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Abstract. The relative importance of the two mechanisms for the capture of a target electron by a fast,
heavy projectile, radiative ionization (RI) and Coulomb capture to continuum (ECC), is studied in the
vicinity of the forward peak. For both processes a consistent relativistic description, based on the impulse
approximation, is provided. It is found that the differential cross-sections scale with the projectile charge
and exhibit a common velocity dependence. As a result, RI starts to dominate over ECC near the same
impact energy (∼11 MeV/amu) for arbitrary bare projectiles colliding with hydrogen. For electrons from
the inner shells of heavier targets this energy increases, however, which is confirmed by a coincidence
experiment on 90 MeV/amu U88+ + N2.

PACS. 34.70.+e Charge transfer – 41.60.-m Radiation by moving charges

1 Introduction

The interest in the field of electron and photon emis-
sion in relativistic heavy ion-atom collisions has been re-
vived by the feasibility of measuring multiparticle momen-
tum distributions in coincidence, made possible by the
COLTRIMS detector technique [1]. At the ESR storage
ring of GSI in Darmstadt, Germany, first measurements
of the spectrum of cusp electrons from collisions with fast,
highly stripped uranium projectiles have been reported by
Hagmann and collaborators [2,3]. In these experiments,
the forward electrons are measured in coincidence either
with the emitted photons or with the charge state of the
transmitted projectiles.

This feasibility of simultaneously measuring radiative
and nonradiative electron capture to continuum in rela-
tivistic ion-atom collisions calls for a theoretical reinves-
tigation of the question at which collision velocity v the
simultaneous emission of an electron, which has slowed
down to near-zero energy in the projectile frame of refer-
ence, and a ‘bremsstrahlung’ photon which carries away
the excess energy (the RI process), starts to dominate over
the ‘no-photon’ electron capture to continuum (ECC) pro-
cess. The relevance of this so-called crossing velocity is
threefold. Firstly, ECC rapidly drops with velocity due
to the increasing momentum transfer which is required
for this process, such that for projectiles carrying elec-
trons (e.g. U88+) it is understood that in energetic colli-
sions, the cusp electrons predominantly result from elec-
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tron loss. However, at sufficiently high velocities when RI
comes into play with its considerably slower decrease with
v, electron capture (via RI) may again compete with elec-
tron loss. Secondly, the cusp shape is a subtle indicator
of the strength and action of the perturber field. For bare
projectiles, this shape changes near the crossing velocity.
Whereas for ECC the cusp is skewed to the low-energy
side, electrons from RI are emitted with much larger in-
tensity at the high-energy side. Thirdly, if at a given col-
lision energy RI provides much larger cross-sections than
ECC, RI may (for bare projectiles) be identified even in
a singles experiment. It is shown below that the crossing
velocity of the two processes is by no means unique but
depends — in an easily predictable way — on the collision
system.

Early investigations of this crossing velocity date back
to the work of Briggs and Dettmann [4] for capture to
bound states and, by invoking continuity across the ion-
ization threshold, to Rudd and Macek [5], Shakeshaft and
Spruch [6] and Lucas et al. [7] for capture to continuum.
Within a large-v expansion of the nonrelativistic first-
order Born formalism, they found a common crossing ve-
locity vcr ∼ 23 a.u. (13 MeV/amu collision energy) for
all bare projectiles (of nuclear charge ZP ) colliding with
hydrogen. This ZP -independence of vcr was related to a
common scaling of RI and ECC with Z3

P .
The crossing velocity was also studied for helium tar-

gets. Using the same approach as [6], Martiarena and
Garibotti [8] obtained a lower value for vcr (∼20.5 a.u.).
This result was later contradicted by calculations within
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a higher-order theory, providing a crossing velocity vcr ∼
30 a.u. for carbon and neon colliding with He [9].

The aim of the present work is to investigate possi-
ble common scaling properties of the two processes as
well as the determination of the crossing velocity within
a higher-order relativistic theory which is required for a
correct description of the capture processes. We will ap-
ply the impulse approximation (IA) which is particularly
suited for asymmetric collision systems. In the case of elec-
tron capture by heavy projectiles, the loosely bound target
electrons are in this model viewed as quasifree particles
which scatter inelastically from the projectile. For radia-
tive capture to continuum in energetic collisions, the im-
pulse approximation is a well-established theory [10,11].
Recently, a relativistic formulation of the IA was pro-
vided [12] and tested against experimental photon spectra
from 220 MeV/amu U90+ + N2 collisions near the short-
wavelength limit [13,14]. The impulse approximation has
also been successful in describing the cusp electrons from
the radiationless capture process in nonrelativistic colli-
sion systems, concerning the cusp asymmetry [15,16] as
well as the peak intensity [17].

The paper is organized as follows. The theory part,
Section 2, provides a relativistic formulation of ECC as
well as the essential formulae for radiative ionization. Elec-
tron spectra in the forward direction for RI and ECC and
the relative importance of both processes are discussed
in Section 3 for the two collision systems 30 MeV/amu
Ar18+ + H and 200 MeV/amu U92+ + H. The peak val-
ues of the doubly differential cross-sections at the cusp
in nucleus-hydrogen collisions are used to extract the
velocity- and projectile charge-dependence as well as the
RI/ECC crossing velocity. The behaviour for heavier tar-
gets is also addressed. Concluding remarks are given in
Section 4. Atomic units (� = m = e = 1) are used unless
otherwise indicated.

2 Relativistic theory

We consider the ionization of a light target by a fast and
heavy, bare projectile. The process where the electrons
are emitted into low-lying energy states relative to the
projectile, is described by means of electron capture to
continuum. Within the single-particle approximation, the
general expression for the transition amplitude from an
initially bound target state to a projectile continuum state

ψ
(σf )′
f,P (x′) = ψ

(σf )′+
f,P (x′)γ0 of momentum k′

f and spin σf

is given by

afi = − i

c

∫
d4x′ψ(σf )′

f,P (x′)d+
λ

(
ŜA(x)Ŝ−1

)
ŜΨ

(σi)
i (x).

(2.1)
The RI and ECC processes differ only in the choice of the
electromagnetic transition field A(x) and in the presence
(RI) or absence (ECC) of the photon creation operator d+

λ
in (2.1). Projectile-frame related quantities are denoted
by a prime, and we have chosen this frame as our frame
of reference. Ψ (σi)

i (x) is the exact scattering state which

relates asymptotically to a target eigenstate ψ(σi)
i,T (x) with

spin σi and space-time vector x = (ct,x). x′ is connected
to x by a Lorentz transformation. The target state has
to be transformed into the projectile frame by means of
the Lorentz boost operator Ŝ. If the z-axis (respectively
the unit vector ez) is chosen along the collision velocity v,
then

Ŝ(v) =

√
1 + γ

2

(
1 − γv/c

1 + γ
αz

)
(2.2)

with its inverse Ŝ−1(v) = γ0Ŝ(v)γ0 = Ŝ(−v). αz , γ0 are
Dirac matrices [18] and γ = (1 − v2/c2)−

1
2 .

2.1 Nonradiative capture (ECC)

The derivation of the relativistic impulse approximation
for ECC proceeds in the same way as in the case of ra-
diative ionization [12]. For radiationless transitions, the
interaction A(x) results from the target Coulomb poten-
tial VT . Transformed into the projectile reference frame,
one has

γ0ŜA(x)Ŝ−1 = γ0Ŝγ0VT (x)Ŝ−1

= γVT (x)
(
1 +

v

c
αz

)
. (2.3)

For weak target potentials (ZT � ZP with ZT the target
nuclear charge) or high collision velocities (v � ZT /ni

with ni the initial-state main quantum number), we may
assume that the active electron propagates exclusively in
the projectile field, and we may also neglect off-shell ef-
fects. This leads to the impulse approximation where the
scattering state is approximated by

ŜΨ
(σi)
i (x) =

1
c

4∑
s=1

∫
dqdωqψ

(s)′

q,P (x′)
(
q′s(x

′), Ŝψ(σi)
i,T (x)

)
. (2.4)

Here, the electron’s intermediate state ψ(s)′

q,P (x′) is a pro-
jectile continuum eigenstate with momentum q and energy
δsωq, and q′s(x

′) is a relativistic plane wave characterized
by the four-spinor u(s)

q [19]. s = 1, 2 denotes the spin di-
rections +,− for the particle states (with δs = +1), and
s = 3, 4 correspond to the antiparticle states (δs = −1).

Let ET
i and E′

f be the initial and final electronic en-
ergies, respectively. We separate the time-dependence,

ψ
(σi)
i,T (x)=e−iET

i tψ
(σi)
i,T (x), ψ(σf )′

f,P (x′)=e−iE′
f t′ψ

(σf )′

f,P (x′),

ψ
(s)′

q,P (x′)=(2π)−
1
2 e−iδsωqt′ψ

(s)′

q,P (x′), (2.5)

and use a straight-line path with impact parameter b
for the internuclear motion. We further introduce the
Fourier representation of the target potential (which
is taken to be a purely Coulombic field, VT (x) =
−(ZT/2π2)

∫
(dp/p2)eip⊥(x′

⊥+b)eipzγ(z′+vt′)) such that the
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time integrals become trivial. Then the transition ampli-
tude (2.1) turns into

aIA
fi =

iZT

π

√
1 + γ

2

4∑
s=1

∫
dq

∫
dp

p2
ei(p⊥+q⊥)bT0(s, q,p)

×
[
u(s)+

q

(
1 − γv/c

1 + γ
αz

)
ϕ

(σi)
i,T (q0)

]

× δ(E′
f + pzγv + qzv − ET

i /γ), (2.6)

where ϕ
(σi)
i,T (q0) is the initial-state wavefunction in mo-

mentum space, and q0 = (q⊥, q0z) with q0z = ET
i v/c

2 +
qz/γ. T0 is the transition matrix element,

T0(s, q,p) =∫
dx′ψ(σf )′+

f,P (x′)eip⊥x′
⊥+ipzγz′ (

1 +
v

c
αz

)
ψ

(s)′

q,P (x′).

(2.7)

The doubly differential cross-section for electron emis-
sion is obtained by means of integration over impact pa-
rameter, as well as averaging and summing, respectively,
over the initial and final spin states. Using the Lorentz
invariance of the phase space element, dk′

f/(E
′
f/c

2) =
dkf/(Ef/c

2), one obtains this cross-section in the labo-
ratory frame,

d2σECC

dEfdΩf
=
kfE

′
f

c2
1
2

∑
σi,σf

∫
d2b

∣∣aIA
fi

∣∣2 (2.8)

=
kfE

′
f

c2v
Z2

T (1+γ)
∑
σi,σf

∫
dq′δ(E′

f + q′zv−ET
i /γ)

×
∣∣∣∣∣

4∑
s=1

∫
dp

1
p2
T0(s, q,p)

×
[
u(s)+

q

(
1 − γv/c

1 + γ
αz

)
ϕ

(σi)
i,T (q0)

]∣∣∣∣
2

where Ef and dΩf , respectively, are the energy and solid
angle of the emitted electron, and q′ is related to q by
means of q = (q′

⊥ − p⊥, q′z − pzγ).
For the evaluation of (2.8) semirelativistic Darwin and

Sommerfeld-Maue wavefunctions are used, respectively,
for the bound and continuum electronic states (see e.g.
[20,21]). The Sommerfeld-Maue functions (which are ex-
act up to first order in ZP /c) have been tested against an
exact relativistic (partial-wave) representation in the case
of bremsstrahlung [22] and were also used for the radiative
capture to continuum [12]. Such wavefunctions allow for a
representation of the transition matrix element in closed
form. Defining the bound-state and continuum-state nor-
malization factors,

NT
i =

[
1 +

(
ZTµ

ni

)2
]− 1

2

, Nq = (2π)−
3
2 eπηq/2Γ (1 − iηq),

ηq =
ZPEq

qc2
, (2.9)

where µ = c/(ET
i + c2), Eq = (q2c2 + c4)

1
2 , and using

completeness for the spin summation one obtains (for s-
states)

4∑
s=1

T0(s, q,p)
[
u(s)+

q

(
1 − γv/c

1 + γ
αz

)
ϕ

(σi)
i,T (q0)

]
=

Nk′
f
NqN

T
i

[
u

(σf )+

k′
f

I(p′, q)
(

1 − γv/c

1 + γ
αz

)
a
(σi)
i (q0)

]

× ϕ̃i,T (q0) (2.10)

where ϕ̃i,T (q0) is the nonrelativistic bound-state
momentum-space function, a(σi)

i (q0) the four-spinor of
the Darwin function, and

I(p′, q) =
∫
dx′

{(
1 +

ic

2E′
f

α∇
)

1F1(iηf , 1, i(k′fr
′ + k′

fx′))

}

× eip′x′ (
1 +

v

c
αz

) (
1 − ic

2Eq
α∇

)

× 1F1(iηq, 1, i(qr′ − qx′)) (2.11)

with ηf = ZPE
′
f/(k

′
fc

2) and p′ = (p′
⊥, p

′
z) with p′

⊥ =
p⊥ + q⊥ − k′

f⊥, p′z = γpz + qz − k′fz .

The integrals over the confluent hypergeometric func-
tions 1F1 can be carried out analytically with the help of
Nordsieck’s formula [23], see [12,21].

The remaining multiple integral in (2.8) is done with
the help of a transverse peaking approximation which also
was applied in the nonrelativistic case [15]. This approxi-
mation relies on the fact that ϕ̃i,T (q0) is strongly peaked
at q0 =

√
q2⊥ + q20z = 0. Therefore, the transverse mo-

mentum components q⊥ are set equal to zero in all fac-
tors of (2.10) multiplying ϕ̃i,T (q0). For relativistic colli-
sion velocities this approximation is even more justified
since a large longitudinal momentum transfer is required
in I(p′, q) to ensure energy conservation. For numerical
convenience we introduce p′ as integration variable in the
transition amplitude in place of p and thus obtain for the
differential cross-section

d2σECC

dEfdΩf
=
kfE

′
f

c2v

Z2
T (1 + γ)
γ2

∣∣∣Nk′
f
NT

i

∣∣∣2

×
∫
dp′δ(E′

f − ET
i /γ + p′zv + k′fzv)

∑
σi,σf

∣∣∣∣
∫ ∞

−∞
dqzN|qz|

×
[
u

(σf )+

k′
f

I(p′, qzez)
(

1 − γv/c

1 + γ
αz

)
a
(σi)
i (q0zez)

]

× F0(p′, qz)
∣∣∣∣
2

. (2.12)
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For a 1s state, the integral F0 over the transverse compo-
nents of q is given by

F0(p′, qz) =∫
dq⊥

1
(p′

⊥ − q⊥ + k′
f⊥)2 + 1

γ2 (p′z − qz + k′fz)2
ϕ̃i,T (q0)

= 2
√

2Z
5
2
T

[
1
β0

(
a2 + p

′′2
⊥

b20
− 1

)

− α0

2β
3
2
0

ln
2
√
β0(a2 + p

′′2
⊥ ) + 2β0 + α0b

2
0

b20(α0 + 2
√
β0)

]
(2.13)

with the parameters p′′
⊥ = p′

⊥ + k′
f⊥ and a = (p′z + k′fz −

qz)/γ, b20 = Z2
T +q20z, α0 = 2(a2−b20−p

′′2
⊥ ), β0 = (a2+p

′′2
⊥ −

b20)
2 + 4b20p

′′2
⊥ . We note that the p′z-integral is performed

by means of the δ-function whereas the qz-integral can
be restricted to the interval [−2γv,−γv/4] for moderate
γ. The strong singularity at qz = (p

′2
⊥ + p

′2
z )/2p′z can be

handled in the same way as in the nonrelativistic case [15].

2.2 Radiative ionization (RI)

For radiative transitions the interaction in (2.1) arises
from the photon field, γ0ŜA(x)Ŝ−1 = −αA′

λe
ik′x′

d+
λ with

A′
λ = ceλ/(2πω

′1/2) where k′ = (ω′/c,−k′) is the 4-
momentum of the photon and eλ its polarization direc-
tion. Therefore, the basic difference to the ECC theory is
the occurrence of the radiation matrix element [12]

Wrad(σf , s, q) =
∫
dx′ψ(σf )′+

f,P (x′)αe−ik′x′
ψ

(s)′

q,P (x′)

(2.14)
in place of the Coulomb transition matrix element
T0(s, q,p)/p2 from (2.7). The fourfold differential cross-
section for the emission of an electron with energy Ef

into the solid angle dΩf accompanied by the creation of a
photon with energy ω = kc is given by

d4σRI

dEfdΩfdωdΩ
=
kfωω

′E′
f

2c5
∑

λ,σi,σf

∫
d2b

∣∣ãIA
fi

∣∣2 (2.15)

where the sum over λ runs over the two polarization di-
rections of the photon, and dΩ is the photon solid angle.
In the impulse approximation, one has [12]

ãIA
fi =

2πi
γ

√
1 + γ

2
A′

λ

2∑
s=1

∫
dqeiq⊥bWrad(σf , s, q)

×
[
u(s)+

q

(
1 − γv/c

1 + γ
αz

)
ϕ

(σi)
i,T (q0)

]

× δ(E′
f + ω′ − ET

i /γ + qzv) (2.16)

with q0 = (q⊥, q0z) and q0z = ET
i v/c

2 + qz/γ as above.

In order to compare the resulting electron distribution
with the one from the nonradiative capture, the differen-
tial cross-section (2.15) has to be integrated over the pho-
ton degrees of freedom. For electron emission not parallel
to the beam axis, this involves a threefold integral,

d2σRI

dEfdΩf
= 2

∫ π

0

dϕf

∫ π

0

sin θdθ
∫ ωmax

ωmin

dω
d4σRI

dEfdΩfdωdΩ
.

(2.17)

The angle θ is the polar photon angle and ϕf is the differ-
ence between electron and photon azimuthal angles. The
energy integral can be confined to a small interval around
the peak frequency ωpeak = (ET

i − Ef + vkf cosϑf )/(1 −
(v/c) cos θ) of half-width ∼ 3(ZT /ni)v/(1 − (v/c) cos θ)
which is attributed to the target Compton profile.

3 Results

Calculations have been performed for fast projectiles rang-
ing from helium to uranium and for targets ranging from
hydrogen to argon under the restriction ZP ≥ 2ZT . For
targets different from H, Slater-screened hydrogenic wave-
functions and experimental binding energies are used for
the initial states. The target field entering into the ECC
cross-section is taken Coulombic to the same effective
charge. The neglect of the outer-shell screening in VT is
justified for the high collision velocities which are consid-
ered here: the resulting high momenta of the intermediate
states (being of the order of v) combined with the near-
zero final-state momenta require large momentum trans-
fers and hence close collisions. The only case of a projec-
tile carrying electrons, U88+, is treated in terms of a bare
projectile with ZP = 88, the full screening by the tightly
bound electrons being a reasonable approximation for the
continuum states.

3.1 Electron spectra

In order to give an overview, we start by showing the
global energy dependence of the electrons from the ECC
and RI processes emitted into the forward direction.
Figure 1 shows the electron spectra from 30 MeV/amu
Ar18+ + H collisions at an emission angle of 1.5◦ (which
may be identified with a suitable detector resolution and
turns the 0◦ cusp into a finite forward peak). For such en-
ergetic collisions (v = 33.85 a.u.), RI is largely dominating
over ECC in the forward peak region. It also provides a
much sharper peak (which in contrast to ECC is skewed
to the high-energy side and is therefore located above the
cusp position Ecusp,kin = 16.34 keV). At energies beyond
50 keV the binary encounter peak emerges in the electron
spectra. There, as well as for the soft electrons, the relative
importance of the RI and ECC processes is reversed. It
should be noted, however, that for electron energies tend-
ing to zero, the impulse approximation as presented above
is no longer an adequate theory because then the target
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Fig. 1. Doubly differential cross-section for electron emission
at ϑf = 1.5◦ in 30 MeV/amu Ar18+ + H collisions as a func-
tion of kinetic electron energy. Shown is the contribution from
nonradiative electron capture to continuum (chain curve), from
radiative ionization (full curve) and their sum (dotted curve).

Fig. 2. Doubly differential cross-section for electron emission
at ϑf = 5◦ in 200 MeV/amu U92+ + H collisions; (———)
radiative ionization, (− · − · −) nonradiative electron capture
to continuum (smoothed in the forward peak region).

potential cannot be neglected in the final-state electronic
wavefunction.

In Figure 2 the electron spectra from 200 MeV/amu
U92+ + H collisions are displayed for an emission angle of
5◦. At the relativistic velocity of v = 77.6, the RI mech-
anism is much more important than ECC in the whole
energy region considered. While the forward ECC peak
has shrinked to a mere shoulder at this larger angle, RI
still shows a pronounced peak. We note that the RI calcu-

Fig. 3. Doubly differential cross-section in the RI forward
peak maximum from He2+ + H collisions as a function of im-
pact momentum γv; (——–) radiative ionization, (− · − · −)
nonradiative electron capture to continuum. Upper and lower
curves, respectively, correspond to electron emission angles of
ϑf = 1.5◦ and 5◦.

lations can be performed with high accuracy (∼1 percent
(except at the binary encounter peak maximum), inde-
pendent of the collision system), whereas one has severe
convergence problems for ECC caused by the strongly
singular and rapidly oscillating integrand I(p′, q) if the
Sommerfeld parameters ηf and ηq are very large (i.e. high
ZP /k

′
f and ZP /v). For the ECC of Figure 2 the accuracy

is estimated ∼5 percent far away from the cusp, deterio-
rating to ∼25 percent in the cusp region.

3.2 Scaling laws and the RI/ECC crossing velocity

Let us compare ECC and RI in the cusp region, i.e. for
kinetic electron energies near zero in the projectile rest
frame. More precisely, we consider the doubly differential
cross-sections (2.12) and (2.17) for a fixed forward emis-
sion angle at the maximum ERI

peak of the RI peak. The
location of this maximum as well as the corresponding
intensities depend on the collision velocity v and on the
projectile charge ZP . To begin with, we restrict ourselves
to bare projectiles and to a hydrogen target.

Figure 3 depicts the ECC and RI cross-sections at
ERI

peak for He2+ + H as a function of γv for two forward
angles, ϑf = 1.5◦ and 5◦. It is seen that for fixed ϑf the
curves cross at γv ≈ 20 (corresponding to a collision en-
ergy of 10 MeV/amu) and that the ECC and RI curves, re-
spectively, are nearly parallel for the two angles. We have
carried out similar calculations for Ar, Kr and Xe pro-
jectiles and have found that the crossing velocity hardly
depends on ZP (γvcr = 19.8 for He, 21.1 for Ar, 21.3 for
Kr and 22.0 for Xe at ϑf = 5◦). In order to compare
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Fig. 4. Scaled doubly differential cross-section in the RI for-
ward peak maximum at ϑf = 5◦ for bare projectiles colliding
with H as a function of γv. The curves labeled RI correspond
to radiative ionization and are, by a suitably chosen factor F ,
normalized to the He2+ + H result at v = 14.1 a.u. The curves
labeled ECC correspond to nonradiative capture to continuum
and are normalized to the helium result at v = 27.86, except for
uranium (marked by +) which is normalized to the Ar18+ + H
result at v = 77.6. The projectiles are He2+ (−−−−), Ar18+

(——–), Kr36+ (- - - - -), Xe54+ (· · · · · · ), and U92+ (− ·− ·−).

the velocity dependence of the peak cross-sections, we
have normalized in Figure 4 the cross-sections for vari-
ous projectiles to the respective cross-section for He at
a fixed collision velocity (except for U where, for conver-
gence reasons, the lowest velocity considered is v = 77.6
where a normalization to He, already distinct from the
bulk, is not meaningful). For RI as well as for ECC, these
scaled cross-sections tend to form a common line, with
some spread at the highest velocities considered. Only for
the lightest projectile, He, the results are slightly above
(for ECC) respectively below (for RI) the bulk. At the
lower velocities, the line is approximately straight, indi-
cating a power-law dependence. For Ar for example, the
RI peak cross-section behaves like (γv)−n with n decreas-
ing from 4.3 (near v = 15) to 3.3 (near v = 100).

An immediate consequence of this scaling property,
combined with the approximate constancy of vcr, is a com-
mon (for both ECC and RI) dependence on the projec-
tile charge, irrespective of the collision velocity. Figure 5a
shows that the RI peak cross-sections (at fixed velocity)
scale with ZP according to Zm

P with m ∼ 2.3, except for
He. In Figure 5b, the ZP -dependence of the ECC cross-
sections is displayed. Except for uranium, the power is
close to the one for RI, with a minor velocity dependence
(m ∼ 2.6 for the lowest v, decreasing tom ∼ 2.4 at high v).
This slightly steeper increase for ECC (together with the
stronger decrease of ECC with γv) causes the marginal
increase of γvcr with ZP .

Fig. 5. Projectile charge dependence of the doubly differential
cross-section in the RI forward peak maximum for a hydrogen
target at fixed collision velocity and ϑf = 5◦. (a) Radiative
ionization (�) at v = 14.1 (top) and 77.6 (bottom). The dotted
straight lines display Zm

P with m = 2.3 (normalized at ZP =
18) for comparison. (b) Nonradiative capture to continuum (�)
at v = 27.86 (top) and 77.6 (bottom). The straight lines display
Zm

P with m = 2.6 (· · · · · · ) and m = 2.4 (−−−−). The full
curves are eye-guides.

Let us now consider heavier targets, and let us restrict
ourselves to capture from the K-shell. Figure 6 displays
the forward peak cross-sections for Ar and Xe projectiles
colliding with H, He and N targets. One observes that
the RI peak cross-sections do not depend on the target
species. This is an immediate consequence of the normal-
ization of the bound-state wavefunction, since the integra-
tions which are necessary to evaluate the doubly differen-
tial RI cross-section involve a (three-dimensional) integral
over the bound-state momentum-space function. For the
ECC peak cross-sections on the other hand, there is a
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Fig. 6. Doubly differential K-shell capture cross-section (per
electron) in the RI forward peak maximum at ϑf = 5◦ for
Ar18+ and Xe54+ colliding with various targets as a function of
γv. The bunch of steep curves result from nonradiative capture
to continuum, the flat curves originate from radiative ioniza-
tion: Ar18+ + H (−−−−), Ar18+ + He (——–), Xe54+ + H
(- - - - -) and Xe54+ + N (− · − · −). The black dots mark
the crossing velocity for the three targets. The symbols (�)
are experimental results [3,24] for nitrogen K-shell capture by
U88+ as described in the text.

strong increase with ZT , which again hardly depends on
the collision velocity (as is obvious from the nearly paral-
lel lines for Xe54+ + H and Ar18+ + He combined with
the results from Fig. 4). In part, this increase with ZT

is caused by the extra appearance of VT in the transi-
tion amplitude. However, due to an additional maximum
in the momentum integral in (2.12) (apart from the one
near q0z = 0) which is attributed to the singularity of the
Coulomb field, higher momenta in the bound-state wave-
function come into play. These are strongly enhanced for
more tightly bound electrons.

In order to compare with experimental cusp results
on U88++N2 at v = 56.24 a.u., we have estimated the
ECC yield from the target L-shell to be about 4.3 per-
cent (per electron) of the K-shell capture yield at this
collision velocity. Therefore we approximate d2σECC

exp =
2(2d2σECC

exp (1s) + 2d2σECC
exp (2s) + 3d2σECC

exp (2p)) ≈ 2 ×
2.22d2σECC

exp (1s), in contrast to RI where all electrons give
the same contribution, d2σRI

exp ≈ 2×7d2σRI
exp(1s). The pref-

actor 2 accounts for the N2 molecule. Since the experi-
mental yields are so far only relative, we have normalized
d2σRI

exp(1s) to the calculated RI yield for Xe + N. (In or-
der to verify the scaling property we have calculated the
forward-peak RI and ECC cross-sections for U (ZP = 88)
+ N and have found that, if RI is normalized to the Xe +
N yield, the corresponding ECC yield falls on top of the
Xe + N yield within 5 percent.) As shown in Figure 6,
experiment confirms that the nitrogen crossing velocity is
well above those for H and He targets. The underestima-

Fig. 7. Crossing velocity (multiplied by γ) as a function of
target charge ZT for K-shell ionization by Xe54+ projectiles
(ϑf = 5◦). The black squares are the calculated values and the
full line is an eye-guide.

tion of the experimental ECC yield by theory is partly
ascribed to the semirelativistic wavefunctions which do
not have sufficiently large high-momentum tails. On the
other hand, the experimental ECC yield is not measured
directly, but obtained by subtracting the simultaneously
measured RI and one-electron loss yields from the total
electron yield [24]. So it may include contributions from
other processes (like double electron loss).

The constancy of RI and the increase of K-shell ECC
with target nuclear charge induce a monotonous rise of the
crossing velocity with ZT . This is shown in Figure 7 for
Xe projectiles colliding with targets up to Ar (for Xe54+ +
Ar, ZT /ZP = 18/54 ≈ 0.33 and ZT /vcr = 18/115 ≈ 0.16
such that the impulse approximation should still give re-
liable results). It is seen that the increase of vcr with ZT

is somewhat less than linear.

4 Conclusion

We have calculated and analyzed the two mechanisms
which contribute to continuum electron capture during
fast collisions of bare, heavy projectiles with light targets.
Particular interest was devoted to the dependence of the
doubly differential cross-sections for electron emission on
collision velocity, projectile charge and target species.

For the study of the relative importance of the two cap-
ture mechanisms we have selected the forward peak maxi-
mum at near-zero emission angles. This maximum results
from electrons captured into low-lying projectile contin-
uum eigenstates. Its precise position indicates the shift of
the forward peak (downwards for ECC and upwards for
RI, relative to the cusp position) inherent in a higher-
order theory. For high but still nonrelativistic collision en-
ergies we have verified the common scaling of both capture
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mechanisms with projectile charge, although the increase
with ZP is substantially weaker than the Z3

P -Born result
(for RI and ECC we find Z2.3

P and Z2.6
P , respectively).

When advancing to higher collision velocities (but still
in the weak-relativistic regime, γ � 2) the scaling with
projectile charge is fairly well maintained and leads to
a velocity dependence of RI, respectively ECC, which is
nearly independent of the projectile and the target species.
However, this v-dependence does not follow any power
law, but gets gradually weaker as v increases. For ECC
for example, if expressed in terms of (γv)−n, n ∼ 11 for
v � 35, n ∼ 8 near v = 90 and n ∼ 5.5 near v = 120. Note
that within our numerical approach it does not seem rea-
sonable (particularly not for ECC) to go beyond the weak-
relativistic regime and to much heavier targets. This would
require a more accurate representation of the atomic wave-
functions which takes proper account of the relativistic
high-momentum tails.

As a consequence of the common scaling with ZP , the
RI/ECC crossing velocity is indeed to a good approxima-
tion independent of the projectile, being vcr ∼ 21 a.u.
for a hydrogen target. A similar crossing velocity is also
expected for the capture of valence electrons from heav-
ier targets. Turning to inner-shell capture from heavier
targets, it was found that radiative ionization does not
depend on the target species whereas ECC shows a rapid
increase with the target nuclear charge. When proceeding
from He to C, Ne and Ar targets, vcr for K-shell cap-
ture is predicted to increase from vcr ∼ 29.5 to 65, 88.5
and 115 a.u., respectively. Thus for the heavier targets,
a relativistic formulation of the theory is important, as
the onset of relativistic effects (beyond the shift of the
peak position) occurs already at v = 30–50, depending
on the projectile and on the capture mechanism. Pilot ex-
periments have verified that at v = 56 a.u., ECC is still
largely dominating over RI if the target is nitrogen.

Finally, we remark that the relative importance of RI
and ECC varies considerably over the electron spectrum.
Since ECC strongly increases for low-energy electrons as
well as for electrons near the binary encounter peak, it
may well dominate the spectrum at these locations even in
cases where RI has a much higher intensity in the forward
peak region. However, a detailed investigation is beyond
of the scope of the present work.

I would like to thank S. Hagmann for stimulating this work and
for many fruitful discussions. I also wish to express my grat-
itude to J.M. Rost and to the GSI Darmstadt for supporting
contacts with the physical community.
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