
VARIABLE EXPONENT TRACE SPACES

LARS DIENING AND PETER HÄSTÖ

Abstract. The trace space of W 1,p(·)(Rn × [0,∞)) consists of those functions on R
n that

can be extended to functions of W 1,p(·)(Rn × [0,∞)) (as in the fixed-exponent case). Under
the assumption that p is globally log-Hölder continuous, we show that the trace space
depends only on the values of p on the boundary. In our main result we show how to define
an intrinsic norm for the trace space in terms of a sharp-type operator.

1. Introduction

In this article we present a new approach to trace spaces. Our philosophy is to move away
as little as possible from the definition of trace space as consisting of those functions which
can be extended to the ambient space. The motivation for pursuing this line of investigation
is that it provides us with more robust results and methods. We are especially interested in
Sobolev spaces with variable exponent. What makes variable exponent spaces stand apart
particularly in the current context is that they are not translation invariant, in contrast to
their classical counter-parts. A glance at the classical approaches (due to Lions, Peetre and
others, see, e.g., [3, Section 7], [4, Section 7] and references therein) shows that translation
invariance is in many situations at the heart of the matter, starting with the idea that we can
define a norm as a Bochner integral of a function from the real line to a Banach space. We
believe that our approach can be used also when dealing with other non-translation invariant
generalizations of Sobolev spaces.

On an intuitive level we get the variable exponent spaces by replacing the energy (modular)
∫

Ω

|f(x)|pdx by

∫

Ω

|f(x)|p(x)dx,

where p(x) is some function. Exact definitions are given below. Let us review some of the
major reasons for why variable exponent spaces have attracted quite a bit of attention lately
(see [12] for a bibliography of over a hundred titles on this topic from the last five years).
Variable exponent spaces are connected to variational integrals with non-standard growth
and coercivity conditions [2, 30]. These non-standard variational problems are related to
modeling of so-called electrorheological fluids [1, 28] and also appear in a model for image
restoration [5]. Another reason for the recent interest is that the “right” framework for
variable exponent spaces was discovered: the log-Hölder continuity condition was found to
be sufficient for many regularity properties of the spaces, starting with the local boundedness
of the maximal operator [9].

Obviously, the study of trace spaces is of great importance for the theory of partial dif-
ferential equations. Indeed, a partial differential equation is in many cases solvable if and
only if the boundary values are in the corresponding trace space, see e.g. [15]. The first
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appearance of trace spaces in the context of Sobolev spaces with variable exponents W 1,p(·)

is in [13, 14], where the solvability of the Laplace equation −∆u = f on the half-space with
given boundary values is studied. The definition of trace spaces by Diening and Růžička
[13, 14] matches ours in Section 3. However, they avoided studying trace spaces, considering
them instead as abstract objects. To describe these spaces, especially by an intrinsic norm,
is the purpose of this article.

We now get back to variable exponent trace spaces. Another more concrete form of the
problems related to translation non-invariance can be found by looking at the well-known
intrinsic characterization of the fixed-exponent trace space of W 1,p(H), where H is the open
half space R

n × (0,∞): f is in the trace space if and only if
∫

Rn

∫

Rn

|f(x) − f(y)|p

|x− y|n+p−1
dy dx <∞.

We would like to have the exponent vary with the location in the space, but clearly p in the
previous formula can be replaced by neither p(x) nor p(y). There are similar difficulties with
generalizing the formulae of other fractional order spaces, such as Besov spaces or Nikol’skii
spaces. In this article we present an alternative conceptualization of the trace space problem.
We try to present our approach in as simple a form as possible, in order to convey the main
ideas, and hopefully to allow others to adapt them to other settings.

The main results of this paper are summarized in the following theorem.

Theorem 1.1. Let p : R
n → [1,∞) be a variable exponent with 1 < inf p 6 sup p <∞ which

is globally log-Hölder continuous, i.e. assume that there exist c > 0 and p∞ > 1 such that

|p(x) − p(y)| 6
c

log(1/|x− y|)
and |p(z) − p∞| 6

c

log (e+ |z|)

for all points x, y, z ∈ R
n with |x− y| < 1

2
. Let q be an extension of p to H which is also

globally log-Hölder continuous. Then the function f belongs to the trace space TrW 1,q(·)(H)
if and only if

∫

Rn

|f(x)|p(x)dx+

∫ 1

0

∫

Rn

(

1
r
M ]

Bn(x,r)f
)p(x)

dx dr <∞,

where M ]
Bn(x,r) denotes the sharp operator,

M ]
Bn(x,r)f = –

∫

Bn(x,r)

∣

∣

∣

∣

f(y) − –

∫

Bn(x,r)

f(z) dz

∣

∣

∣

∣

dy.

In particular, the trace space depends only on the value of the exponent on the boundary.

We prove this result in a piece-meal fashion. We start in Section 2 by introducing some
standard notation and defining the variable exponent spaces. In Section 3 we define the
trace space and show that it only depends on the value of the exponent on the boundary,
provided the exponent is log-Hölder continuous. In Section 4 we derive the formula for the
intrinsic norm of the trace space relying on a well-chosen extension of the exponent.

Many open questions still remain regarding trace theory in variable exponent spaces. We
consider only extensions from R

n to the closed half-space H. In the fixed exponent case
traces have been studied in many other settings than the half-space, see e.g. [17, 18, 22].
Also, we consider only the critical smoothness, 1 − 1/p(x). With classical notation, the
spaces we consider are the spaces W 1−1/p(·),p(·)(Rn). A future endeavor, then, is to consider
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also other spaces with variable smoothness on more general domains, i.e. spaces of the type
W s(·),p(·)(Ω).

2. Preliminaries

We will be considering the spaces H = R
n × (0,∞), its closure H and R

n, which we view
as the subspace R

n × {0} of H. An analogous convention holds for arguments of functions,
e.g. for x ∈ R

n we will sometimes write p(x) instead of p(x, 0). For x ∈ R
n and r > 0 we

denote by Bn(x, r) the open ball in R
n with center x and radius r. By Bn we denote the unit

ball Bn(0, 1). We use c as a generic constant, i.e. a constant whose values may change from
appearance to appearance. By χA we denote the characteristic function of the set A. We
use the convention that χAF = 0 at all points outside A, regardless of whether F is defined
there or not.

We denote the mean-value of the integrable function f , defined on a set A of finite non-zero
measure, by

〈f〉A = –

∫

A

f(x) dx =
1

|A|

∫

A

f(x) dx.

For convenience we use a short-hand notation for the average over a ball:

〈f〉nx,r = 〈f〉Bn(x,r).

The Hardy-Littlewood maximal operator M is defined on L1
loc(R

n) by

Mf(x) = sup
r>0

〈|u|〉nx,r.

When there is a possibility of misunderstanding, we will indicate the dimension of the un-
derlying balls, writing M(n) or M(n+1).

Let Ω ⊂ R
n be an open set. Let p : Ω → [1,∞) be a measurable bounded function, called

a variable exponent on Ω, and denote p+ = ess sup p(x) and p− = ess inf p(x). We define the
variable exponent Lebesgue space Lp(·)(Ω) to consist of all measurable functions f : Ω → R

for which the modular

%Lp(·)(Ω)(f) =

∫

Ω

|f(x)|p(x) dx

is finite. We define the Luxemburg norm on this space by

‖f‖Lp(·)(Ω) = inf
{

λ > 0: %Lp(·)(Ω)(f/λ) 6 1
}

,

which is just the Minkowski functional of the absolutely convex set {f : %Lp(·)(Ω)(f) 6 1}.

In the case when Ω = R
n we replace the Lp(·)(Rn) in subscripts simply by p(·), i.e. ‖f‖p(·)

stands for ‖f‖Lp(·)(Rn), etc. The variable exponent Sobolev space W 1,p(·)(Ω) is the subspace

of Lp(·)(Ω) of functions f whose distributional gradient exists and satisfies |∇f | ∈ Lp(·)(Ω).
The norm

‖f‖W 1,p(·)(Ω) = ‖f‖Lp(·)(Ω) + ‖∇f‖Lp(·)(Ω)

makes W 1,p(·)(Ω) a Banach space.
For fixed exponent spaces we of course have a very simple relationship between norm and

modular. In the variable exponent case this is not so. However, we nevertheless have the
following useful property: %p(·)(f) 6 1 if and only if ‖f‖p(·) 6 1. This and many other basic
results were proven in [16, 23].

3



We say that the exponent p is (locally) log-Hölder continuous if there exists a constant
c > 0 such that

|p(x) − p(y)| 6
c

log(1/|x− y|)
.

for all points with |x− y| < 1
2
. Some other names that have been used for these functions

are 0-Hölder continuous, Dini-Lipschitz continuous and weak Lipschitz continuous. We say
that the exponent p is globally log-Hölder continuous if it is locally log-Hölder continuous
and there exist constants c > 0 and p∞ ∈ [1,∞) such that for all points x we have

|p(x) − p∞| 6
c

log(e+ |x|)
.

Let us denote by P(Ω) the class of globally log-Hölder continuous variable exponents on
Ω ⊂ R

n with 1 < p− 6 p+ <∞. By [8, Theorem 1.5] we know that

M : Lp(·)(Rn) → Lp(·)(Rn)(2.1)

is bounded if p ∈ P(Rn). Global log-Hölder continuity is the best possible modulus of
continuity to imply the boundedness of the maximal operator, see [8, 27]. But for other,
weaker results see [11, 24, 26]. If the maximal operator is bounded, then it follows easily that
C∞

0 (Rn) is dense in W 1,p(·)(Rn). In general, however, the latter condition is much weaker,
see [21].

3. The definition of trace spaces

Recall the definition of the trace of a W 1,1 function: if F ∈W 1,1(H)∩C(H), then TrF =
F |Rn and it follows that ‖TrF‖L1(Rn) 6 c ‖F‖W 1,1(H). Having defined a bounded linear
operator Tr on a dense subset of W 1,1 we extend it to all of W 1,1 continuously.

Let next F ∈ W 1,p(·)(H). Then it follows that F ∈ W 1,1
loc (H). Thus by the previous

paragraph TrF is defined as a function in L1
loc(R

n). Note that if F ∈ W 1,p(·)(H) ∩ C(H),
then we still have TrF = F |Rn . The trace space TrW 1,p(·)(H) consists of the traces of all
functions F ∈ W 1,p(·)(H). Notice that the elements of TrW 1,p(·)(H) are functions defined
on R

n – to emphasize this we will always use lowercase letters for functions on R
n, whereas

uppercase letters will be used for functions in H and R
n+1. The quotient norm

‖f‖Tr W 1,p(·)(H) = inf
{

‖F‖W 1,p(·)(H) : F ∈ W 1,p(·)(H) and TrF = f
}

makes TrW 1,p(·)(H) a Banach space. The main purpose of this paper is to provide an intrinsic
norm for the trace space, i.e. a norm which is defined only in terms of f and not in terms of
its extension F .

Furthermore, intuitively we would expect that this intrinsic norm only depends on p|Rn

and not on p on the whole space H. Nevertheless, the definition of TrW 1,p(·)(H) above is
dependent on the values of p on all of H. It has often been the case that log-Hölder continuity
of the exponent p is a sufficient condition for variable exponent spaces to behave in a very
nice way. This turns out to hold also with trace spaces:

Theorem 3.1. Let p1, p2 ∈ P(H) with p1|Rn = p2|Rn Then TrW 1,p1(·)(H) = TrW 1,p2(·)(H)
with equivalent norms.
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We will give the proof of this theorem using an extension from W 1,p(·)(H) to W 1,p(·)(Rn+1).
In the following proofs we need also the lower half-space −H = R

n × (−∞, 0), its closure
−H and R

n+1
6=0 = R

n × (R \ {0}).

Definition 3.2. Let us call ϕ a standard mollifier on R
n+1 if ϕ ∈ C∞(Rn+1) with ϕ > 0,

∫

ϕdξ = 1 and suppϕ ⊂ Bn+1(0, 1). We call {ϕt} a standard mollifier family if ϕ is a
standard mollifier and ϕt(ξ) = t−n−1ϕ(ξ/t).

Note that if p ∈ P(Rn) and {ϕi} is a standard mollifier family, then ϕt∗f → f inW 1,p(·)(Ω)
for all f ∈W 1,p(·)(Ω), see [6, 9].

Theorem 3.3. Let p ∈ P(Rn+1). Then there exists a bounded, linear extension operator

E : W 1,p(·)(H) → W 1,p(·)(Rn+1).

Proof. Let F ∈ W 1,p(·)(H). It follows from p ∈ P(Rn+1) that C∞
0 (H) is dense in W 1,p(·)(H),

hence it suffices to prove the claim for F ∈ C∞(H). Let {ϕt} be a standard mollifier family
on R

n+1. Then we define EF : R
n+1 → R by

EF (x, t) :=

{

F (x, t) for t > 0,

(ϕ|t| ∗ F )(x, |t|) for t < 0

We have to show that EF ∈ W 1,p(·)(Rn+1) with bounded norm. Obviously, EF ∈ W 1,1
loc (Rn+1

6=0 ).
In the following we denote ξ := (x, t) ∈ −H and ξ ′ := (x, |t|). We directly estimate

|(EF )(ξ)| = |(ϕ|t| ∗ F )(ξ′)| 6 c(ϕ)M(n+1)(χHF )(ξ′),

|∇x(EF )(ξ)| = |(ϕ|t| ∗ ∇xF )(ξ′)| 6 c(ϕ)M(n+1)(χH∇xF )(ξ′).

For the t-derivative we need a slightly more involved calculation: for all ξ ≡ (x, t) ∈ −H and
a ∈ R we have

∂t(EF )(ξ) =
∂

∂t
(ϕ|t| ∗ F )(ξ′) =

∂

∂t

(

ϕ|t| ∗ (F − a)
)

(ξ′)

=

∫

Rn+1

[ n

|t|
ϕ|t|(ξ

′ − η) +
1

|t|2
(∇ξϕ)|t|(ξ

′ − η) · (ξ′ − η)
]

(

F (η) − a
)

dη,

where (∇ϕ)r(η) := r−n−1∇ϕ(η/r), for r > 0. Setting a = 〈F 〉n+1
ξ′,|t| we find that

|∂t(EF )(ξ)| 6

∫

Rn+1

( n

tn+2
‖ϕ‖∞ +

1

|t|n+3
‖∇ξϕ‖∞|ξ′ − η|

)

∣

∣F (η) − 〈F 〉n+1
ξ′,|t|

∣

∣ dη

6 |t|−n−2
(

n‖ϕ‖∞ + ‖∇ξϕ‖∞
)

∫

Bn+1(ξ′,|t|)

∣

∣F (y) − 〈F 〉n+1
ξ′,|t|

∣

∣ dη

=
c(ϕ)

t
–

∫

Bn+1(ξ′,|t|)

∣

∣F (y) − 〈F 〉n+1
ξ′,|t|

∣

∣ dη.

Then the Poincaré inequality implies that

|∂t(EF )(ξ)| 6 c(ϕ)
〈

|∇ξF |
〉n+1

ξ′,|t|
6 c(ϕ)M(n+1)(χH∇ξF )(ξ′).

Overall, we have shown that for all ξ ≡ (x, t) ∈ −H that

|(EF )(ξ)| 6 cM(n+1)(χHF )(ξ′), |∇ξ(EF )(ξ)| 6 cM(n+1)(χH∇ξF )(ξ′).
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Since M is continuous from Lp(·)(Rn+1) to Lp(·)(Rn+1), this point-wise inequality implies that

‖EF‖W 1,p(·)(Rn+1
6=0 ) 6 c‖MF‖Lp(·)(H) + c‖M(χH∇F )‖Lp(·)(H) 6 c‖F‖W 1,p(·)(H).

It remains to show that EF has a distributional gradient in R
n+1, which, by [31, Theo-

rem 2.1.4.] follows once we show that EF is absolutely continuous on lines. Recall that this
means (by definition) that the set of values x ∈ R

n for which the function t 7→ EF (x, t) is not
absolutely continuous on R has n-measure zero, and similarly for all the other co-ordinate
directions. We easily see that EF ∈ C(Rn+1), and that EF is ACL on both H and −H, from
which it directly follows that EF ∈ ACL(Rn+1), so ∇EF exists. ¤

We now show how Theorem 3.3 implies Theorem 3.1.

Proof of Theorem 3.1. Define q(x, t) := p1(x, t) for t > 0 and q(x, t) := p2(x,−t) for t < 0.
Then q ∈ P(Rn+1). By Theorem 3.3 there exist bounded, linear extensions

E1 : W 1,q(·)(H) → W 1,q(·)(Rn+1),

E2 : W 1,q(·)(−H) → W 1,q(·)(Rn+1).

This directly implies TrW 1,q(·)(−H) = TrW 1,q(·)(H) with equivalence of norms. The identi-
ties TrW 1,q(·)(H) = TrW 1,p(·)(H) and TrW 1,q(·)(−H) = TrW 1,p(·)(H) (by reflection) conclude
the proof of the theorem. ¤

Remark 3.4. The first author has previously proven an extension theorem for variable expo-
nent spaces, see [10, Theorem 4.2]. The difference between that result and Theorem 3.3 is
the following: in Theorem 3.3 the exponent p is already given outside of H while in [10] the
exponent p had to be extended from H to R

n+1 in a special way.

Recall the definition of the Sobolev space of functions with zero boundary value: the

space W
1,p(·)
0 (H) is the completion of C∞

0 (H) in W 1,p(·)(H). (Other definitions are better,

when smooth functions are not dense, see [19, 20].) We next characterize W
1,p(·)
0 (H) in terms

of traces.

Theorem 3.5. Suppose that p ∈ P(H) and let F ∈ W 1,p(·)(H). Then F ∈ W
1,p(·)
0 (H) if and

only if TrF = 0.

Proof. Suppose first that F ∈ W 1,p(·)(H) with TrF = 0. We extend p to −H by reflection.
Since W 1,p(·)(H) ↪→ W 1,1

loc (H), it follows by classical theory that F extended by 0 to the
lower half-space −H is differentiable in the sense of distributions in R

n+1, and hence F is
in W 1,p(·)(Rn+1). Now let ϕ be a standard mollifier with support in Bn+1(−en+1/2, 1/3).
Then ϕr ∗ F has compact support in H and is smooth. Since p ∈ P(Rn+1), it follows that

ϕr ∗ F → F in W 1,p(·)(Rn+1) as r → 0, so F ∈ W
1,p(·)
0 (H).

For the converse, if F ∈ W
1,p(·)
0 (H), then, by definition, F = limϕi in W 1,p(·)(H), where

ϕi ∈ C∞
0 (H). Since Trϕi = ϕi|Rn ≡ 0, the claim follows by continuity of Tr : W 1,p(·)(H) →

TrW 1,p(·)(H). ¤

The following simple result was proven recently in [7, Lemma 4.3]. We include the proof
for completeness, since our proof is much shorter than that in [7].

Proposition 3.6. Let X ⊂ R
n. If p ∈ P(X), then there exists an extension p̃ ∈ P(Rn).
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Proof. Since 1/ log(1/t) is convex on (0, 1/8), we can use a McShane-type maximal extension
[25] of p to X1/8 := {x ∈ R

n : d(x,X) < 1/8}, more precisely, we define

p(y) = sup
x∈X

(

p(x) +
C

− log |x− y|

)

,

where C is the local log-Hölder constant of p. Iterating this procedure we can define p on
all of R

n. Then we define

p̄(x) = (1 − d(x,X))p(x) + d(x,X)p∞

for d(x,X) < 1 and p̄(x) = p∞ otherwise (p∞ is defined by p if X is unbounded, and can be
chosen arbitrarily otherwise). Finally we truncate p̄ at p−X and p+

X to get p̃. ¤

The previous proposition and Theorem 3.1 imply that the following definition is sensible
(up to equivalence of norms).

Definition 3.7. Let p ∈ P(Rn) and let q ∈ P(H) be an arbitrary extension of p. Then we
define an intrinsic trace space by

(

TrW 1,p(·)
)

(Rn) := TrW 1,q(·)(H).

Remark 3.8. When p ∈ P(Rn), Theorem 3.1 simplifies studying the space (TrW 1,p(·))(Rn)
significantly. Indeed, for x ∈ R

n and t ∈ [0, 2] define q(x, t) := p(x). Then q is globally
log-Hölder continuous on R

n × [0, 2] with 1 < q− 6 q+ < ∞. By Proposition 3.6 we can
extend q to the set H so that q ∈ P(H). We have (TrW 1,p(·))(Rn) = TrW 1,q(·)(H). So we
can always assume that the exponent q(x, t) is independent of t as long as t ∈ [0, 2].

4. Intrinsic Characterization of the Trace Space

For a function f ∈ L1
loc(R

n) we define the sharp operator by

M ]
Bn(x,r)f = –

∫

Bn(x,r)

∣

∣f(y) − 〈f〉nx,r

∣

∣ dy,

Using the triangle inequality it is easy to show that

M ]
Bn(x,r)f 6 –

∫

Bn(x,r)

–

∫

Bn(x,r)

∣

∣f(y) − f(z)
∣

∣ dy dz 6 2M ]
Bn(x,r)f.(4.1)

We define the trace modular %Tr,p(·) by

%Tr,p(·)(f) =

∫

Rn

|f(x)|p(x) dx+

∫ 1

0

∫

Rn

(

1
r
M ]

Bn(x,r)f
)p(x)

dx dr.

Obviously, %Tr,p(·) is convex. Thus

‖f‖Tr,p(·) := inf
{

λ > 0 : %Tr,p(·)(f/λ) 6 1
}

is a norm, since it is the Minkowski functional of the absolutely convex set {f : %Tr,p(·)(f) 6 1}.

The following theorem characterizes the traces of W 1,p(·)(H) functions and completes the
proof of Theorem 1.1.
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Theorem 4.2. Let p ∈ P(H) and let f ∈ L1
loc(R

n). Then f belongs to TrW 1,p(·)(H) if and

only if ‖f‖Tr,p(·) <∞, or, equivalently,

∫

Rn

|f(x)|p(x) dx+

∫ 1

0

∫

Rn

(

1
r
M ]

Bn(x,r)f
)p(x)

dx dr <∞,

where p(x) := p(x, 0). Moreover, ‖f‖Tr,p(·) is equivalent to the quotient norm ‖f‖Tr W 1,p(·)(H).

To prove the theorem we have to show two things. First, for F ∈W 1,p(·)(H) and f := TrF
we have to show that ‖f‖Tr,p(·) 6 c ‖F‖Tr W 1,p(·)(H). Therefore, we have to estimate |f | and

M ]
Bn(x,t)f in terms |F | and |∇F |. Second, for f ∈ TrW 1,p(·)(H) we have to show the existence

of some F ∈ W 1,p(·)(H) with TrF = f and ‖F‖Tr W 1,p(·)(H) 6 c ‖f‖Tr,p(·). We will define the
extension F by F (x, t) := (ϕt ∗f)(x) for x ∈ R

n and t > 0, where (ϕt) is a standard mollifier
family. In order to estimate ‖F‖W 1,p(·)(H) we need to estimate |F | and |∇F | in terms of |f |

and M ]
Bn(x,t)f . The following two lemmas provide these estimates.

Lemma 4.3. There exists a constant c1 > 0, such that

M ]
Bn(z,r) TrF 6 c1 r –

∫

Bn+1((z,0),r)

χH(ξ) |∇F (ξ)| dξ(4.4)

for all z ∈ R
n, r > 0 and F ∈W 1,1

(

Bn+1((z, 0), r)
)

.

Proof. Since smooth functions are dense in W 1,1(Bn+1(z, r)) it suffices to prove (4.4) for
smooth F . As usual we denote f = TrF = F |Rn . Let us estimate |f(x) − f(y)| for x, y ∈ R

n

by integrating the gradient over the path γζ = [x, ζ] ∪ [ζ, y] for ζ ∈ H:

|f(x) − f(y)| 6

∫

γζ

|∇F (ξ)| dξ.(4.5)

Define Bx,y = Bn+1(x+y
2

+ |x−y|
4
en+1,

|x−y|
8

)∩P , where P is the mid-point normal plane of the
segment [x, y]. We integrate (4.5) over ζ ∈ Bx,y and get

|f(x) − f(y)| 6 c

∫

Ax,y

|∇F (ξ)|
(

|x− ξ|−n + |y − ξ|−n
)

dξ,

where Ax,y =
⋃

ζ∈Bx,y
γζ . Let z ∈ R

n and r > 0. Using the previous estimate together with

(4.1) gives

M ]
Bn(z,r)f 6 c –

∫

Bn(z,r)

–

∫

Bn(z,r)

∫

Ax,y

|∇F (ξ)|t−n dξ dx dy,(4.6)

where t denotes the n+ 1st co-ordinate of ξ and we used that t 6 min{|y− ξ|, |x− ξ|} when
ξ ∈ Ax,y.

The set Ax,y consists of two cones, one emanating from y and the other from x, denoted
by A′

x,y and A′′
x,y, respectively. By symmetry, we see that we can replace Ax,y by A′

x,y in
(4.6). We want to swap the order of integration. So suppose that ξ ∈ A′

x,y. Then certainly

ξ ∈ Bn+1(z, r). Also, ξ lies in a cone emanating from y whose direction depends on x − y.
Thus we see that y lies in the cone emanating from ξ with the same base-angle but opposite

8



direction. This means that for a fixed ξ the variable y varies in a ball Bn(w, c′t) for some
w ∈ Bn+1(z, r) (depending on x−y) and c′ > 0 (depending only on the dimension n). Hence

M ]
Bn(z,r)f 6 c r−2n

∫

Bn(z,r)

∫

Bn(z,r)

∫

A′
x,y

|∇F (ξ)|t−n dξ dx dy

6 c r−2n

∫

Bn+1((z,0),r)

χH(ξ) |∇F (ξ)|t−n

∫

Bn(w,c′t)

∫

Bn(z,r)

dx dy dξ

= c r –

∫

Bn+1(z,r)

χH(ξ) |∇F (ξ)| dξ.

This proves the lemma. ¤

The proof of the following lemma is essentially the same as the proof of Theorem 3.3, so
it is omitted here.

Lemma 4.7. Let {ϕt} be a standard mollifier family. Let f ∈ L1
loc(R

n) and define F (x, t) :=
(ϕt ∗ u)(x) for x ∈ R

n and t ∈ (0,∞). Then there exists a constant c2 depending only on ϕ
and n such that for all x ∈ R

n and t ∈ (0,∞)

|F (x, t)| 6 c2〈|f |〉
n
x,t,

|∇F (x, t)| 6
c2
t
M ]

Bn(x,t)f.

Thus we are ready for the proof of the main result.

Proof of Theorem 4.2. Due to Theorem 3.1 and Remark 3.8 we can assume without loss of
generality that p(x, t) = p(x, 0) = p(x) for x ∈ R

n and t ∈ [0, 2].
Let {ϕt} be a standard mollifier family, and let f ∈ TrW 1,p(·)(H) with ‖f‖Tr W 1,p(·)(H) 6 1,

equivalently, with
∫

Rn

|f(x)|p(x) dx+

∫ 1

0

∫

Rn

(

1
r
M ]

Bn(x,r)f
)p(x)

dx dr 6 1.(4.8)

We have to show the existence of an extension F ∈ W 1,p(·)(H) with ‖F‖W 1,p(·)(H) 6 c,
where c is independent of f . As mentioned above, we would like to consider the extension
(x, t) 7→ (ϕt ∗ f)(x). But in order to avoid difficulties as t→ ∞ we cut off the part for large
t. Let ψ ∈ C∞

0 ([0,∞)) with χB1(0,1/2) 6 ψ 6 χB1(0,1). Then our extension F is given by
F (x, t) := (ϕt ∗ f)(x)ψ(t).

We now estimate the norm of F in W 1,p(·)(H). Using Lemma 4.7 and noting that 〈|f |〉n
x,t 6

Mf(x), we find that

%Lp(·)(H)(F ) =

∫ 1

0

∫

Rn

|F (x, t)|p(x) dx dt 6 c

∫

Rn

(

Mf(x)
)p(x)

dx.

Our assumptions on p imply that the maximal operator is bounded on Lp(·)(Rn). Since
%p(·)(f) 6 1, the previous inequality implies that %Lp(·)(H)(F ) 6 c. We move to the norm of
the gradient. Using Lemma 4.7 again, we estimate

%Lp(·)(H)(∇F ) =

∫ 1

0

∫

Rn

|∇F (x, t)|p(x) dx dt 6 c(ψ)

∫ 1

0

∫

Rn

∣

∣

1
t
M ]

Bn(x,t)f
∣

∣

p(x)
dx dt 6 c.
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Thus we have shown that F ∈ W 1,p(·)(H). Furthermore, it follows easily that f = TrF , so
we have proved one of the implications in the theorem.

To prove the opposite implication, we use the density of smooth functions and restrict
ourselves without loss of generality to F ∈ W 1,p(·)(H) ∩ C∞(H). By homogeneity, it suffices
to consider the case ‖F‖W 1,p(·)(H) 6 1 and to prove ‖f‖Tr,p(·) 6 C. Since p is bounded, the
latter condition is equivalent to %Tr,p(·)(f) 6 C, which is what we now prove. Replacing F
by F ψ, where ψ is as above, we see that it suffices to consider F supported in R

n × [0, 1].
Define f := TrF . We find that

|f(x)| = |F (x, 0)| 6

∫ 1

0

|∇F (x, t)| dt.

Hence using Jensen’s inequality we get that

|f(x)|p(x)
6

∫ 1

0

|∇F (x, t)|p(x) dt,

and, integrating over x ∈ R
n,

%p(·)(f) =

∫

Rn

|f(x)|p(x) dx 6

∫

Rn

∫ 1

0

|∇F (x, t)|p(x) dt dx = %Lp(·)(H)(∇F ).

Thus we have bounded the Lp(·) part of the trace norm.
Since f = TrF , we get by Lemma 4.3 that
∫ 1

0

∫

Rn

(

1
r
M ]

Bn(x,r)f
)p(x)

dx dr 6 c

∫ 1

0

∫

Rn

(

–

∫

Bn+1((x,0),r)

χH(ξ) |∇F (ξ)| dξ

)p(x)

dx dr

6 c

∫ 1

0

∫

Rn

(

–

∫

Bn+1((x,r),2r)

χH(ξ) |∇F (ξ)| dξ

)p(x)

dx dr

6 c

∫

Rn×[0,1]

(

M(n+1)

(

χH |∇F |
)

(η)
)p(η)

dη.

Extending the exponent to the lower half-space by reflection, we immediately see that p ∈
P(Rn+1) and

∫ 1

0

∫

Rn

(

1
r
M ]

Bn(x,r)f
)p(x)

dx dr 6 c

∫

Rn+1

(

M(n+1)

(

χH |∇F |
)

(ξ)
)p(ξ)

dξ.

Since the maximal operator is bounded on Lp(·)(Rn+1) the right-hand-side of the previous
inequality is bounded by a constant depending only on ‖∇F‖p(·) 6 1. This concludes the
proof. ¤
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