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Definition

Feature subset selection - the process of selecting the relevant
features for use in model construction.

Intuitively one might think, that the more features there are,
the better we can perform our training...
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A simple example

illustration: have a
look at iris dataset

introduce a third
random variable
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Random variable

add random variable
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Random variable
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Random variable
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Dimensionality curse

Many algorithms that work fine in low
dimensions become intractable when
the input is high-dimensional. (Bellman,
1961) [1]
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Random variable

Bias-Variance Dilemma
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Random variable

Bias-Variance Dilemma
Underfitting Overfitting
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Random variable

Reasons for using
dimensionality reduction

to improve prediction
performance

to improve learning
efficiency

to provide faster predictors
requiring less information

to reduce complexity of the
learned results and enable
better understanding of the
underlying process

to prevent over-fitting
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Filtering, Wrapping and Embedded Approach
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PCA

Principal Component Analysis: Motivation

simply three degrees of freedom

vertical and horizontal translations and the rotations

each image represented by 10000 pixels
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PCA

Filtering: Principal Component Analysis

Main idea

PCA ... [is] defined as the
orthogonal projection of the data
onto a lower dimensional linear
space, known as the principal
subspace, such that the variance
of the projected data is
maximized [2, 561]

In other words we want to
perform dimensionality reduction
and keep as much information as
possible.

Figure: [2, 561]
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PCA

Blackboard
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PCA

Coming back to the example:

Python implementation:
https://jakevdp.github.io/PythonDataScienceHandbook/

05.09-principal-component-analysis.html

3D example:
http://setosa.io/ev/principal-component-analysis/
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https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html
https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html
http://setosa.io/ev/principal-component-analysis/
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PCA

PCA: summary

Calculate the covariance matrix

Find the eigenvalues and eigenvectors of the covariance matrix

Transform the data into the new coordinate system
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PCA

Pros

can be applied for data
compression and
dimensionality reduction

first insight into the domain
at hand − visualization of
high dimensional data

easy method for
understanding the data
especially in high dimensions

helps to reduce noise

Cons

assumes linearity relations
between the features

variance is used as a
measure of the importance
of the particular dimension

assumes that principle
components are orthogonal
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Variable ranking

Variable ranking: classical statistics

mutual information

T-test

χ2-test
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Variable ranking

Mutual Information between X and Y

Definition

Mutual information is a measure of mutual dependence between
the chosen variable and the classification variable.

I (X ;Y ) = H(X )− H(X |Y ) =
∑
y∈Y

∑
x∈X

p(x , y) log

(
p(x , y)

p(x)p(y)

)

Mutual information only zero if X
and Y are independent random

variables.
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Variable ranking

Hypothesis test

H0: feature Xi is irrelevant to Y
H1: Xi is dependent to Y
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Variable ranking

χ2−Test

χ2−Test is based on the assumption, that the two events are
independent:

P(A ∧ B) = P(A)P(B) (1)

Definition

Observed number: Ok

Under H0 expected number: Ek

χ2 =
n∑

k=1

(Ok − Ek)2

Ek
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Variable ranking
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Variable ranking

T−Test: Slope of the regression line
Have a look at the classification variable and one other feature
Perform a hypothesis test:

H0: the model created by just a constant
H1: the model created by a constant and the feature

1 calculate the Pearson correlation r = cov(x ,y)√
Var(x)Var(y)

Cov(x , y) =
n∑

i=1

(xi − x̄)(yi − ȳ)

2 compute the t-statistics: tscore = r
√
n−2√

1−r2
, n is the number of

degrees of freedom
3 calculate the p-value and compare to the significance level
4 sort by variables with the smallest p-values
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Variable ranking
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Variable ranking

But what is better? A study on the feature selection
algorithms
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Variable ranking

Nevertheless there is a difference...
https://scikit-learn.org/stable/auto_examples/

feature_selection/plot_f_test_vs_mi.html

F-statistics is better in capturing linear relationships

χ2 and MI almost the same for big sample sizes

MI is easy to compute

use filters to get rid of about the half of the features and use
multiple of them
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Wrapper Approach

Main idea

Use the learning algorithm itself to evaluate the goodness of the
feature subset. At each step remove different features from the
subset. The subset with the highest evaluation is chosen as the
final set on which to run the induction algorithm. [3]

The search space for n features has the dimensionality O(2n)
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Wrapper Approach

forward selection

backward elimination

random choice: e.g. generic algorithms - algorithms using
mutation, crossover and selection

Problem: risk of over-fitting, computationally expensive

not used in the era of big data
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Embedded Approach: Regularization

Small reminder: Regularization

Introduce an additional constraint, a regularizer, to the loss
function, which penalties complexity to avoid over-fitting.

L2/Ridge Regularization

minimize
n∑

i=1

(yi − wT
i xi )

2 s.t. ‖w‖2 ≤ t

Ll2 =
n∑

i=1

(yi − wT
i xi )

2 + λ

n∑
j=1

w2
j
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Lasso regression

Lasso regression

Main idea: use l1-norm of the weight vector

Llasso =
n∑

i=1

(yi − wT
i xi )

2 + λ‖w‖1 (2)

[4]
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Lasso regression

[5]
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Lasso regression

Lasso regression forces some
weights to zero.

implemented feature selection in
the model

lambda determines the size of the
feature set: determined by the
cross-validation risk estimate

breaks down for non-linear
methods, as no natural mapping
between weights and data

other approaches exist like feature
vector machine: modification of
Lasso regression, applies a kernel
function K to the feature vectors
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Lasso regression

Example for λ-Choice

https://towardsdatascience.com/

ridge-and-lasso-regression-a-complete-guide-with-python-scikit-learn-e20e34bcbf0b
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Lasso regression

Overview: Feature Selection methods

13Filtering
approach

13
Wrapping
approach

13
Embedded
approach
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Lasso regression

Overview: Feature Selection methods

13Filtering
approach

13
Wrapping
approach

13
Embedded
approach

PCA

Variable ranking: Mutual information, χ2-Test, T-Test
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Lasso regression

Overview: Feature Selection methods

13Filtering
approach

13
Wrapping
approach

13
Embedded
approach

due to the age of big data rather unpopular as
computationally expensive
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Lasso regression

Overview: Feature Selection methods

13Filtering
approach

13
Wrapping
approach

13
Embedded
approach

Lasso regression
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Lasso regression
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