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Abstract. The short–wavelength limit of the electron–nucleus bremsstrahlung is re–investigated with spe-
cial emphasis on the polarization correlations between incoming electron and emitted photons. A theoretical
analysis of these correlations is performed within both the rigorous relativistic Dirac theory and the Dirac–
Sommerfeld–Maue (DSM) approach which approximates the initial electronic state by a Sommerfeld–Maue
wavefunction. Based on detailed calculations carried out for bremsstrahlung of electrons scattered from
medium– and high–Z bare ions, we argue that the DSM approach is complementary to the exact partial–
wave theory at sufficiently high collision energies. For such high–relativistic domains predictions are made
for the polarization correlations relating to linearly polarized radiation.

PACS. 34.80.-i Electron and positron scattering – 41.60.-m Radiation by moving charges – 34.80.Pa
Coherence and correlation

1 Introduction

The last few years have witnessed a significant progress in
the development of novel–type Ge and Si(Li) Compton po-
larimeters [1–3]. By exploiting the polarization sensitivity
of the Compton effect described by the Klein–Nishina for-
mula [5], these solid–state detectors allow accurate mea-
surements of the linear polarization of x–ray photons with
energies ranging from 100 keV to a few MeV. In this en-
ergy region, Compton scattering dominates the other pro-
cesses of photon–matter interaction, which are the photo-
electric effect and the pair production.

When applied to the analysis of the photon emission in
processes involving highly–charged, heavy ions, such po-
larization detectors allow to gain more insight into the
structure and dynamics of heavy atomic systems. Rela-
tivistic, quantum electrodynamics (QED), and even parity–
violation (PV) phenomena, which are usually difficult to
isolate when studying total cross sections, often become
“visible” in polarization–sensitive studies. Recently a num-
ber of experiments has been initiated to analyze polariza-
tion properties of x–rays following relativistic ion–atom
and ion–electron collisions. At the GSI storage ring in
Darmstadt, for example, the linear polarization of photons
emitted during (and following) radiative electron capture
(REC) of loosely bound target electrons by high–Z pro-
jectile ions has been studied in detail [1,6]. These studies
have revealed important information about the electron–
photon and electron–electron interactions in the presence
of extremely strong electromagnetic fields.

Apart from (polarization) studies of free–bound elec-
tron transitions, interest has been revived in the radiative
scattering of electrons by heavy target atoms and ions,
i.e. the bremsstrahlung process. During the last two years,
a series of polarization–resolved bremsstrahlung measure-
ments has been carried out at the Technical University of
Darmstadt. In these measurements, particular attention
was paid to the investigation of how the photon polariza-
tion is affected when the incident electrons are themselves
spin polarized. Such a polarization transfer has been ob-
served for collisions of 100 keV electrons with a gold tar-
get [7,8]. For these collisions, bremsstrahlung radiation is
mainly measured in the vicinity of the short–wavelength
limit (SWL), where the electron transfers all its kinetic
energy to the photon. The SWL is of particular interest
since, due to the large momentum transfer to the nucleus,
close collisions between electron and nucleus are required.
In this collision regime the relativistic effects and, hence,
the polarization correlations become of paramount impor-
tance [9]. Therefore, experiments performed in the short–
wavelength limit provide a stringent test of the relativis-
tic theory of the bremsstrahlung process. To exploit the
power of these experiments, further polarization studies
are underway with high–energy beams (few MeV) of po-
larized electrons [3,4].

Theoretically, all radiation processes can be treated
to first order in the coupling of the electron to the ra-
diation field because of the smallness of the fine struc-
ture constant, e2/~c = 1/137.04. Nevertheless, an accu-
rate description of bremsstrahlung in the high–Z domain
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is not a simple task because it requires the use of rel-
ativistic Dirac wavefunctions both for the initial and fi-
nal electronic states. Since both these states belong to
the (positive–energy) Dirac continuum, their partial–wave
expansion has to be employed for practical calculations.
In the past, such partial–wave, fully relativistic calcula-
tions have been successfully employed to study the (dif-
ferential) bremsstrahlung cross sections for collision ener-
gies ranging from a few keV to 10 MeV [10]–[14], includ-
ing the ultrarelativistic limit [15]. Less theoretical data
are available, however, for the polarization properties of
bremsstrahlung radiation especially in the ultra–relativistic
regime where the rigorous relativistic calculations are of-
ten hampered by the slow convergence of the partial–wave
expansion. In order to provide reliable theoretical predic-
tions for the bremsstrahlung radiation in the high– and
ultra– relativistic regimes, alternative approaches are re-
quired which are less demanding from a computational
point of view. In this contribution we propose the Dirac–
Sommerfeld–Maue (DSM) theory in which the incoming
electron is described by the Sommerfeld–Maue function
[16], while the scattered electron is represented in terms
of a Dirac wave. This theory was recently introduced in
Ref. [17] with the main emphasis on the doubly–differential
cross sections and its predictions have been compared with
those of the Elwert–Haug theory [18]–[20] and available
experimental data. The DSM approach is expected to be
well justified in the ultra–relativistic region for which the
SM function is known to perform well [21,22]. To elucidate
its validity we provide results for the polarization correla-
tions both within the DSM and the partial–wave theory.
By performing such a test, we concentrate on the SWL
where these correlations are most pronounced.

The layout of the paper is the following. In Section 2
we provide the basic formulae for the polarization cor-
relations and discuss how they can be parameterized in
terms of the Stokes parameters. The evaluation of these
parameters within the framework of the density matrix
theory is discussed briefly in Section 2.2. In particular, we
demonstrate how the analysis of the polarization proper-
ties of bremsstrahlung radiation can be traced back to the
free–free transition amplitudes. The computation of these
matrix elements, based on either the relativistic partial–
wave theory or the DSM approach, is discussed in Sections
2.3 and 2.4, respectively. In section 3.1 the validity of the
DSMmodel is tested numerically for electron scattering by
bare silver (Ag47+) and gold (Au79+) ions and for a wide
range of collision energies. Based on the results of this test,
we employ in section 3.2 the DSM approach in order to
analyze the polarization properties of the bremsstrahlung
radiation in the high–relativistic regime. Finally, the con-
clusion is given in Section 4.

Atomic units (~ = m = e = 1) are used unless other-
wise indicated.

2 Theory

Before we start discussing the polarization properties of
bremsstrahlung radiation, let us first recall the basic no-

tations and assumptions used throughout this paper. Since
we restrict ourselves to the case of electron–nucleus (in-
elastic) scattering, the initial state of the overall system is
given by a bare point–like nucleus with charge number Z
and a free electron with total energy Ei =

√
k2i c

2 + c4 =
Tkin + c2 and asymptotic momentum ki. The radiative,
inelastic scattering of the electron leads to an emission of
the photon with the wavevector k and polarization vec-
tor eλ. Moreover, in the short–wavelength limit the kinetic
energy of the scattered electron is assumed to be zero and,
hence, the bremsstrahlung photon has to carry away all
the (initial) energy, ω = Ei − c2.

Besides the notation, we have to define the geometry
in which the emission of bremsstrahlung photons is to be
observed. In the present work, the polarization properties
of the photons will be analyzed in the rest frame of the nu-
cleus. Since in this frame the only preferred direction of the
overall system is given by the initial electron momentum,
we take the quantization axis (z–axis) along the direction
of ki. Together with the wave vector of the bremsstrahlung
photon, k, this axis defines the reaction (x, z)-plane. Thus,
only one polar angle θk is required to describe the photon
emission. In contrast to the bremsstrahlung photon, the
scattered electron is assumed to remain unobserved. The
latter fact implies an integration of the triply differential
bremsstrahlung cross section over the electron emission
solid angle dΩf and a summation over its final spin states.

2.1 Polarization correlations and Stokes parameters

The polarization properties of bremsstrahlung radiation
have been intensively studied over the past decades. In
these studies, particular emphasis was laid on the ques-
tion of how the spin states of the incident electrons affect
the polarization of the bremsstrahlung photons. To ex-
plore such a “polarization transfer” phenomenon, the po-
larization correlations were introduced by Tseng and Pratt
[9,23] who parameterized the bremsstrahlung differential
cross section in terms of the spin polarization ns of the
impinging electron and a vector related to the photon po-
larization. For linearly polarized photons the polarization-
dependent part of the cross section is determined by five
parameters, from which only one is non–vanishing if the
incoming electron beam is unpolarized (see Ref. [23] for
further details).

While the polarization correlation parameters appear
to be a very useful tool for the theoretical analysis of the
bremsstrahlung process, it has been found more conve-
nient for practical applications to describe the polarization
properties of emitted photons in terms of Stokes param-
eters. These parameters are often utilized in experiments
for characterizing the degree of polarization of the emit-
ted light. Namely, the Stokes parameter P3 reflects the
degree of circular polarization and the two parameters P1

and P2 together denote the degree and direction of the
linear polarization of the light. The latter two parameters
are determined by measuring the intensitiy I(ϕ) of the
light which is linearly polarized at different angles ϕ with
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respect to the reaction (x, z)–plane [17,24,25]:

P1 =
I(0)− I(90◦)

I(0) + I(90◦)
, P2 =

I(45◦)− I(135◦)

I(45◦) + I(135◦)
. (2.1)

These two parameters can be easily “visualized” if one rep-
resents the linear polarization of the bremsstrahlung radi-
ation in terms of a polarization ellipse, defined in the plane
perpendicular to the photon momentum k. The principal
axis of such an ellipse is characterized by its tilt angle χ
with respect to the reaction plane [25],

tan 2χ =
P2

P1
, (2.2)

and by its length PL =
√
P 2
1 + P 2

2 that reflects the degree
of linear polarization. By making use of new Compton
polarimeters the degree PL and the tilt angle χ can be
measured directly [7,8] such that the Stokes parameters
P1 and P2 might be extracted from P1 = PL cos(2χ) and
P2 = PL sin(2χ).

2.2 Density matrix approach

The theoretical analysis of the Stokes parameters (2.1)
can be performed most efficiently within the framework
of the density matrix approach [24,25]. Since during the
last years this approach has been widely applied to the
analysis of the polarization properties of the radiative re-
combination photons, we will restrict ourselves to a short
compilation of the basic formulae relevant for our analysis
and refer for all further details to the literature [26,25].

The density matrix approach is based on the fact that
the experimentally measured photon polarization is a sta-
tistical average over the polarization directions of the indi-
vidual photons emitted during the collision of an electron
beam with the target. Consequently, the spin (polariza-
tion) state of such an ensemble can not be described by a
single state vector (or wavefunction) but rather in terms of
the spin–density matrix. Since for the photon there exist
only two polarization states, one can use the same formal-
ism as for spin– 1

2 particles and define a 2×2 matrix which
can be parameterized by the three (real) Stokes parame-
ters:

(⟨keλ |ϱ̂γ |keλ′⟩)λ,λ′=±1 =
I

2

(
1 + P3 P1 − iP2

P1 + iP2 1− P3

)
,

(2.3)
where I is the total intensity of the radiation (e.g. I =
I(0) + I(90◦)). Here we make use of the so–called helicity
representation of the density matrix with λ = ±1 being
the photon helicity (i.e., the spin projection onto the di-
rection of propagation). The basis vectors e+1 and e−1

are usually associated with the right– and left–circular
polarization, respectively. These vectors can be written in
terms of the linear polarization vectors ex, ey, defined in
the plane that is perpendicular to the photon momentum
k and lying in (ex) and perpendicular (ey) to the reaction
plane, as e+1 = 1√

2
(ex + iey) and e−1 = 1√

2
(ex − iey).

By using this relation between the circular e±1 and the
linear ex,y polarization vectors we follow the convention
introduced by Rose in Ref. [27]. Note that such a conven-
tion implies signs for the parameters P1 and P2 in Eq. (2.3)
opposite to those from Ref. [24].

As seen from Eq. (2.3), the Stokes parameters can be
expressed in terms of the elements of the spin–density ma-
trix. For the electron–nucleus bremsstrahlung, these ma-
trix elements are obtained by standard techniques:

⟨keλ |ϱ̂γ |keλ′⟩ = N0

∑
σf

∑
σiσ′

i

(e∗λWrad(σi, σf ))

× (e∗λ′Wrad(σ
′
i, σf ))

∗ ⟨σi |ϱ̂i|σ′
i⟩ , (2.4)

where the initial–state density matrix elements ⟨σi |ϱ̂i|σ′
i⟩

describe the polarization state of the incoming electron
beam, and the transition amplitudes are given by

e∗λWrad(σi, σf ) =

∫
dr ψ

(σf )†
kf

(r) (αe∗λ) ψ
(σi)
ki

(r) e−ikr .

(2.5)
Here ψki and ψkf

describe the initial and final electron
with spin projection σi and σf , respectively, and α is the
vector of Dirac matrices. The normalization constant N0

in (2.4) does not enter into the Stokes parameters Pk since
they are defined by cross section ratios, cf. (2.1) and (2.3).

2.3 Evaluation of the radiation matrix element in the
partial–wave–decomposition approach

As seen from Eqs. (2.3)–(2.5) any further analysis of the
polarization properties of bremsstrahlung radiation can be
traced back to the transition amplitudes e∗λWrad(σi, σf ).
In general, the evaluation of these matrix elements is not
a simple task since they involve continuum solutions for
both the initial and the final electronic states. However,
within the short–wavelength limit, where the electron in
its final state has zero kinetic energy, e∗λWrad(σi, σf ) can
be obtained by extrapolating the free–bound transition
amplitudes to the continuum threshold of the Dirac spec-
trum [28,29]. During the last two decades the fully rela-
tivistic form of the bound–free transition matrix has been
widely used for studying the radiative recombination of
high–Z ions at intermediate and high collision energies
[25,26,30,31]. For a capture into bare ions, it reads

e∗λWrad
b(σi) =

∫
dr ψ†

nf lf jfµf
(r) (αe∗λ) ψ

(σi)
ki

(r) e−ikr ,

(2.6)

where ψnf lf jfµf
(r) and ψ

(σi)
ki

(r) are the known solutions
of the Dirac Hamiltonian for a bound and continuum elec-
tron, respectively. For a point–like nucleus model, Eq. (2.6)
can be computed analytically by using the calculus of the
irreducible tensor operators and the hypergeometric func-
tions. This usually requires the decomposition of both the
photon as well as the continuum wavefunctions into par-
tial multipole waves [14,23,32]. Since these calculations
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are well–established nowadays, we will not recall them
here and refer for all further details to the literature [30,
33–35].

As seen from Eq. (2.6), the bound–free transition am-
plitude describes the electron recombination into a bound
state |nf lf jfµf ⟩ with well–defined total angular momen-
tum jf , its projection µf and parity (−1)lf where lf is the
angular momentum of the large components of the Dirac
spinor. However, no particular symmetry or parity can be
attributed to the outgoing (continuum) electron following
the bremsstrahlung process. Therefore, in order to employ
the radiative recombination amplitudes for the description
of bremsstrahlung at the short–wavelength limit, one has
to sum in Eq.(2.6) over the final subshells (lf jfµf ), when
passing to the limit nf → ∞. Since in our “scenario”
the scattered, final–state electron remains unobserved in
the bremsstrahlung process, these bound–state subshells
(respectively the continuum–state multipoles) have to be
added incoherently and, hence, no information is required
on their relative phases.

Several numerical tests have been performed by us to
verify the application of Eq. (2.6), in the limit nf → ∞,
for the accurate description of the polarization properties
of bremsstrahlung radiation at the short–wavelength limit
[36]. It was found that even though rather high values of
the principal quantum number, nf ≈ 15 − 20, have to
be used, the summation over the subshells (lf jfµf ) can
be restricted to just a few terms. For such a choice of
computational parameters, good agreement (on the level
of 0.5%) between “true” bremsstrahlung calculations and
radiative–recombination–extrapolation results was found
for collisions of electrons with high–Z bare ions for a wide
range of (initial) energies, 50 keV ≤ Tkin ≤ 3 MeV. By
performing calculations at the high–energy edge of this in-
terval we were faced with the well-known problem of the
slow convergence of the partial–wave expansion. That is,
owing to numerical problems in handling the rapid oscilla-
tions of the (high–energy) incident electron wavefunction,
only a limited number of partial waves can be taken into

account in the decomposition of ψ
(σi)
ki

(r) in Eq. (2.6). Such
a truncation leads to a loss of accuracy of the partial–wave
calculations for large energies of the incoming electron and
backward photon emission angles.

2.4 Evaluation of the radiation matrix element in the
DSM model

Since the DSM approach is discussed in detail in our pre-
vious work [17] we restrict ourselves here to a collection of
the basic formulae. The fast incoming electron is described
by a Sommerfeld–Maue function [18,22] which reads, when
spherical coordinates (r, ϑ, φ) are used,

ψ
(σi)
ki

(r) = Nki e
ikir cosϑ{1F1(iηi, 1, ikir(1− cosϑ))

+
iZ

2c
[αz(cosϑ− 1) +

1

2
α− sinϑ eiφ +

1

2
α+ sinϑ e−iφ]

×1F1(1 + iηi, 2, ikir(1− cosϑ))} u(σi)
ki

, (2.7)

where ηi = ZEi/kic
2, α± = αx± iαy, and the normaliza-

tion constant is given by Nki = (2π)−
3
2 eπηi/2Γ (1 − iηi).

Moreover, in Eq. (2.7), 1F1 is a confluent hypergeometric

function and u
(σi)
ki

denotes the (free) electron four–spinor.
For an electron being polarized along its direction of prop-
agation ki, i.e. ns = (0, 0, 1) which we refer to as longi-

tudinal polarization, this spinor is given by u
(σi)
ki

= u
(+)
ki

,
where

u
(+)
ki

= Cki

1
0
cki/(Ei + c2)
0

 , Cki =

(
Ei + c2

2Ei

) 1
2

.

(2.8)
For an arbitrary direction of ns the electron spinor can
always be re–written in terms of any two linearly indepen-

dent basis elements u
(+)
ki

and u
(−)
ki

= Cki (0, 1, 0,−cki/(Ei+

c2))t.
In contrast to the approximate initial electronic func-

tion (2.7), we describe the (slow) outgoing electron by the
exact relativistic Dirac function using the partial–wave
representation. In the short-wavelength limit where the
momentum of the scattered electron kf → 0, the large
and small radial components of the partial waves can be
expressed in terms of Bessel functions Jν [11,37],

fjl(r) =
1

r

κ

|κ|
1

c

√
Z

kf
J2γf

(
√
8Zr) ,

gjl(r) = − 1

r

κ

|κ|
1√
kfZ

[√
2Zr J2γf−1(

√
8Zr)

− (γf + κ) J2γf
(
√
8Zr)

]
, (2.9)

where

γf =
√
κ2 − (Z/c)2, κ =

−(l + 1), j = l + 1
2

l, j = l − 1
2

.

(2.10)
Both, Sommerfeld–Maue and Dirac continuum–electron
wavefunctions from above are normalized according to∫
ψ
(σf ) ∗
kf

(r)ψ
(σf )

k′
f

(r) dr = δ(kf − k′
f ).

By inserting the initial– and the final–state electron
wavefunctions into Eq. (2.5) the transition matrix element
e∗λWrad can be reduced to a sum of two–dimensional inte-
grals (over r and ϑ) which are evaluated numerically with
the help of convergence generating functions, e−ϵr, with ϵ
being small enough such that stability is obtained. For the
SWL only a few (typically 3-5) partial waves are needed
to describe the slow outgoing electron when the collision
energy is high [38]. The relative error of the DSM calcula-
tions (concerning the step numbers in the double integral
as well as the choice of the exponential cutoff factor in the
radial integral) is below 5 % in the forward hemisphere
but maybe reach up to 10 % for the backward emission an-
gles (for P2 at the largest Ei). Further inaccuracies, which
result from truncating the final–state partial–wave series
beyond j = 3

2 , occur at small angles, but have decreased
well below 5 percent when Tkin ≥ 2 MeV.
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Fig. 1. The Stokes parameter P1 of the bremsstrahlung radi-
ation emitted in collisions of unpolarized electrons with bare
gold ions. Results are presented for the Dirac–Sommerfeld–
Maue approach (dashed line) as well as for the partial–wave–
decomposition theory (solid line) for three collision energies
Tkin = 180 keV, 2 MeV and 5 MeV. In the left panel, the the-
oretical prediction by Brysk and co–workers [11] is displayed
in addition by a solid diamond.

3 Results and discussion

3.1 Accuracy test of the DSM approach

In order to investigate the validity of the Dirac–Sommer-
feld–Maue method and to explore the limits of its appli-
cability detailed calculations have been performed for the
linear polarization of the bremsstrahlung photons emitted
in energetic collisions of electron beams with medium–
and high–Z bare ions. In these calculations special atten-
tion has been paid to the short–wavelength limit where
DSM results have been compared with the predictions of
the Dirac partial–wave theory discussed in Section 2.3. In
Fig. 1 we display the Stokes parameter P1 obtained for
electron scattering by a gold (Au79+) target as a function
of photon emission angle θk for collision energies in the
range 180 keV ≤ Tkin ≤ 5 MeV. The left panel of the
figure also shows the result by Brysk and co–workers [11]
who performed partial–wave calculations by using thresh-
old continuum states for the emitted electron. For the sin-
gle emission angle, θk = 47.7◦, for which results were re-
ported in Ref. [11], there is a very good agreement with
the present partial–wave results. Moreover, these results
describe an experimental data point for P1 at 180 keV [39]
also very well.

Turning to the comparison between the theoretical mod-
els, it is seen from the left panel of Fig. 1 that for the rela-
tively low collision energy of 180 keV the Dirac–Sommer-
feld–Maue theory fails to reproduce the polarization pa-
rameter P1 for emission angles θk > 20◦. The large discrep-
ancy between the predictions of the DSM approach and
the partial–wave relativistic theory observed at this weak–
relativistic impact energy (γi = 1/

√
1− (v/c)2 ≈ 1.35),

confirms that—for such low energies—the Sommerfeld–
Maue function (2.7) is inappropriate for the description of
the electron motion in the Coulomb field of heavy nuclei
[40]. When the energy is increased to 2 MeV, as shown
in the middle panel, the discrepancies between the Dirac–
Sommerfeld–Maue model and the partial–wave theory have
considerably diminished, even though the DSM calcula-

0 60 120 180
Emission angle (deg)

-0.1

-0.05

0

St
ok

es
 p

ar
am

et
er

 P
2

T
kin

 = 180 keV

0 60 120 180
Emission angle (deg)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

T
kin

 = 2 MeV

0 60 120 180
Emission angle (deg)

-0.4

-0.3

-0.2

-0.1

0

T
kin

 = 5 MeV

Fig. 2. The Stokes parameter P2 of the bremsstrahlung ra-
diation emitted in collisions of longitudinally polarized elec-
trons with bare gold ions. Results are presented for the Dirac–
Sommerfeld–Maue approach (dashed line) as well as for the
partial–wave–decomposition theory (solid line) for three colli-
sion energies Tkin = 180 keV, 2 MeV and 5 MeV.

tions still overestimate the linear polarization of the emit-
ted photons in the forward hemisphere. Finally, for 5 MeV,
the DSM results are converging to the exact ones except
for large angles (cf. right panel of Fig.1). These large an-
gles, however, are not of interest for future bremsstrahlung
experiments since—for high collision energies & 5 MeV —
emission of the bremstrahlung radiation occurs predomi-
nantly in the forward directions, θ . 10◦.

Until now we have analyzed the polarization parame-
ter P1 which is known to be non–zero even for collisions
of unpolarized electrons with (unpolarized) ions. In order
to discuss the effect of polarization transfer we turn now
to the second Stokes parameter P2 which can be used for
the diagnostics of electron beam polarization. Owing to
its spin–dependence, this parameter appears to be a more
sensitive probe of relativistic effects. This can be seen from
Fig. 2 where we display P2 calculated for collisions of lon-
gitudinally polarized electrons with bare gold ions. Obvi-
ously, the qualitative agreement between the DSM model
and the relativistic partial–wave theory, established for P1

when Tkin ≈ 2 MeV, does no longer hold for P2 at such
an impact energy. Only for Tkin ≈ 5 MeV and for the
forward emission angles, the DSM approach provides rea-
sonable predictions for the second Stokes parameter P2

(cf. right panel of Fig. 2).
Besides the gold target, detailed polarization calcula-

tions have also been performed for the (radiative) electron
scattering by medium–Z ions. Fig. 3 displays, for exam-
ple, the parameters P1 and P2 of the bremsstrahlung radi-
ation emitted in collisions of longitudinally polarized elec-
trons with bare silver (Ag47+). For this—lighter—target
and for collision energies 2 MeV and 5 MeV, the DSM
model performs better than for the Z = 79 case (compare
with Figs. 1–2). We can understand such a Z–behaviour
of the DSM predictions if we recall the criterion of va-
lidity of the Sommerfeld–Maue function at high energies,
r & Z/kic, where r is the electron–nucleus distance [22].
This criterion implies that for lower charges Z the accu-
racy of the SM function improves for small r thus allowing
for more precise calculations of the Stokes parameters.

In order to better understand the incident–polarization
dependence of P2, we investigated this parameter also for
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Fig. 3. The Stokes parameters P1 and P2 of the
bremsstrahlung radiation emitted in collisions of longitudinally
polarized electrons with bare silver ions. Results are presented
for the Dirac–Sommerfeld–Maue approach (dashed line) as well
as for the partial–wave–decomposition theory (solid line) for
the collision energies Tkin = 2 MeV and 5 MeV.

the transverse spin polarization (along the x–axis) of the
incoming electrons. Such a geometry can be experimen-
tally verified with the help of a Wien filter [41]. The results
for Ag47+, displayed in Fig. 4, indicate that in the for-
ward hemisphere the agreement between the DSM model
and the rigorous relativistic theory is worse than for the
case of the longitudinal polarization. For Tkin = 2 MeV
both rigorous relativistic and DSM approaches predict
that P2 acquires positive values reaching a maximum near
θk = 5◦. The Dirac–Sommerfeld–Maue calculations con-
siderably underestimate, however, the maximum value of
the polarization. Only for higher energies, Tkin & 5 MeV,
the performance of the DSM model improves so that it al-
lows to describe reasonably well the second Stokes param-
eter in the experimentally relevant region of small emission
angles θk . 30◦.

3.2 Properties of polarization correlations in the
high–relativistic regime

As seen from the results presented in Figures 1-4, the
Dirac–Sommerfeld–Maue approach provides a reasonable
estimate of the linear polarization of bremsstrahlung pho-
tons emitted in forward directions and for collision en-
ergies near and above 5 MeV, the more so, the lighter
the target. Therefore, in such a high–relativistic regime,
the DSM approximation can be employed instead of the
(standard) partial–wave–expansion techniques which may
suffer from convergence problems if the incoming electron
velocity becomes too high. The combination of these two
models thus allows for the calculation of the polarization
correlations in a very wide parameter range.

In order to illustrate the application of the DSM the-
ory to the analysis of the bremsstrahlung radiation in
the high–relativistic regime and to better understand the
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Fig. 4. The Stokes parameter P2 of the bremsstrahlung radi-
ation emitted in collisions of transversely polarized electrons
with bare silver ions. Results are presented for the Dirac–
Sommerfeld–Maue approach (dashed line) as well as for the
partial–wave–decomposition theory (solid line) for the collision
energies Tkin = 2 MeV and 5 MeV.

energy–dependence of the linear polarization, detailed cal-
culations of the Stokes parameters have been performed
for collision energies up to 15 MeV. Even though the the-
ory can be employed even for higher energies, this would
require an accurate treatment of the nuclear–size effects
which is out of the scope of this paper. In Fig. 5 we display
the second Stokes parameter P2 of the bremsstrahlung ra-
diation following inelastic scattering of longitudinally po-
larized electrons by bare gold ions. Calculations have been
performed for the energy range 2 ≤ Tkin ≤ 15 MeV and
within two approximations. While for the (comparatively)
low energies Tkin = 2 and 5 MeV we used the relativistic
partial–wave theory, theoretical predictions for 15 MeV
have been obtained in the DSM approach. As seen from
the figure, the absolute value of P2 strongly decreases with
collision energy in a wide angular range. A similar be-
haviour is found for the second Stokes parameter calcu-
lated for transversely polarized (incoming) electrons. For
this case the maximum value of the (degree of) polariza-
tion, which is reached at 5 MeV (see also Fig. 4), drops
to about half of it when the collision energy is further
increased to 15 MeV (cf. Fig. 6).

4 Conclusion

In conclusion, the polarization correlations in the electron–
nucleus bremsstrahlung have been explored under the as-
sumption that the scattered, final–state electron remains
unobserved. In our study special emphasis was placed on
the experimentally relevant regime of high–Z targets and
collision energies in the range from 180 keV to 15 MeV.
For these energies, detailed calculations were performed
within the short-wavelength limit (SWL) for the linear po-
larization of the bremsstrahlung photons and for various
polarization states of the incident electron beam. The po-
larization correlations were explored by means of a rigor-
ous relativistic theory and the hybrid Dirac–Sommerfeld–
Maue approach that employs the Dirac solution only for
the description of the (slow) scattered electron. By com-
paring predictions of these two theories for the various
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Fig. 5. The Stokes parameter P2 of the bremsstrahlung radi-
ation emitted in collisions of longitudinally polarized electrons
with bare gold ions. Calculations have been performed for colli-
sion energies: 2 MeV (dotted line, partial–wave results), 5 MeV
(dash–dotted line, partial–wave results) and 15 MeV (solid line,
DSM results).

polarization correlation parameters, we were able to show
that the DSM model provides a complementary approach
to the partial–wave theory in the high–relativistic regime.

The comparison between DSM and partial–wave pre-
dictions also gives more insight into the behaviour of the
Sommerfeld–Maue wavefunction. For example, the Stokes
parameter P1 of the emitted radiation, which is nonzero
even in the non–relativistic limit and which generally de-
creases with collision energy (eventually to negative val-
ues) reflects the behaviour of the wavefunction well away
from the nucleus. When approximate, DSM data for this
parameter are compared to exact partial–wave results, it
is concluded that globally the SM function performs well
at energies above 2 MeV. In contrast, P2 provides a tool
for testing the innermost spatial region of the electronic
function, especially at large photon angles. There, the dis-
crepancies between DSM and exact relativistic calcula-
tions are most prominent, due to the missing relativistic
contraction of the SM function. We recall that at very
small distances the Sommerfeld–Maue function gets only
exact in the limiting case γi → ∞. One can expect, there-
fore, that in such an ultra–relativistic limit, the Dirac–
Sommerfeld–Maue theory will be appropriate for an accu-
rate description of the P2 parameter in the whole angular
range.

Based on the calculations presented in Section 3 we
estimate the range of validity of the Dirac–Sommerfeld–
Maue approach (for high Z and γi ≫ 1) to be given
roughly by Z/(γiv) ≈ Zc/Ei . 0.02. Within this param-
eter range and for the forward emission angles, the DSM
model provides an accurate estimate for both Stokes pa-
rameters P1 and P2. Since for relativistic electrons with
energies Ei > 2 MeV the photons are predominantly emit-
ted into a narrow cone around the incoming beam axis
(θk = 0◦), this model may be used to analyze the out-
come of future high–energy bremsstrahlung experiments.
Such experiments are planned to be performed in the near-
est future at the Facility for Antiproton and Ion Research
(FAIR) as well as at the Technical University of Darm-
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Fig. 6. The Stokes parameter P2 of the bremsstrahlung radi-
ation emitted in collisions of transversally polarized electrons
with bare gold ions. Calculations have been performed for two
collision energies: 5 MeV (dashed line, partial–wave calcula-
tions) and 15 MeV (solid line, DSM calculations).

stadt and are expected to reveal unique information about
the fundamental process of electron–photon interaction in
the ultra–relativistic regime.
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