positivity
can be established,

(ψN ,H
(2)
N ψN ) ≥ cN

N∑
k=1

(ψN , D
(k)
0 ψN ) (7.2)

which is > 0 for cN = 1 − γ
γBR

− dγ2 − γe2 π2

4 (N − 1) > 0, requiring γ < 0.446 (Z ≤ 61)
in the case of a neutral atom, N = Z. Again, this estimate is not sharp because we have
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used the rather crude (in the large-N case) estimate V (nk) ≥ 0. However, the additional
scaling with (N − 1)/2 of the sum of electron-electron interaction terms, as well as the
marginal dominance of V (nk) with respect to C(nk) when Z approaches 43, make clear that
the second-order two-particle interaction terms should not be neglected in atomic structure
calculations for high-N ions.

I should like to thank H.Siedentop, H.Kalf and E.Stockmeyer for fruitful discussions.
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