
MUCKENHOUPT WEIGHTS IN VARIABLE EXPONENT SPACES

LARS DIENING† AND PETER HÄSTÖ∗,∗∗

Abstract. In this article we define an appropriate Muckenhoupt class for variable ex-
ponent Lebesgue spaces, in other words, we characterize the set of weights ω for which
the maximal operator is bounded on Lp(·)(Rn, ω). The exponent is assumed to satisfy the
usual log-Hölder continuity condition.

1. Introduction

During the last ten years, function spaces with variable exponent and related differential
equations have attracted a lot of interest with contributions by over a hundred researchers
so far, cf. the recent monograph [22]. Apart from interesting theoretical considerations,
these investigations were motivated by a proposed application to modeling electrorheolog-
ical fluids [2, 64, 66], and, more recently, an application to image restoration [1, 11, 33, 50].
In this article we focus on the function spaces aspect of variable exponent problems. For
more information on the PDE aspect see e.g. [3, 5, 6, 8, 9, 26, 30, 34, 54, 70].

The first article on variable exponent Lebesgue spaces is by Orlicz in 1931 [60]. The
research that followed dealt with rather general modular spaces, cf. [57]. Starting in the
mid-70s, Polish mathematicians such as H. Hudzik, A. Kamińska and J. Musielak pursued
a somewhat more concrete line of inquiry, see e.g. the monograph [56] for details. The
spaces introduced, now know as Musielak–Orlicz spaces, are still actively studied today.
Variable exponent spaces were considered again in 1991 by O. Kováčik and J. Rákosńık
[46] who obtained results on many basic properties. In 2001 X.-L. Fan and D. Zhao [27]
independently reproved the basic results by recourse to the general theory of Musielak–
Orlicz spaces.

During the 1990s there appeared a dozen or two papers on variable exponent spaces,
but the development of the theory was rather sluggish. A central motivation for studying
variable exponent spaces was the hope that many classical results from Lebesgue space
theory could be generalized to this setting, but not to general Musielak–Orlicz spaces.
Although this proved to be the case, it was often the result of complicated work, see e.g.
[24, 25] by D. Edmunds and J. Rákosńık on the Sobolev embedding. Progress was in fact
being halted by the lack of one central tool: the Hardy–Littlewood maximal operator.
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The problem of the boundedness of the maximal operator in Lp(·)(Ω) was solved in the
local case by L. Diening [19], who also showed the importance and geometric significance
of the so-called log-Hölder condition in variable exponent spaces. His technique was soon
generalized to the unbounded case by D. Cruz-Uribe, A. Fiorenza and C. Neugebauer [13]
and, independently, A. Nekvinda [58].

It is not difficult to define variable exponent spaces also in the weighted case or indeed in
the case of general measure spaces. The basic properties from [27, 46] hold also in this case
[35]. However, it turns out that the maximal operator presents a substantial new challenge.
In essence, Diening’s method from [19] reduces the problem to a global application of the
classical maximal inequality with exponent p− := ess inf p. In the weighted situation one
might at best be able to handle an Ap−-weight with this approach which would not be so
interesting; further, this would obviously not give a necessary and sufficient condition.

In the absence of a general theory, V. Kokilashvili, S. Samko and their collaborators
have proved several boundedness results with particular classes of weights: initially in the
case of power-type weights [44, 68, 69, 71] and more recently in the case of weights which
are controlled by power-type functions [7, 40, 41, 42, 43, 63, 67]. Other investigations
with such weights include [4, 10, 39, 51, 52]; more general metric measure spaces have
been studied for instance in [28, 32, 35, 53]; p(r)-type Laplacian weighted ODEs have been
considered in [72, 73]. Obtaining weighted results was also explicitly mentioned as an open
problem by D. Cruz-Uribe, A. Fiorenza, J.M. Martell and C. Pérez [14].1

In this article an appropriate generalization of Muckenhoupt’s Ap-weights [55] is intro-
duced for variable exponent spaces; in other words we characterize the class of weights ω
for which the maximal operator is bounded on Lp(·)(Rn, ω). We treat ω as a measure. The
exact definition of the class Ap(·) is given in Section 3. The space Lp(·)(Rn, ω) and the set
P log(Rn) are defined in Section 2. The main result of this paper is the following:

Theorem 1.1. Let p ∈ P log(Rn) with 1 < p− 6 p+ <∞. Then

M : Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω) if and only if ω ∈ Ap(·).
The embedding constant depends only on the characteristics of p and on ‖ω‖Ap.

The assumption p ∈ P log(Rn) is standard in the variable exponent context, although not
strictly speaking necessary even in the unweighted case [20, 47, 49, 59, 62]; see also [21] on
the necessity of the assumption 1 < p−.

Most of the paper is devoted to the proof of Theorem 1.1. In contrast to the classical case,
both the necessity and the sufficiency of the Ap(·)-condition are non-trivial. We start in the
next section with reiterating the necessary background. The key ingredient for the proof,
the so-called local-to-global theorem, is introduced at the end of the section. In Section 3
we introduce the class Ap(·) and prove several basic properties including monotonicity,
duality and reverse factorization. In Section 5 the sufficiency of the Ap(·)-condition is
shown, whereas Section 6 deals with its necessity.

1After circulating a preprint of this article, it appeared that D. Cruz-Uribe, A. Fiorenza and C. Neuge-
bauer are currently working on the problem of the boundedness of the maximal operator in the weighted
case and are preparing a paper containing certain local versions of the sufficiency in the main theorem of
this paper that they have obtained independently from this work. Also, after the completion of this paper
the authors and D. Cruz-Uribe have derived similar results in the setting of weights as multipliers [12].
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It should be noted that once one knows how to prove the boundedness of the maximal
operator, one easily obtains the boundedness of several other operators through extrap-
olation. Such results have recently been studied e.g. by Cruz-Uribe, Martell, Pérez and
collaborators, cf. [14, 15, 16, 17, 18]; the first mentioned paper deals with the variable
exponent case. The so-called diagonal case of extrapolation (originally due to Rubio de
Francia [65]) is easy to generalize to the variable exponent weighted case. For instance it
allows us to obtain the Poincaré inequality

‖u− uB,ω‖Lp(·)(B,ω) . diam(B) ‖∇u‖Lp(·)(B,ω),

for a ball B ⊂ Rn, p ∈ P log
± (B), ω ∈ Ap(·) and u ∈ W 1,p(·)(B,ω), where uB,ω denotes

the average with respect to the measure ω dx. It appears to be much more challenging
to generalize the off-diagonal case (originally due to Harboure, Maćıas and Segovia [31]).
This result would allow us for instance to obtain the correct mapping properties for the
Riesz potential. But this case has to be left to future investigations.

Let us conclude the introduction by considering some other recent advances on maximal
operators in variable exponent spaces. T. Kopaliani [45], building on Diening [20], recently
showed that

M : Lp(·)(Rn) ↪→ Lp(·)(Rn) if and only if sup
Q

1
|Q|‖χQ‖p(·) ‖χQ‖p′(·) <∞

provided p is bounded away from 1 and∞ and constant outside a large ball. (Incidentally,
the latter condition can be weakened to log-Hölder decay using [36].) Kopaliani’s condition
can be seen as the Ap(·)-condition for ω ≡ 1, namely, in the constant exponent case we
have

M : Lp(Rn, ω) ↪→ Lp(Rn, ω) if and only if sup
Q

1
|Q|‖ω

1
pχQ‖p ‖ω−

1
pχQ‖p′ <∞.

We show in Remark 3.11 that supQ
1
|Q|‖ω

1
p(·)χQ‖p(·) ‖ω−

1
p(·)χQ‖p′(·) is indeed bounded if

ω ∈ Ap(·) and p ∈ P log
± . In view of this and the result of Kopaliani, one could reasonably

conjecture that the condition p ∈ P log is not truly important in the weighted case either and
might be dropped. However, it has been shown in [22, Theorem 5.3.4] by a counterexample
that supQ

1
|Q|‖χQ‖p(·) ‖χQ‖p′(·) < ∞ does not imply M : Lp(·)(Rn) ↪→ Lp(·)(Rn). Thus even

in the case ω ≡ 1 some additional condition must be placed on p. In this paper the
condition is p ∈ P log

± . The question is whether it can be weakened. It is conceivable that
the boundedness of the maximal operator in the unweighted space Lp(·)(Rn) would also
play a role. In the classical setting this is a non-issue, since the operator is always bounded
in this case. Let us formulate these speculations as a question:

Question 1.2. Let p be a variable exponent such that M : Lp(·)(Rn) ↪→ Lp(·)(Rn). Is it
then true that

ω ∈ Ap(·) if and only if sup
Q

1
|Q|‖ω

1
p(·)χQ‖p(·) ‖ω

1
p(·)χQ‖p′(·) <∞

if and only if M : Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω)?

A further open question is whether any of the techniques of this paper can be extended
to Musielak–Orlicz spaces or other Banach function spaces.
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2. Preliminaries

In this section we present background material, mostly relating to variable exponent
Lebesgue spaces. For more information on these spaces we refer to the recent monograph
[22].

Definitions and conventions. The notation f . g means that f 6 cg for some constant
c, and f ≈ g means f . g . f . By c or C we denote a generic constant, whose value may
change between appearances even within a single line. By cD we denote the concentric
c-fold dilate of the ball or cube D. A measure is doubling if µ(2B) 6 Cµ(B) for every
ball B. By

ffl
E
f dx we denote the integral average of f over E. The notation A : X ↪→ Y

means that A is a continuous embedding from X to Y .
By Ω ⊂ Rn we denote an open set. A measurable function p : Ω → [1,∞) is called a

variable exponent, and for A ⊂ Ω we denote

p+
A := ess sup

x∈A
p(x), p−A := ess inf

x∈A
p(x), p+ := p+

Ω and p− := p−Ω.

We always assume that p+ < ∞. The conjugate exponent p′ : Ω → [1,∞] is defined
point-wise by 1

p
+ 1

p′
= 1.

The (Hardy–Littlewood) maximal operator M is defined on L1
loc by

Mf(x) := sup
r>0

 
B(x,r)

|f(y)| dy.

We will mostly use this centered version over balls, but it is clear that the boundedness of
this operator is equivalent to the boundedness of the non-centered maximal operator, or
to that of the maximal operator over cubes.

Logarithmic Hölder continuity. We say that p satisfies the local log-Hölder continuity
condition if

|p(x)− p(y)| 6 c

log(e+ 1/|x− y|)
for all x, y ∈ Ω. If

|p(x)− p∞| 6
c

log(e+ |x|)
for some p∞ > 1, c > 0 and all x ∈ Ω, then we say p satisfies the log-Hölder decay condition
(at infinity). We denote by P log(Ω) the class of variable exponents which are log-Hölder
continuous, i.e. which satisfy the local log-Hölder continuity condition and the log-Hölder
decay condition. Actually, this class is somewhat too weak for us, and we will usually need
the class P log

± (Ω) which consists of those p ∈ P log(Ω) with 1 < p− 6 p+ <∞. The constant
c in the log-Hölder condition and the bounds p− and p+ will be called the characteristics
of p.

The reason that the log-Hölder continuity condition is so central in the study of variable
exponent spaces was discovered by L. Diening [19] who noted that it implies that

sup
x,y∈B

|B|−|p(x)−p(y)| 6 max
{

1, |B|p
−
B−p

+
B} . 1
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for all balls B with radius bounded by a given constant. It follows that when working in
small balls we can change the exponent on any quantity which is polynomial in the radius
of the ball. Subsequently, D. Cruz-Uribe, A. Fiorenza and C. Neugebauer [13] noticed that
the decay condition implies that

sup
x,y∈B

|B||p(x)−p(y)| 6 |B|p
+
B−p

−
B . 1

if B = B(z, r) is a ball relatively far away from the origin in the sense that |z| > Lr for
some fixed L > 1.

Denote by pB the harmonic average of p over B, i.e.

pB :=

(  
B

1

p(x)
dx

)−1

.

Since p−B 6 pB 6 p+
B it is clear that |B|p−B ≈ |B|pB ≈ |B|p+B for small balls when p ∈ P log.

Additionally, one easily calculates from the decay condition that

|B|p∞ ≈ |B|pB

for all balls with radius larger than some constant. These properties will be used often
also in this article. Establishing their analogues with |B| replaced by ω(B) for ω ∈ A∞ is
the first central step when starting to work with Ap(·)-weights in Section 3.

Since we deal only with bounded exponents, we can change the harmonic mean in a
power to an arithmetic mean:

Lemma 2.1. Let p ∈ P log(Rn). Then |B|pB ≈ |B|〈p〉B for every ball B ⊂ Rn, where
〈p〉B =

ffl
B
p(x) dx.

Proof. Since p−B 6 〈p〉B 6 p+
B, the equivalence |B|p−B ≈ |B|pB ≈ |B|p+B yields the claim

for all balls of radius at most 1, so we assume that B = B(x, r) with r > 1. Since p is

bounded, it suffices to show that r
〈p〉B
pB
−1 ≈ 1. For this we estimate∣∣∣〈p〉B

pB
− 1
∣∣∣ =

∣∣∣∣  
B

 
B

p(x)− p(y)

p(y)
dx dy

∣∣∣∣ 6  
B

 
B

|p(x)− p(y)| dx dy 6 2

 
B

|p(x)− p∞| dx.

Then we use the decay condition and find that∣∣∣〈p〉B
pB
− 1
∣∣∣ .  

B

1

log(e+ |x|)
dx 6

 
B(0,r)

1

log(e+ |x|)
dx

=

 
B(0,1)

1

log(e+ r |z|)
dz =

c

log(e+ r)

ˆ 1

0

sn−1 log(e+ r)

log(e+ rs)
ds.

Now we see that the integrand in the last step is at most 1 for every s ∈ [0, 1], so we

conclude that log(e+ r)
∣∣ 〈p〉B
pB
− 1
∣∣ . 1. But this clearly implies that r

〈p〉B
pB
−1 ≈ 1, so we are

done. �
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The variable exponent Lebesgue space. By ω we always denote a weight, i.e. a locally
integrable function with range (0,∞). In a classical Lebesgue space the relation between
the modular %(·) and norm ‖ · ‖ is very simple:

‖f‖Lp(Ω,ω) =
(
%Lp(Ω,ω)(f)

) 1
p where %Lp(Ω,ω) =

ˆ
Ω

|f(x)|p ω(x) dx.

In the variable exponent context we retain the form of the modular, but define the norm in
the spirit of the Luxemburg norm in Orlicz spaces (or the Minkowski functional in abstract
spaces):

‖u‖Lp(·)(Ω,ω) := inf
{
λ > 0 : %Lp(·)(Ω,ω)

(u
λ

)
6 1
}
,

where %Lp(·)(Ω,ω)(u) :=

ˆ
Ω

|u(x)|p(x) ω(x) dx.
(2.2)

We omit ω from the notation of modular and norm if ω ≡ 1.
It is clear that

‖u‖Lp(·)(Ω,ω) =
∥∥uω 1

p(·)
∥∥
Lp(·)(Ω)

=
∥∥uω 1

p(·) χΩ

∥∥
Lp(·)(Rn)

.

The following rather crude relationship between norm and modular is surprisingly useful:

min
{
%Lp(·)(Ω,ω)(f)

1
p− , %Lp(·)(Ω,ω)(f)

1
p+

}
6 ‖f‖Lp(·)(Ω,ω) 6 max

{
%Lp(·)(Ω,ω)(f)

1
p− , %Lp(·)(Ω,ω)(f)

1
p+

}
.

(2.3)

The proof of this well-known fact follows directly from the definition of the norm.
The variable exponent Lebesgue space Lp(·)(Ω, ω) consists of all measurable functions

f : Ω → R for which ‖f‖Lp(·)(Ω,ω) < ∞. Equipped with this norm, Lp(·)(Ω, ω) is a Banach
space. The variable exponent Lebesgue space is a Musielak–Orlicz space, and for a constant
function p it coincides with the standard Lebesgue space. Basic properties of these spaces
can be found in [22, 27, 46].

Hölder’s inequality can be written in the form

‖fg‖Ls(·)(Rn,ω) 6 2‖f‖Lp(·)(Rn,ω)‖g‖Lq(·)(Rn,ω),

where 1
s

= 1
p

+ 1
q

[22, Lemma 3.2.20]. It holds for any weight ω, and indeed for more general
measures as well.

The local-to-global method. In [36] a simple and convenient method to pass from local
to global results was introduced; it is in some sense a generalization the following property
of the Lebesgue norm:

(2.4) ‖f‖pLp(Rn) =
∑
i

‖f‖pLp(Ωi)

for a partition of Rn into measurable sets Ωi. By a partition we mean that the sets Ωi

are disjoint and cover Rn up to a set of measure zero. The idea is to obtain global results
by summing up a collection of local ones. In the variable exponent case it seems that
arbitrary partitions will not do, rather we need to restrict our attention to special kinds of
partitions.
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Definition 2.5. An orderly partition is a partition (Qj) of Rn into equal sized cubes,
ordered so that i > j if dist(0, Qi) > dist(0, Qj).

The following result, which is critical for many later proofs, appears as Theorem 2.4 of
[36] (cf. Section 4 of the same reference for the inclusion of weights). Note that the claim
of the theorem holds trivially if p is constant, by (2.4).

Theorem 2.6 (Local-to-Global Theorem). If p satisfies the log-Hölder decay condition
and is bounded and (Qj) is as in Definition 2.5, then∥∥‖f‖Lp(·)(Qi,ω)

∥∥
lp∞
≈ ‖f‖Lp(·)(Rn,ω).

We conclude the introduction by another useful result which says that we can move
between a variable exponent space and a constant exponent space provided we have an
appropriate bound on our functions. This is an extension of [36, Lemma 5.1] and [23,
Lemma 4.5] which dealt with the case β = 0. We say that the weight ω has at most
polynomial growth if there exists q > 0 such that ω(B(0, r)) . rq for r > 1. Note that this
certainly holds if ω ∈ A∞.

Lemma 2.7. Let p ∈ P log
± (Rn), β ∈ R, and let f ∈ L1

loc(Rn) be a function with |f(x)| .
(1 + |x|)β. If ω has at most polynomial growth, then ‖f‖Lp(·)(Rn,ω) ≈ ‖f‖Lp∞ (Rn,ω).

Proof. We consider three cases. If ‖f‖Lp∞ (Rn,ω) = 0, then f ≡ 0 almost everywhere, and
the claim is clear.

If 0 < ‖f‖Lp∞ (Rn,ω) < ∞, then we may assume that ‖f‖Lp∞ (Rn,ω) = 1 since the claim

is homogeneous in f . Let p̃ := min{p∞, p}. By Hölder’s inequality, Lp(·)(Rn, ω) ↪→
Lp̃(·)(Rn, ω) if ‖1‖Lr(·)(Rn,ω) < ∞, where 1

p̃
= 1

p
+ 1

r
. The definition of p̃ and the decay

condition imply that

1

r(x)
= max

{ 1

p∞
− 1

p(x)
, 0
}
6

c

log(e+ |x|)
.

Hence r(x) > c log(e + |x|); denoting by q the exponent from the growth bound of
ω(B(0, r)), we conclude that

%Lr(·)(Rn,ω)(λ) 6
∑
j

ˆ
B(0,j+1)\B(0,j)

λr(x)ω(x) dx .
∑
j

(e+ j)c log λω(B(0, j + 1))

6
∑
j

(e+ j)c log λ+q <∞,

provided λ ∈ (0, 1) is chosen small enough. Therefore, Lp(·)(Rn, ω) ↪→ Lp̃(·)(Rn, ω).
Since |f | . (1 + |x|)β and p∞ > p̃(·) we conclude that

|f(x)|p∞ = (1 + |x|)βp∞
( |f(x)|

(1 + |x|)β
)p∞
. (1 + |x|)β(p∞−p̃(x))|f(x)|p̃(x).

It follows from the decay condition on p that (1 + |x|)p∞−p̃(x) 6 C. Hence we obtain thatˆ
Rn
|f(x)|p̃(x)ω(x) dx &

ˆ
Rn
|f(x)|p∞ω(x) dx = ‖f‖p∞Lp∞ (Rn,ω) = 1.
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Since p is bounded, it follows that ‖f‖Lp̃(·)(Rn,ω) > C, which combined with the embedding
yields ‖f‖Lp(·)(Rn,ω) > C. The opposite inequality is proved analogously.

Finally, suppose that ‖f‖Lp∞ (Rn,ω) = ∞ and take a sequence of non-negative functions
fi such that fi ↗ |f | and ‖fi‖Lp∞ (Rn,ω) < ∞. Then it follows by the second case and
monotone convergence (cf. Theorem 2.3.17, [22]) that ‖f‖Lp(·)(Rn,ω) = lim ‖fi‖Lp(·)(Rn,ω) ≈
lim ‖fi‖Lp∞ (Rn,ω) =∞. �

3. The Muckenhoupt class Ap(·)

Let us define the class Ap(·) to consist of those weights ω for which

‖ω‖Ap(·) := sup
B∈B
|B|−pB‖ω‖L1(B)‖ 1

ω
‖Lp′(·)/p(·)(B) <∞,

where B denotes the family of all balls in Rn and ‖ · ‖Lp′(·)/p(·)(B) is defined as in (2.2) even

when p′(·)/p(·) is not greater or equal to one. (If p′(·)/p(·) takes values also in (0, 1), then
‖ · ‖Lp′(·)/p(·)(B) is not a norm but only a quasi-norm.) Note that this class is the ordinary

Muckenhoupt class Ap if p is a constant function; for properties of Ap we refer to [29, 61].
The classes Ap(·)(D) and Aloc

p(·) are defined using the same formula, but B is now the family
of all balls in D ⊂ Rn and all balls in Rn with radius at most 1, respectively. When we
need some specific family of sets B, we use the notation ABp(·) and ‖ω‖AB

p(·)
. In what follows

we often write ω(B) for ‖ω‖L1(B), i.e. we think of ω also as a measure.
In the classical case, ‖ω‖Ap is called the Ap-constant of the weight and with p it deter-

mines the embedding constant of M : Lp(Rn, ω) ↪→ Lp(Rn, ω) (see [61]). In the variable ex-
ponent context this is not quite true, as the following example shows. Let ωa ≡ a ∈ (0,∞).
Then ‖ωa‖Ap(·) = ‖1‖Ap(·) is independent of a. Consider now a variable exponent with

p|D1 ≡ p1 and p|D2 ≡ p2 6= p1. Suppose that |D1|, |D2| ∈ (0,∞). Then

‖χD1‖Lp(·)(Rn,ωa) = ‖χD1‖Lp1 (D1,ωa) = (a |D1|)
1
p1

and
‖MχD1‖Lp(·)(Rn,ωa) > ‖MχD1‖Lp2 (D2,ωa) > (a |D2|)

1
p2 |D1| r−n,

where r = supx∈D1,y∈D2
|x− y|. Thus we obtain

‖MχD1‖Lp(·)(Rn,ωa)

‖χD1‖Lp(·)(Rn,ωa)

& a
1
p2
− 1
p1

and see that the embedding constant depends on a even though ‖ωa‖Ap(·) does not. In
essence, this is just another manifestation of the non-homogeneity of the variable exponent
modular. The further the weight is from 1, the greater the problem. In the variable
exponent setting we define the Ap(·)-constant of the weight ω to be ‖ω‖Ap(·) +ω(B(0, 1)) +

1
ω(B(0,1))

. It turns out that this quantity, together with the characteristics of the exponent,

is sufficient to control the embedding constant.
Let us now derive some results on weights in the class Ap(·). We will use the notation

Cincl throughout the article for the constant appearing in the next lemma.

Lemma 3.1. Let p, q ∈ P log
± (Rn). If q 6 p, then there exists a constant Cincl depending on

the log-Hölder constants of p and q such that ‖ω‖Ap(·) 6 Cincl‖ω‖Aq(·).
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Proof. Since q 6 p, we have q′

q
> p′

p
. Then it follows from Hölder’s inequality that

‖ 1
ω
‖Lp′(·)/p(·)(B) 6 2‖1‖Lα(·)(B)‖ 1

ω
‖Lq′(·)/q(·)(B),

where 1
α

= p
p′
− q

q′
= p− q > 0. Note that α is not necessarily bounded. Fortunately, this is

not so important, since we recently proved in [22, Theorem 4.5.7] that ‖1‖Lα(·)(B) ≈ |B|1/αB
even for unbounded α, as long as 1

α
is log-Hölder continuous. Therefore

‖1‖Lα(·)(B) ≈ |B|
1
αB = |B|〈p〉B−〈q〉B ≈ |B|pB−qB ,

where 〈p〉B :=
ffl
B
p(x) dx. The last equivalence follows from Lemma 2.1. These inequalities

imply that ‖ω‖Ap(·) . ‖ω‖Aq(·) which yields the claim. �

Remark 3.2. The constant in the previous lemma depends on the exponents involved only
through the log-Hölder constant. In particular Cincl is independent of q when we apply the
lemma with exponents p(·) and q. This will be used several times later on.

As usual we define the class A∞ as the union of all classes Ap, p ∈ [1,∞), similarly for
Aloc
∞ . The class A1 consists of those weights for which Mω . ω and it is contained in every

Ap. In view of the previous lemma we have A1 ⊂ Ap− ⊂ Ap(·) ⊂ Ap+ ⊂ A∞ for p ∈ P log
± .

For future reference we make the following observation; in fact, this simple, well-known
property of Ap+ proves to be crucial in our controlling ω(B) to various exponents.

Lemma 3.3. Let p ∈ P log
± (Rn). If ω ∈ Ap(·), then

ω(B(x, r)) & ω(B(y,R))
( rn

|x− y|n + rn +Rn

)p+
for all x, y ∈ Rn and r, R > 0.

Proof. By the previous lemma we conclude that ω ∈ Ap+ . Then we may use the p+-maximal
inequality to derive

ω(B(x, r)) =

ˆ
Rn

(
χB(x,r)(z)

)p+
ω(z) dz &

ˆ
Rn

(
MχB(x,r)(z)

)p+
ω(z) dz

> ω(B(y,R))
( rn

|x− y|n + rn +Rn

)p+
. �

Using of the previous lemma we can prove the following fundamental estimates which
state that the relationship between norm and modular of a characteristic function is un-
expectedly nice also in the weighted case, provided the weight is in A∞. This property is
central in many of the later arguments. We start with a local version.

Lemma 3.4. Let p ∈ P log
± (Rn) and ω ∈ A∞. Then

‖1‖Lp(·)(B,ω) ≈ ω(B)
1

p+
B ≈ ω(B)

1

p−
B ≈ ω(B)

1
p(x) ≈ ω(B)

1
pB

if B is a ball with diamB 6 2 and x ∈ B. In addition, ω(B)
1
pB ≈ ω(B)

1
p∞ when diamB ∈

( 1
4
√
n
, 2].
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Proof. Since ω ∈ A∞, there exists q ∈ [1,∞) such that ω ∈ Aq. Suppose first that
B = B(x, r) with r 6 1. From Lemma 3.3 we conclude that

(3.5)
( rn

1 + |x|n
)q
ω(B(0, 1)) . ω(B) . (1 + |x|n)qω(B(0, 1)).

Thus

ω(B)p
−
B−p

+
B .

[
1 + ω(B(0, 1))p

−−p+](1 + |x|n)q|p
+
B−p∞|+q|p

−
B−p∞| r−nq(p

+
B−p

−
B).

Here the first factor is a constant, the second is bounded due to the log-Hölder decay con-
dition, and the third is bounded due to the local log-Hölder continuity condition. Similarly

we obtain ω(B)p
−
B−p

+
B & 1. By (2.3) we have

min
{
ω(B)

1

p+
B , ω(B)

1

p−
B

}
6 ‖1‖Lp(·)(B,ω) 6 max

{
ω(B)

1

p+
B , ω(B)

1

p−
B

}
.

Since ω(B)p
−
B−p

+
B ≈ 1, the upper bound is equivalent to the lower bound, and the first

claim follows.
If r ∈ ( 1

8
√
n
, 1], then (3.5) becomes(

1 + |x|n
)−q

ω(B(0, 1)) . ω(B) . (1 + |x|n)qω(B(0, 1))

which by the decay condition implies that ω(B)
1
pB ≈ ω(B)

1
p∞ . �

Let us next use the Local-to-Global Theorem to get a large-ball version of the previous
lemma. We will use this result several times, so we formulate it in a general form. We say
that a measure is doubling on small balls if the doubling condition holds for all balls of
radius at most 1.

Lemma 3.6. Let p ∈ P log
± (Rn) and suppose that ω is doubling on small balls and that

‖1‖Lp(·)(B,ω) ≈ ω(B)
1
p∞ for all balls with diamB ∈ ( 1

4
√
n
, 2). Then

‖1‖Lp(·)(B,ω) ≈ ω(B)
1
p∞

also for all balls with diameter at least 2.

Proof. Let (Qi) be an orderly partition of Rn into cubes with diameter 1
2

as in Definition 2.5
and let B be a ball of diameter at least 2. We want to split B into the pieces B ∩Qi and

apply the assumption ‖1‖Lp(·)(B′,ω) ≈ ω(B′)
1
p∞ to each piece. However, B ∩Qi is not a ball

and we have to modify this argument slightly.
Let I be the set of indices for which B ∩Qi 6= ∅. We first apply Theorem 2.6 to (Qi):

‖χB‖p∞Lp(·)(Rn,ω)
≈
∑
‖χB‖p∞Lp(·)(Qi,ω)

6
∑
i∈I

‖χB‖p∞Lp(·)(2Qi,ω)
=
∑
i∈I

‖1‖p∞
Lp(·)(B∩2Qi,ω)

,

Let (Q̂i) be the orderly partition obtained by shifting each cube in (Qi) half a cube along
the (1, . . . , 1)-direction. Then

2Qi =
⋃
j∈Ji

Q̂j,
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where Ji is an index set with 2n elements. Then we can apply Theorem 2.6 to deduce∑
i∈I

‖1‖p∞
Lp(·)(B∩2Qi,ω)

6 2n
∑
‖1‖p∞

Lp(·)(B∩Q̂i,ω)
≈ ‖χB‖p∞Lp(·)(Rn,ω)

.

It follows that

‖1‖p∞
Lp(·)(B,ω)

= ‖χB‖p∞Lp(·)(Rn,ω)
≈
∑
i∈I

‖1‖p∞
Lp(·)(B∩2Qi,ω)

.

Let i ∈ I. Then we find balls B− and B+ with B− ⊂ B ∩ 2Qi ⊂ 2Qi ⊂ B+ such that
diamB− = 1

4
√
n

and diamB+ = 1. We conclude that

ω(B−) ≈ ‖1‖p∞
Lp(·)(B−,ω)

6 ‖1‖p∞
Lp(·)(B∩2Qi,ω)

6 ‖1‖p∞
Lp(·)(2Qi,ω)

6 ‖1‖p∞
Lp(·)(B+,ω)

≈ ω(B+).

Now the doubling property of the measure implies that the upper and lower bounds are
comparable, so that ‖1‖p∞

Lp(·)(B∩2Qi,ω)
≈ ω(B ∩ 2Qi) whenever B ∩ Qi 6= ∅. Combing the

above estimates we have

‖1‖p∞
Lp(·)(B,ω)

≈
∑

i :B∩Qi 6=∅

ω(B ∩ 2Qi).

Since the 2Qi have finite overlap and cover Rn, it follows that

‖1‖p∞
Lp(·)(B,ω)

≈ ω(B). �

We are now ready to prove the relationship between norm and modular of a characteristic
function of a ball.

Corollary 3.7. Let p ∈ P log
± (Rn) and ω ∈ A∞. Then ‖1‖Lp(·)(B,ω) ≈ ω(B)

1
pB for all balls

B ⊂ Rn. In addition, if 0 6∈ 2B, then ‖1‖Lp(·)(B,ω) ≈ ω(B)
1

p(y) for all y ∈ B.

Proof. By Lemma 3.4 the claim holds for balls of radius at most 1. The same lemma implies

that the conditions of Lemma 3.6 are satisfied, and thus we obtain ‖1‖Lp(·)(B,ω) ≈ ω(B)
1
p∞

for large balls. To conclude the proof we show that ω(B)
1
p∞
− 1
pB ≈ 1 for large balls. As

in the proof of Lemma 2.1 we obtain that | 1
p∞
− 1

pB
| .

(
log(e + max{|x|, r})

)−1
, where

B = B(x, r) with r > 1. Since ω ∈ A∞, there exists q ∈ [1,∞) such that ω ∈ Aq. Hence,
Lemma 3.3 implies that

(1 + (|x|/r)n)−qω(B(0, 1)) . ω(B) . (rn + |x|n)qω(B(0, 1)).

Combining these estimates yields | logω(B)|
∣∣ 1
p∞
− 1

pB

∣∣ . 1, which concludes the proof of
the main claim.

Consider then the case 0 6∈ 2B. Now, by the decay condition,

| 1

p∞
− 1

p(y)
| .

(
log(e+ |y|)

)−1
=
(

log(e+ max{|y|, r})
)−1

for y ∈ B. Then the same steps as in the first case yield the claim. �
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For ω ∈ Ap(·) we define a dual weight by ω′(y) := ω(y)1−p′(y). In the classical case it is

immediate that ‖ω‖Ap = ‖ω′‖p−1
Ap′

so ω ∈ Ap if and only if ω′ ∈ Ap′ . We now prove the

analogous result for the variable exponent case. Again, the more complicated relationship
between norm and modular causes additional work.

Proposition 3.8. If p ∈ P log
± (Rn) and ω ∈ Ap(·), then ω′ ∈ Ap′(·) and

|B|−pB ‖ω‖L1(B) ‖ 1
ω
‖Lp′(·)/p(·)(B) ≈

ω(B)

|B|

(
ω′(B)

|B|

)pB−1

.

Proof. Let ω ∈ Ap(·) and suppose first that B ⊂ Rn is a ball with diamB 6 2. By definition
of ‖ω‖Ap(·) we have

(3.9)
ω(B)

|B|pB
∥∥ 1
ω

∥∥
Lp
′(·)/p(·)(B)

6 ‖ω‖Ap(·) .

Since we do not know that ω′ ∈ A∞, we cannot directly apply Corollary 3.7 to the norm
of 1

ω
. Let us show that we also have a constant lower bound for the left hand side. We

apply Hölder’s inequality as in the classical case:

|B| =
ˆ
B

ω(y)
1

p(y) ω(y)−
1

p(y) dy 6 2
∥∥ω 1

p(·)
∥∥
Lp(·)(B)

∥∥ω− 1
p(·)
∥∥
Lp
′(·)(B)

≈
∥∥ω(B)

1
pB ω−

1
p(·)
∥∥
Lp
′(·)(B)

,

where the equivalence is due to Corollary 3.7. Hence the corresponding modular is greater
than a constant:

1 . %Lp′(·)(B)

(
ω(B)

1
pB

|B| ω−
1
p(·)

)
=

ˆ
B

(
ω(B)

1
pB

|B|

)p′(y)

ω(y)−
p′(y)
p(y) dy

≈
ˆ
B

(
ω(B)

|B|pB

) p′(y)
p(y)

ω(y)−
p′(y)
p(y) dy = %Lp′(·)/p(·)(B)

(
ω(B)
|B|pB

1
ω

)
,

where we used the local log-Hölder condition, the fact that diamB 6 2, and Lemma 3.4

for the equivalence. But then we can move back to a norm expression, now with the p′(·)
p(·) -

norm. This gives us exactly a constant lower bound for the left hand side of (3.9), hence∥∥ 1
ω

∥∥
Lp
′(·)/p(·)(B)

≈ |B|pB
ω(B)

. Armed with this piece of information and Lemma 3.4 we see that

the log-Hölder continuity of p also implies that

∥∥ 1
ω

∥∥ 1

p+
B
−1

Lp
′(·)/p(·)(B)

≈
∥∥ 1
ω

∥∥ 1

p−
B
−1

Lp
′(·)/p(·)(B)

.

Hence (2.3) implies that

‖1‖Lp′(·)/p(·)(B,ω′) =
∥∥ 1
ω

∥∥
Lp
′(·)/p(·)(B)

≈
(
%Lp′(·)/p(·)(B)

(
1
ω

))pB−1

= ω′(B)pB−1

for balls with diamB 6 2.
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Let us then look at the duality claim for small balls. So, let B be as before. Then

1

|B|p′B
‖ω′‖L1(B) ‖ 1

ω′
‖Lp(·)/p′(·)(B) =

1

|B|p′B
ω′(B) ‖1‖Lp(·)/p′(·)(B,ω)

≈ 1

|B|p′B
ω′(B)ω(B)

1
pB−1

=

[
ω(B)

|B|

(
ω′(B)

|B|

)pB−1] 1
pB−1

≈
[
ω(B)

|B|pB
∥∥ 1
ω

∥∥
Lp
′(·)/p(·)(B)

] 1
pB−1

6 ‖ω‖
1

pB−1

Ap(·)

(3.10)

where we used Corollary 3.7 for the first equivalence and the previously derived expression
for the second equivalence. This shows that ω′ ∈ Aloc

p′(·).

But now it follows from Lemma 3.1 that ω′ ∈ Aloc
∞ , so in particular the measure is

doubling on small balls. We proved that ‖1‖Lp′(·)/p(·)(B,ω′) ≈ ω′(B)pB−1, and, as usual, pB
can be replaced by p∞ when diamB ∈ ( 1

4
√
n
, 2]. Therefore it follows from Proposition 3.6

that

‖1‖Lp′(·)/p(·)(B,ω′) ≈ ω′(B)p∞−1

for balls with diamB > 2. Since p∞ can here be replaced by pB we finally obtain that

1

|B|pB
‖ω‖L1(B) ‖ 1

ω
‖Lp′(·)/p(·)(B) =

ω(B)

|B|pB
‖1‖Lp′(·)/p(·)(B,ω′) ≈

ω(B)

|B|

(
ω′(B)

|B|

)pB−1

for large balls, which completes the proof of the first claim. Armed with this information,
we see that (3.10) holds also for large balls, hence ω′ ∈ Ap′(·). �

Remark 3.11. One could consider taking supB
ω(B)
|B|

(
ω′(B)
|B|

)pB−1

< ∞ as the definition of

the class Ap(·). With this definition the duality property is an immediate consequence.
However, this definition would make it more difficult to show that Ap(·) is increasing in
p, Lemma 3.1, which is needed to get the regularity results in Lemma 3.3–Corollary 3.7.
Another possible definition would be

sup
B
|B|−1

∥∥ω 1
p(·)
∥∥
Lp(·)(B)

∥∥ω− 1
p(·)
∥∥
Lp
′(·)(B)

<∞,(3.12)

which is similar to the expression considered by Kopaliani [45]. However, again the mono-
tonicity property is missing. Note that (3.12) can also be rewritten as

sup
B
|B|−1‖1‖Lp(·)(B,ω)‖1‖Lp′(·)(B,ω′) <∞,
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It can be shown as in the previous proposition that ω ∈ Ap(·) implies (3.12). On the other
hand, once we have proved Theorem 1.1, the proof is almost trivial using duality:

‖1‖Lp(·)(B,ω)‖1‖Lp′(·)(B,ω′) 6 2 ‖1‖Lp(·)(B,ω) sup
‖g‖

Lp(·)(B,ω)
61

ˆ
B

g dx

= 2 |B| sup
‖g‖

Lp(·)(B,ω)
61

∥∥∥χB  
B

g dy
∥∥∥
Lp(·)(Rn,ω)

. |B| sup
‖g‖

Lp(·)(Rn,ω)
61

‖χBMg‖Lp(·)(Rn,ω) 6 |B|.

It is left to future investigations to consider whether the opposite implication also holds.

Let us now prove another basic property which is trivial in the constant exponent case.
It is the reverse factorization result, the converse of Jones’ famous factorization theorem
[38].

Proposition 3.13. Let p ∈ P log(Rn) and ω1, ω2 ∈ A1. Then ω1ω
1−p(·)
2 ∈ Ap(·).

Proof. Let us start with the L1-part of ‖ω1ω
1−p(·)
2 ‖Ap(·) . Since ω2 ∈ A1, we have ω2(y)−1 .

|B|/ω2(B) for y ∈ B. Hence it follows that ω2(y)1−p(y) . (|B|/ω2(B))1−pB if B has radius
at most 1 or satisfies 0 6∈ 2B, by log-Hölder continuity and Corollary 3.7. In this case we

have
∥∥ω1ω

1−p(·)
2

∥∥
L1(B)

.
( |B|
ω2(B)

)pB−1
ω1(B). Suppose now that B′ is a ball with radius at

least 1 and 0 ∈ 2B′. Let B := 3B′ and note that B(0, 1) ⊂ B. Then we estimate∥∥ω1ω
1−p(·)
2

∥∥
L1(B)

.

∥∥∥∥( |B|ω2(B)

)pB−1

ω
pB−p(·)
2 ω1 χ{p(·)>pB} +

(
|B|
ω2(B)

)p(·)−1

ω1 χ{p(·)<pB}

∥∥∥∥
L1(B)

=

(
|B|
ω2(B)

)pB−1 ∥∥∥∥ωpB−p(·)2 ω1 χ{p(·)>pB} +

(
|B|
ω2(B)

)p(·)−pB
ω1 χ{p(·)<pB}

∥∥∥∥
L1(B)

.

Since ω2 ∈ A1 and B(0, 1) ⊂ B it follows that

ω2(B(0, 1)) =

ˆ
B(0,1)

ω2(x) dx &
ˆ
B(0,1)

 
B

ω2(y) dy dx =
|B(0, 1)|
|B|

ω2(B);

thus we further conclude that(
|B|
ω2(B)

)p(·)−pB
χ{p(·)<pB} . 1 +

(
|B(0, 1)|
ω2(B(0, 1))

)p−−p+
= C.

Again using that ω2 ∈ A1 we also find that

ω2(y)pB−p(y)χ{p(y)>pB} 6

(
|B(y, 1 + |y|)|
ω2(B(y, 1 + |y|))

)p(y)−pB
.

(
(1 + |y|)n

ω2(B(0, 1))

)p(y)−pB
6 C

by the log-Hölder decay condition. Therefore∥∥ω1ω
1−p(·)
2

∥∥
L1(B′)

6
∥∥ω1ω

1−p(·)
2

∥∥
L1(B)

.

(
|B|
ω2(B)

)pB−1

ω1(B) ≈
(
|B′|
ω2(B′)

)pB′−1

ω1(B′),
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where we used the doubling condition of ω1 and ω2 in the last equivalence. We have thus
shown that this inequality holds in all cases, i.e. for all balls B′ ⊂ Rn.

Using the conclusion of the previous paragraph and the inequality ω1(y)−1 6 |B|/ω1(B)
for y ∈ B we obtain

|B|−pB
∥∥ω1ω

1−p(·)
2

∥∥
L1(B)

∥∥ω−1
1 ω

p(·)−1
2

∥∥
Lp
′(·)/p(·)(B)

. |B|−pB
(
|B|
ω2(B)

)pB−1

ω1(B)

∥∥∥∥ |B|ω1(B)
ω
p(·)−1
2

∥∥∥∥
Lp
′(·)/p(·)(B)

=
1

ω2(B)pB−1
‖1‖Lp′(·)/p(·)(B,ω2) ≈ 1,

where we used Corollary 3.7 for the last equivalence. Therefore ‖ω1ω
1−p(·)
2 ‖Ap(·) < ∞, as

was to be shown. �

Remark 3.14. The value of ‖ω1ω
1−p(·)
2 ‖Ap(·) depends on ω2 also via ω2(B(0, 1)), which is

again a manifestation of the non-homogeneity of the variable exponent modular.

4. Self-improvement properties of the Muckenhoupt class

The referee pointed out that self-improvement of the Muckenhoupt condition is only
known for Ap(Q), Q 6= Rn, when the Ap-condition is defined in terms of cubes. In our case
this is not a problem, since we do not actually need quite this strong a property. We use
the following lemma for connecting the Aq classes defined over different families of sets.
Recall that ABq was defined in the beginning of Section 3.

Lemma 4.1. Let M ∈ N. Suppose that B1 and B2 are families of balls or cubes with the
property that every set B ∈ B1 can be covered by M sets Bi ∈ B2, each with diameter
comparable (uniformly) to that of B. If ω ∈ AB2

q is doubling, then ‖ω‖
A
B1
q
. ‖ω‖

A
B2
q

.

Proof. Let B ∈ B1 and let Bi ∈ B2, i = 1, . . . ,M be a covering with diamBi ≈ diamB,
so that also |B| ≈ |Bi|. We may assume that B ∩ Bi 6= ∅ for every i. Then there exists a
constant k > 1 such that B ⊂ k Bi for every i. Since ω is doubling, ‖ω‖L1(B) . ‖ω‖L1(Bi).
Finally, we note the trivial estimate

‖ 1
ω
‖Lq′/q(B) 6

M∑
i=1

‖ 1
ω
‖Lq′/q(Bi) 6M sup

i
‖ 1
ω
‖Lq′/q(Bi).

Hence

|B|−q‖ω‖L1(B)‖ 1
ω
‖Lq′/q(B) . inf

j,k
sup
i
|Bj|−q‖ω‖L1(Bk)‖ 1

ω
‖Lq′/q(Bi)

6 sup
i
|Bi|−q‖ω‖L1(Bi)‖ 1

ω
‖Lq′/q(Bi) 6 ‖ω‖AB2q .

The result now follows when we take the supremum over B ∈ B1. �

Corollary 4.2. Let δ > 0 and let Q be a ball or a cube. Let B1 be the family of all cubes
in (1 + δ)Q, and B2 be the family of all balls in Q. Then A∞∩AB1

q ⊂ AB2
q . The conclusion

holds also if the role of balls and cubes is interchanged.
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Proof. A ball B in Q can be covered by a finite, uniformly bounded number of cubes in
(1 + δ)Q, each with diameter comparable to B. The same holds if balls and cubes are
interchanged. In both cases the result follows from Lemma 4.1. �

Now we can transfer the self-improvement property from cubes to balls:

Corollary 4.3. Let δ > 0 and let Q be a ball or a cube. If ω ∈ A∞(Rn) ∩ Aq((1 + δ)Q),
then there exists ε > 0 such that ω ∈ Aq−ε(Q).

Proof. Let ω ∈ A∞(Rn) ∩ Aq((1 + δ)Q). By Corollary 4.2, ω ∈ Acubes
q ((1 + δ

2
)Q). By the

self-improving property of Muckenhoupt weights on cubes, there exists ε > 0 such that
ω ∈ Acubes

q−ε ((1 + δ
2
)Q). By Corollary 4.2, again, ω ∈ Aq−ε(Q). �

Corollary 4.4. Let δ > 0 and let D be a ball. Let B1 be the family of all cubes in Rn \D,
and B2 be the family of all sets B \ (1+ δ)D where B are balls with center in Rn \ (1+ δ)D.
Then A∞∩AB1

q ⊂ AB2
q , and the embedding constant is independent of D. The role of cubes

and balls can also be interchanged.

Proof. We may assume without loss of generality that δ 6 1
2
. Suppose first that B1 are

balls and B2 are cubes. Choose balls B′1, . . . , B
′
k with diameter equal to diamD which are

externally tangent to D and cover the sphere ∂(1+δ)D. Let p1, . . . , pk on ∂D be the points
of tangency of the balls B′1, . . . , B

′
k. Note that the number k of points needed depends on

δ but not on D.
Let Q ∈ B2. If diamQ < diamD, then Q can be covered exactly as in Corollary 4.2.

Otherwise, let B1, . . . Bk be the balls which are externally tangent to D at the points pj
with diameter equal to 3 diamQ. Since diamQ > diamD, the balls B1, . . . Bk cover the
annulus ((1 + diamQ

diamD
)D) \ ((1 + δ)D); in particular, the balls covers Q. This family of balls

satisfies the conditions of Lemma 4.1, so the claim follows in this case.
The case when B1 are cubes and B2 are balls is handled similarly. �

From this we obtain the following results using the same steps as in the proof of Corol-
lary 4.3.

Corollary 4.5. Let δ > 0 and let D be a ball. Let B be the family of all sets B \ (1 + δ)D
where B are balls with center in Rn \ (1 + δ)D. If ω ∈ A∞(Rn) ∩ Aq(Rn \D), then there
exists ε > 0, independent of D, such that ω ∈ ABq−ε.

In order to use these results, we need the following generalization of Muckenhoupt’s
theorem, in which we use the generalized maximal operator, defined with an arbitrary
family B of measurable sets:

MBf(z) := sup
B∈B
z∈B

 
B

|f | dx.

Theorem 4.6 (Theorem B, [48] or Theorem 1.1, [37]). Let 1 < q < ∞ and let B be a
family of open sets. Then MB is bounded on Lq(Rn, ω) if and only if ω ∈ ABq .
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5. Sufficiency of the Ap(·) condition

We start this section by proving the weighted maximal inequality for the restricted
maximal operator. This result is a stepping-stone on our route to the complete maximal
inequality, which is then proved.

We denote by M<R the restricted maximal operator which is defined as

M<Rf(y) := sup
r<R

 
B(y,r)

|f(x)| dx.

Using Diening’s trick [19] we begin with a very local version of a weighted maximal in-
equality.

Lemma 5.1. Let p ∈ P log
± (Rn) and ω ∈ Ap(·). Then there exists r0 ∈ (0, 1) depending only

on ‖ω‖Ap(·) and the characteristics of p such that

M<R : Lp(·)(2Q,ω) ↪→ Lp(·)(Q,ω)

when Q is a cube with side length at most r0 and R < 1
2
r0.

Proof. Define c1 := Cincl‖ω‖Ap(·) , where the constant Cincl is from Lemma 3.1 with ex-

ponents given p(·) and all q ∈ [1,∞] (cf. Remark 3.2). Choose ε ∈ (0, 1) such that for
all constants q ∈ [p−, p+ + 1] and all cubes Q the inequality ‖σ‖Aq(Q) 6 c1 implies that
‖σ‖Aq−ε(Q) 6 c2, where c2 is some large constant independent of q and Q (see Corollary 4.2,
below, for some further comments on the self-improving property). This choice is possible
by the self-improving property of Muckenhoupt weights [61]. Next we choose r0 <

1
2
n−1/2

such that p+
2Q−ε < p−2Q whenever Q has side-length at most r0. This is possible by the uni-

form continuity of p. By Lemma 3.1 ‖w‖A
p+
2Q

(2Q) 6 c1; hence we conclude by monotonicity

that ω ∈ Ap+2Q−ε(2Q) ⊂ Ap−2Q
(2Q) with ‖ω‖A

p−
2Q

(2Q) 6 c2.

Let f ∈ Lp(·)(2Q,ω) with ‖f‖Lp(·)(2Q,ω) 6 1 and set q = p/p−2Q. Next we use a variant of
Diening’s trick [19]. Let y ∈ Q and let B := B(y, r) with r < R. We start with Hölder’s
inequality for a constant exponent and an elementary estimate valid for all β > 0:( 

B

|f(x)| dx
)q(x)

6

(  
B

|f(x)|q
−
B dx

) q(x)

q−
B =

( 
B

1
β

[
|f(x)| β

1

q−
B

]q−B
dx

) q(x)

q−
B

6

(  
B

1
β

[
|f(x)|q(x)β

q(x)

q−
B + 1

]
dx

) q(x)

q−
B

=

(  
B

|f(x)|q(x)β
q(x)

q−
B

−1
dx+ 1

β

) q(x)

q−
B .

Now we choose β := max{1, ω(Q)1/p−2Q}. Lemma 3.3 implies that ω(Q) . (1 + |x|)p+. As a

consequence, we estimate βq(x)/q−B−1 . (1 + |x|)C(q(x)−q−B ) 6 C, where the second inequality
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follows by the log-Hölder decay condition of q. Since q(x) > q−B and 1
β
6 1 we obtain

( 
B

|f(x)| dx
)q(x)

.

(  
B

|f(x)|q(x) dx

) q(x)

q−
B +

1

β

= |B|
1− q(x)

q−
B %Lq(·)(B)(f)

q(x)−q−
B

q−
B

 
B

|f(x)|q(x) dx+ min
{

1, ω(Q)
− 1

p−
2Q

}
.

(5.2)

By the log-Hölder continuity of q, the factor |B|1−q(x)/q−B is bounded by a constant. For
the modular in the second factor we use Young’s inequality with exponent p−2Q:

%Lq(·)(B)(f) =

ˆ
B

|f(x)|
p(x)

p−
2Q dx 6

ˆ
B

|f(x)|p(x)ω(x) dx+

ˆ
B

ω(x)
− 1

p−
2Q
−1dx

6 1 +
(
‖ω‖A

p−
2Q

(B)|B|p
−
2Qω(B)−1

) 1

p−
2Q
−1 .

Here we need that ω ∈ Ap−2Q(B) and ‖f‖Lp(·)(B,ω) 6 1. Using the log-Hölder continuity of q

and Lemma 3.4 we conclude that |B|q(x)−q−B 6 c and ω(B)−(q(x)−q−B ) 6 c. Hence we conclude

that %Lq(·)(B)(f)(q(x)−q−B )/q−B 6 C. Then we take the supremum over balls B = B(y, r) with
r < R in (5.2). This yields

M<Rf(x)q(x) .M<R(f q(·))(x) + min
{

1, ω(Q)
− 1

p−
2Q

}
for x ∈ Q. Raising this to the power of p−2Q (recalling that p = p−2Qq) and integrating over
x ∈ Q, we conclude that

ˆ
Q

M<Rf(x)p(x)ω(x) dx .
ˆ
Q

[
M<R(|f |q(·))(x) + min

{
1, ω(Q)

− 1

p−
2Q

}]p−2Q
ω(x) dx

≈
ˆ
Q

M<R(|f |q(·))(x)p
−
2Qω(x) dx+ ω(Q) min

{
1, ω(Q)−1

}
.
ˆ

2Q

|f(x)|p(x)ω(x) dx+ 1 6 2,

by the boundedness of M<R : Lp
−
2Q(2Q,ω) ↪→ Lp

−
2Q(Q,ω) which holds since ω ∈ Ap−2Q(2Q),

p−2Q > p− > 1, and R < 1
2
r0.

Thus the proof in the case ‖f‖Lp(·)(2Q,ω) 6 1 is complete. If ‖f‖Lp(·)(2Q,ω) > 1, then we

reduce the claim to the previous case by considering the function f̃ := f/‖f‖Lp(·)(2Q,ω) with
norm equal to one. �

Using the previous result and the local-to-global trick we can immediately prove the
boundedness of the restricted maximal operator.

Lemma 5.3. Let p ∈ P log
± (Rn), ω ∈ Ap(·) and let r0 > 0 be as in the previous lemma.

Then
M<R : Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω)
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for R < 1
2
r0.

Proof. Let (Qi) be a partition of Rn as in Definition 2.5 into cubes with side-length r0. Let
R < 1

2
r0. By Lemma 5.1 ‖M<Rf‖Lp(·)(Qi,ω) . ‖f‖Lp(·)(2Qi,ω). Now we apply Theorem 2.6

and use the bounded overlap property of (2Qi):

‖M<Rf‖Lp(·)(Rn,ω) ≈
∥∥‖M<Rf‖Lp(·)(Qi,ω)

∥∥
lp∞

.
∥∥‖f‖Lp(·)(2Qi,ω)

∥∥
lp∞
≈
∥∥‖f‖Lp(·)(Qi,ω)

∥∥
lp∞
≈ ‖f‖Lp(·)(Rn,ω). �

If φ has support in B(0, R), then f ∗ φ . ‖φ‖∞M<Rf . Hence we obtain the following
corollary.

Corollary 5.4. Let p ∈ P log
± (Rn), ω ∈ Ap(·) and let r0 > 0 be as Lemma 5.1. If Φf :=

f ∗ χB(0, 1
2
r0), then

Φ: Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω).

Remark 5.5. An analysis of the proofs shows that Lemmas 5.1 and 5.3 and Corollary 5.4
actually hold already with the local assumption ω ∈ Aloc

p(·) in place of ω ∈ Ap(·) if we assume
additionally that

(1 + |x|)−β . ω(B(x, r)) . (1 + |x|)β

for some fixed β > 0, all x ∈ Rn and all r ∈ (1, 2).

We can also define a lower-restricted maximal operator:

M>Rf(y) := sup
r>R

 
B(y,r)

|f(x)| dx.

Obviously, Mf 6M<Rf +M>Rf . We already controlled the restricted maximal operator,
so we now turn to the lower-restricted maximal operator.

Lemma 5.6. Let p ∈ P log
± (Rn), ω ∈ Ap(·) and let R = 1

3
r0, with r0 as in Lemma 5.1. Then

M>R : Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω).

Proof. Let f ∈ Lp(·)(Rn, ω) with ‖f‖Lp(·)(Rn,ω) 6 1. Using Hölder’s inequality, Proposi-
tion 3.8 and Corollary 3.7 we conclude that 

B

|f(y)| dy 6 2
|B| ‖f‖Lp(·)(B,ω)‖ω−1‖Lp′(·)(B,ω)

6 2
|B| ‖1‖Lp′(·)(B,ω′) ≈

ω′(B)
1
p′
B

|B|
.

(‖ω‖Ap(·)
ω(B)

) 1
pB

.

For B = B(x, r) with r > 1
6
r0 we have ω(B) > Cω(B(0, 1))(1 + |x|)−np+ by Lemma 3.3.

Thus M> 1
2
Rf(x) . (1 + |x|)np+/p− since we have assumed that R = 1

3
r0.

Define c1 := Cincl‖ω‖Ap(·) . Choose ε ∈ (0, 1) such that for all constants q ∈ [p−, p+ + 1]

and all ρ > 1 the inequality ‖σ‖Aq(Rn\B(0,ρ)) 6 c1 implies that σ ∈ ABq−ε, where B is the
family of sets of the form B \ B(0, 2ρ), where B is a ball with center in Rn \ B(0, 2ρ) (cf.
Corollary 4.5). Next we choose ρ = R0 so large that p+

D−ε 6 p∞ where D := Rn\B(0, R0).
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This is possible by the decay condition on p. Let us denote Bk := B(0, (1 + k)R0) and
Dk := Rn \Bk, for k ∈ N. By Lemma 3.1 ‖w‖A

p+
D

(D) 6 c1; hence we conclude that

ω ∈ AB
p+D−ε

⊂ ABp∞ .

Suppose that g is a function with support in D1. If B is a ball centered in D2 with
radius at least 1

2
R, then

 
B

|g| dx =
|B \B1|
|B|

 
B\B1

|g| dx .
 
B\B1

|g| dx.

With B as in the previous paragraph, we thus obtain M 1
2
Rg .MBg in D1. By Lemma 2.7

and the Lp∞-maximal inequality (Theorem 4.6) we conclude that

(5.7) ‖M> 1
2
Rg‖Lp(·)(D2,ω) ≈ ‖M> 1

2
Rg‖Lp∞ (D2,ω) . ‖MBg‖Lp∞ (D2,ω) . ‖g‖Lp∞ (D1,ω)

for g ∈ Lp∞(Rn, ω) with support in D1.
Let finally Φf := |f | ∗ χB(0, 1

2
R). It follows from

 
B(y,r)

|f(y)| dy =

(
χB(0,r)

|B(0, r)|
∗ |f |

)
(y)

and χB(0,r) . χB(0,r) ∗ χB(0,R/2) . χB(0,r+R/2) for all r > R/2, that M>Rf ≈ M> 1
2
RΦf .

Moreover, Φf(x) . (1 + |x|)np+ by Lemma 3.3. Using (5.7) with g = Φf χD1 , we obtain
that

‖M>Rf‖Lp(·)(Rn,ω) 6 ‖M>Rf‖L∞(B2)‖1‖Lp(·)(B2,ω) +
∥∥M> 1

2
R(Φf χD1)

∥∥
Lp(·)(D2,ω)

+
∥∥M> 1

2
R(Φf χB1)

∥∥
Lp(·)(D2,ω)

. ‖1‖Lp(·)(B2,ω) + ‖Φf‖Lp∞ (D1,ω) + ‖Φf‖L∞(B1)

∥∥MχB1

∥∥
Lp(·)(D2,ω)

≈ 1 + ‖Φf‖Lp(·)(D1,ω) +
∥∥MχB1

∥∥
Lp∞ (D2,ω)

,

where we have used Lemma 2.7 for the equivalence.
We note that ‖Φf‖Lp(·)(D1,ω) 6 ‖f‖Lp(·)(D,ω) 6 1 by Corollary 5.4. Let B′ ⊂ D2 be

a ball of the same size as B1. Since MχB1 ≈ MχB′ , we find that
∥∥MχB1

∥∥
Lp∞ (D2,ω)

≈∥∥MχB′
∥∥
Lp∞ (D2,ω)

. Since the support of χB′ is in D2, the last term can be estimated as

before.
This concludes the proof for the case of small norms. Applying this conclusion to the

function f̃ := f/‖f‖Lp(·)(Rn,ω), we obtain the proof for the general case. �

Proof of sufficiency of the Ap(·)-condition in Theorem 1.1. By Lemmas 5.1 and 5.6 we con-
clude that

‖Mf‖Lp(·)(Rn,ω) 6 ‖M<Rf‖Lp(·)(Rn,ω) + ‖M>Rf‖Lp(·)(Rn,ω) . ‖f‖Lp(·)(Rn,ω)

for R = 1
3
r0. �
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6. Necessity of the Ap(·) condition

In this section we prove the other implication of Theorem 1.1, that ω ∈ Ap(·) if M is

bounded on Lp(·)(Rn, ω). In the constant exponent case this is a simple application of
Hölder’s inequality. In the variable exponent case things do not work quite so neatly.

The proof would be easy if we knew that ω, ω′ ∈ A∞ and could use the results in
Section 3. It seems that establishing this is no easier than showing that ω ∈ Ap(·). However,
there is a neat method to obtain that ω, ω′ ∈ A∞ in small balls. This approach was
suggested to us by the referee of the paper, and leads to a simpler proof than we originally
proposed. With the local A∞ property and the methods of Section 3 we prove the global
Ap(·) result.

We say that M : Lp(·)(Rn, ω) ↪→ w-Lp(·)(Rn, ω) if the weak maximal inequality

‖t χ{Mf>t}‖Lp(·)(Rn,ω) 6 c ‖f‖Lp(·)(Rn,ω)

holds for all t > 0. Since t χ{Mf>t} 6 Mf , it is clear that this weak type inequality is

implied by the boundedness M : Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω).

Lemma 6.1. Let p ∈ P log
± (Rn). If M : Lp(·)(Rn, ω) ↪→ w-Lp(·)(Rn, ω) and diamB 6 2,

then

‖1‖Lp(·)(B,ω) ≈ ω(B)
1
pB ≈ ω(B)

1

p−
B ≈ ω(B)

1

p+
B .

Proof. The idea of the proof is similar to Lemma 3.4. Fix x, z ∈ Rn and r, R > 0 and set
t := rn/(|x− z|n + rn +RN). Then tχB(z,R) 6MχB(x,r) so that

B(z, R) ⊂ {MχB(x,r) > t}.
Hence we obtain from the weak maximal inequality that

(6.2) t ‖χB(z,R)‖Lp(·)(Rn,ω) 6 ‖tχ{MχB(x,r)>t}‖Lp(·)(Rn,ω) . ‖χB(x,r)‖Lp(·)(Rn,ω).

Of course, ‖χB(x,r)‖Lp(·)(Rn,ω) = ‖1‖Lp(·)(B(x,r),ω). Using the previous inequality twice gives

rn

1 + |x|n
‖1‖Lp(·)(B(0,1),ω) . ‖1‖Lp(·)(B,ω) . (1 + |x|n) ‖1‖Lp(·)(B(0,1),ω),

where B = B(x, r) and r ∈ (0, 1]. Using the decay condition on p we conclude from this

inequality that ‖1‖p
+
B

Lp(·)(B,ω)
≈ ‖1‖p

−
B

Lp(·)(B,ω)
. In view of (2.3) this implies that

‖1‖p
+
B

Lp(·)(B,ω)
≈ ‖1‖p

−
B

Lp(·)(B,ω)
≈ ‖1‖pB

Lp(·)(B,ω)
≈ %Lp(·)(B,ω)(1) = ω(B). �

The proof of the following lemma was suggested by the referee.

Lemma 6.3. Let p ∈ P log
± (Rn). If M : Lp(·)(Rn, ω) ↪→ w-Lp(·)(Rn, ω), then ω ∈ Aloc

∞ .

Proof. Let E ⊂ B be measurable for a ball B with radius at most 1. Then

B ⊂ {MχE >
|E|

2n|B|}.

Hence it follows as in (6.2) that

|E|
|B|‖χB‖Lp(·)(Rn,ω) . ‖χE‖Lp(·)(Rn,ω).
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Then we use that (Lemma 6.1)

‖χB‖Lp(·)(Rn,ω) = ‖1‖Lp(·)(B,ω) ≈ ω(B)1/p−B ≈ ω(B)1/p+B

and, by (2.3),

‖χE‖Lp(·)(Rn,ω) 6 max{ω(E)
1

p+
B , ω(E)

1

p−
B }

to conclude that
|E|
|B|
. max

{(
ω(E)

ω(B)

) 1

p+
B ,

(
ω(E)

ω(B)

) 1

p−
B

}
.

This implies that ω ∈ Aloc
∞ . �

Lemma 6.4. Let p ∈ P log
± (Rn). If M : Lp(·)(Rn, ω) ↪→ w-Lp(·)(Rn, ω), then ω has at most

polynomial growth.

Proof. We show that ω has at most polynomial growth by proving the inequality

ω
(
B(0, 2k+1) \B(0, 2k)

)
. 2knp∞ .(6.5)

Using the weak maximal inequality we have

2−nk‖χB(0,2k+1)\B(0,2k)‖Lp(·)(Rn,ω) . 2−nk ‖χ{MχB(0,1)>c 2−nk}‖Lp(·)(Rn,ω)

. ‖χB(0,1)‖Lp(·)(Rn,ω).

Note that the right hand side is a constant independent of k. This implies that the modular
of 2−nkχB(0,2k+1)\B(0,2k) is also bounded:ˆ

Rn

(
χB(0,2k+1)\B(0,2k)(x)2−nk

)p(x)

ω(x) dx 6 c.

Using the decay condition we see that 2−p(x)nk ≈ 2−p∞nk in B(0, 2k+1) \ B(0, 2k). This
implies (6.5). �

Note the two different exponents in the next result.

Corollary 6.6. Let p, q ∈ P log
± (Rn). If M : Lp(·)(Rn, ω) ↪→ w-Lp(·)(Rn, ω), then

‖1‖Lq(·)(B,ω) ≈ ω(B)
1
qB

for all balls B ⊂ Rn.

Proof. By Lemma 6.3, ω ∈ Aloc
∞ . Hence it follows by Lemma 3.4 that

‖1‖Lq(·)(B,ω) ≈ ω(B)
1
q∞

for balls with diameter between 1
4
√
n

and 2. Hence the assumption of Lemma 3.6 are

satisfied. Using the conclusions of that lemma, and the fact that ω has polynomial growth
(Lemma 6.4), we conclude as in Corollary 3.7 that

‖1‖Lq(·)(B,ω) ≈ ω(B)
1
qB

for all balls, as claimed. �

The following lemma was suggested by the referee.
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Lemma 6.7. Let p ∈ P log
± (Rn). If M : Lp(·)(Rn, ω) ↪→ Lp(·)(Rn, ω), then

M : Lp
′(·)(Rn, ω′) ↪→ w-Lp

′(·)(Rn, ω′).

Proof. For f ∈ Lp(·)(Rn, ω) we set Ft := t χ{Mf>t}. Then we can choose, by [22, Corol-

lary 3.2.14], g ∈ Lp(·)(Rn, ω) with norm equal to 1 such that

‖t χ{Mf>t}‖Lp′(·)(Rn,ω′) = ‖Ft‖Lp′(·)(Rn,ω′) ≈
ˆ

Rn
Ft g dx.

By the Fefferman–Stein inequality and Hölder’s inequality we then find thatˆ
Rn
Ft g dx 6 c

ˆ
Rn
|f |Mg dx 6 c ‖f‖Lp′(·)(Rn,ω′)‖g‖Lp(·)(Rn,ω) = c ‖f‖Lp′(·)(Rn,ω′),

i.e. the weak maximal inequality holds. �

We can then conclude the proof of the main theorem.

Proof of necessity of the Ap(·)-condition in Theorem 1.1. We want to use the classical test-
function,

f := ω−
1

p(·)−1χB = ω′χB,

even though the arguments are a bit more technical since the connection between norm and
modular is not as simple as in the constant exponent case. Let B be a ball and note that´
B
f dx = ω′(B). Then we see that Mf & ω′(B)

|B| in B. Therefore the maximal inequality

implies that

ω′(B)

|B|
‖1‖Lp(·)(B,ω) . ‖Mf‖Lp(·)(Rn,ω)

. ‖f‖Lp(·)(Rn,ω) = ‖ω−
1

p(·)−1‖Lp(·)(B,ω) = ‖1‖Lp(·)(B,ω′).
(6.8)

By Corollary 6.6, ‖1‖Lp(·)(B,ω) ≈ ω(B)1/pB . By Lemma 6.7, the assumptions of Corol-
lary 6.6 hold also for the weight ω′. Hence

‖1‖Lp(·)(B,ω′) ≈ ω′(B)
1
pB .

Thus it follows from (6.8) that

ω′(B)

|B|
ω(B)1/pB ≈ ω′(B)

|B|
‖1‖Lp(·)(B,ω) . ‖1‖Lp(·)(B,ω′) ≈ ω′(B)

1
pB .

From this we obtain that
ω(B)

|B|pB
ω′(B)pB−1 . 1.

We conclude the proof by noting that ω′(B)pB−1 ≈ ‖ 1
ω
‖Lp′(·)/p(·)(B), by Corollary 6.6, so the

previous inequality is equivalent to the Ap(·) condition. �
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[32] P. Harjulehto, P. Hästö and V. Latvala: Sobolev embeddings in metric measure spaces with variable
dimension, Math. Z. 254 (2006), no. 3, 591–609.
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