Analysis einer Veränderlichen — Präsenzaufgaben 7

Aufgabe 1:

Es sei $f: X \to Y$ eine Funktion. Zeigen Sie für alle $A \subset Y$ gilt

$$f^{-1}(A^c) = (f^{-1}(A))^c$$
.

Bemerkungen zu Aufgabe 1:

$$x \in f^{-1}(A^c) \Leftrightarrow \exists y \in A^c, f(x) = y \Leftrightarrow x \notin f^{-1}(A) \Leftrightarrow x \in (f^{-1}(A))^c.$$

Aufgabe 2:

- (a) Zeigen Sie, dass das Produkt von folgenstetigen Funktionen wieder folgenstetig ist.
- (b) Zeigen Sie: Wenn $f_i : \mathbb{R} \to \mathbb{R}$ stetig ist für alle $i \in \{1, ..., n\}$, dann ist die Funktion $\prod_{i=1}^n f_i : \mathbb{R} \to \mathbb{R}$ stetig.

Aufgabe 3:

Wir zeigen mit den folgenden Schritten, dass die n-te Wurzel wohldefiniert ist.

- (a) Zeigen Sie, dass $f:[0,\infty)\to[0,\infty)$ $x\mapsto x^n$ streng monoton wachsend ist.
- (b) Zeigen Sie, dass für alle $y \in [0, \infty)$ ein $x \in [0, \infty)$ gibt, so dass $y = x^n$.
- (c) Zeigen Sie, dass es höchstens ein $x \in [0, \infty)$ gibt, so dass $y = x^n$.

Aufgabe 4:

Wir betrachten, die Funktion $f:(0,2\pi]\to\mathbb{R},\ x\mapsto\sin\frac{1}{x}$. Zeigen Sie, dass diese Funktion nicht stetig Fortsetzbar in 0 ist.

Aufgabe 5:

Sei (a, b) ein offenes Intervall und $a \subset \mathbb{R}$.

- (a) Zeigen Sie, dass x Berührungspunkt von A ist, genau dann wenn es eine Folge $(x_n)_n \subset A$ gibt, und $x_n \to x$.
- (b) Zeigen Sie, dass $\overline{(a,b)} = [a,b]$.
- (c) Zeigen Sie, dass $\overline{\mathbb{Q}} = \mathbb{R}$.