Maß- und Integralrechnung Tutoriumsblatt 1

Aufgabe 1:

Sei X eine Menge. Zeigen Sie, dass $\mathcal{A} \subset \mathcal{P}(X)$ genau dann eine Algebra ist, wenn

- (a) $\emptyset \in \mathcal{A}$.
- (b) Aus $A \in \mathcal{A}$ folgt $A^{\complement} \in \mathcal{A}$.
- (c) Aus $A, B \in \mathcal{A}$ folgt $A \cup B \in \mathcal{A}$.

Aufgabe 2:

Seien $(A_n)_{n\in\mathbb{N}}$ eine Folge von Mengen und A eine Menge. Zeigen Sie, dass $A_n\to A$ genau dann, wenn $\chi_{A_n}(x)\to\chi_A(x)$.

Aufgabe 3:

Zeigen Sie, dass sich jede offene Menge $U \subset \mathbb{R}^n$ als abzählbare Vereinigung offener Intervalle mit rationalen Eckpunkten darstellen lässt, d.h.

$$U = \bigcup_{i=1}^{\infty}]a_i, b_i[, a_i, b_i \in \mathbb{Q}^n.$$

 $\textit{Bemerkung:} \text{ Hieraus folgt insbesondere } \sigma(\{U:U\subset\mathbb{R}^n \text{ offen}\}) = \sigma(\{]a,b[:a,b\in\mathbb{Q}^n\}).$