
Contents

1 Introduction 2
1.1 Quick refresher: Supervised learning 2
1.2 The basic idea of Unsupervised learning 3

2 Cluster analysis 5
2.1 K-means clustering . 6

2.1.1 Variations of the K-means algorithm 9
2.1.2 Gaussian Mixture Models 11
2.1.3 Python implementations 15

2.2 Hierarchical clustering . 16
2.2.1 Basic Agglomerative Hierarchical Clustering Algorithm 16
2.2.2 Defining Proximity between Clusters 17
2.2.3 Group Average . 18
2.2.4 Ward’s method . 18
2.2.5 An instructive example 18

2.3 DBSCAN . 18
2.3.1 The DBSCAN algorithm 20

3 Anomaly detection 22
3.1 Local Outlier Factor - LOF 22

3.1.1 Python implementation 24

Chapter 1

Introduction

1.1 Quick refresher: Supervised learning
In the previous semester, we had the opportunity to study the concepts of
supervised learning, the mathematical structures underneath it and analyze
various models like the Perceptron, Adaline, SVM and so on. The basic idea
was to use the N pre-labeled data points (x(i), y(i))1ÆiÆN and build a hyper-
plane that would separate (in the “one versus the rest” case) one class of
data points from the other class(es). The points x(i)

œ Rn+1 were called data

points, each having n characteristic features (where the first component was
chosen to be 1 by convention), whereas y(i) were called labels. The labels can
have, in the case of a binary classification problem, the values ≠1 and 1. In
the multiclass regime, the labels can take a value from a larger range of val-
ues. Afterwards, we would insert other data points (x(i))i>N and expect our
algorithm to classify them correctly, i.e. label them with the correct value
(y(i))i>N .
So, we formulated the binary classification problems: given pre-labeled data,
we want to find a hyperplane (which is characterized by a vector normal
to the plane, which we usually called w) which separates accurately our pre-
labeled data, and also successfully separates new data. We took a step further
by introducing a certain class of functions, which we called activation func-

tions (Adaline), which would help us improve our algorithm, and afterwards
allowing us to use the tools of optimization theory, defining loss functions,
minimizing them, and so on (like we did for the SVM).

Introduction 3

Figure 1.1: The Perceptron model in action

1.2 The basic idea of Unsupervised learning
Unsupervised learning is a branch of machine learning that learns from test
data that has not been labeled, classified or categorized. Instead of respond-
ing to feedback, unsupervised learning identifies commonalities in the data
and reacts based on the presence or absence of such commonalities in each
new piece of data.
The data given to unsupervised algorithm are not labelled, which means only
the input variables, i.e. the data points x(i) are given with no corresponding
output variables. So the machine has to learn on its own to “separate data”,
without any training. This is the first and most important di�erence in com-
parison to supervised learning.
The first idea that one could come up to would be to visualize the data,
and the person would be in charge for finding structure/patterns in the data
points. This is, however, a problem if the number of data points gets huge,
and not to mention the problem that the feature space cold have a dimension
larger than 3. But suppose that the number of dimensions is the only prob-
lem. Another method that could work is called dimensional reduction.
Using this method, we focus only on the relevant dimensions. However, we
would then need a criterion for defining “relevant” and “irrelevant” dimen-
sions.
So the problem must be tackled with some other methods. Let us therefore
look at a simple example of non-labeled data points:

Introduction 4

Figure 1.2: Two clusters of unlabeled data points

We clearly see that there are (at least) two “bunches” of data, so-called
clusters. But how can we quantitatively conclude that there are two clus-
ters? On one hand, for one cluster, there is a certain domain of the feature
space characteristic for it. On the other hand, we can measure the distance
between the points; the distance between the points that belong to the same
cluster is smaller than the distance between two points that are from di�er-
ent clusters. This will be a guiding principle for building up algorithms.
Some of the most popular algorithms for unsupervised learning include clus-
tering algorithms, among which are the K-means clustering algorithm,
hierarchical clustering, DBSCAN, mixture models and so on. Other algo-
rithms work on the principle of anomaly detection (like the Local Outlier
Factor algorithm). Of course, there are far more algorithms than we have
mentioned with other underlying principles, which we will briefly discuss
later.
The algorithms for these methods can be found in the Python module scikit-
learn. scikit-learn is a Python module for machine learning built on top of
SciPy: https://github.com/scikit-learn

Chapter 2

Cluster analysis

Cluster analysis groups data objects based only on information found in the
data that describes the objects and their relationships. The goal is that the
objects within a group be similar (or related) to one another and di�erent
from (or unrelated to) the objects in other groups. The greater the similar-
ity (or homogeneity) within a group and the greater the di�erence between
groups, the better or more distinct the clustering.
An entire collection of clusters is commonly referred to as a clustering, and in
this section, we distinguish various types of clusterings: hierarchical (nested)
versus partitional (unnested), exclusive versus overlapping versus fuzzy, and
complete versus partial.

A partitional clustering is simply a division of the set of data objects
into non-overlapping subsets (clusters) such that each data object is in ex-
actly one subset. If we permit clusters to have subclusters, then we obtain a
hierarchical clustering, which is a set of nested clusters that are organized
as a tree. Each node (cluster) in the tree (except for the leaf nodes) is the
union of its children (subclusters), and the root of the tree is the cluster
containing all the objects. Exclusive clusters assign each object to a single
cluster. There are many situations in which a point could reasonably be
placed in more than one cluster, and these situations are better addressed
by non-exclusive clustering. In the most general sense, an overlapping or
non-exclusive clustering is used to reflect the fact that an object can simulta-
neously belong to more than one group (class). In a fuzzy clustering, every
object belongs to every cluster with a membership weight that is between 0
(absolutely doesn’t belong) and 1 (absolutely belongs). With such a cluster-
ing, we address situations where data points could belong to more clusters.
Usually, the fuzzy clustering is combined with partitional clustering, by as-
signing data points to the clusters with the highest probability.

Cluster analysis 6

Now that we have defined the basic terms, let us investigate some algorithms.

2.1 K-means clustering
In this section, we will mainly follow Bishop (2006)1.
Suppose we have a data set of N data points (x(i))1ÆiÆN which live in the
d-dimensional feature space. Our goal is to partition the data set into some
number K of clusters, where we shall suppose for the moment that the value
of K is given. We can formalize this notion by first introducing a set of
n-dimensional vectors µk , where k = 1, ..., K, in which µk is a prototype

associated with the kth cluster. As we shall see shortly, we can think of the
µk as representing the centres of the clusters. Our goal is then to find an
assignment of data points to clusters, as well as a set of vectors µk,
such that the sum of the squares of the distances of each data point to its
closest vector µk, is a minimum.
It is convenient at this point to define some notation to describe the assign-
ment of data points to clusters. For each data point x(i), we introduce a cor-
responding set of binary indicator variables rnk œ {0, 1}, where k = 1, ..., K
describing which of the K clusters the data point x(i) is assigned to, so that
if data point x(i) is assigned to cluster k, then rnk = 1, and rnj = 0 for
j = k. This is known as the 1-of-K coding scheme. We can then define a
loss function, sometimes called a distortion measure, given by:

J =
Nÿ

n=1

Kÿ

k=1
rnkÎxn ≠ µkÎ

2 (2.1)

which represents the sum of the squares of the distances of each data point
to its assigned vector µk. Our goal is to find values for the rnk and the
{µk} so as to minimize J . We can do this through an iterative procedure in
which each iteration involves two successive steps corresponding to successive
optimizations with respect to the rnk and the µk.
First we choose some initial values for the µk. Then in the first phase we
minimize J with respect to the rnk, keeping the µk fixed. In the second
phase we minimize J with respect to the µk, keeping rnk fixed. This two-
stage optimization is then repeated until convergence. We shall see that these
two stages of updating rnk and updating µk correspond respectively to the
E (expectation) and M (maximization) steps of the EM algorithm2, and to

1Christopher M. Bishop - Pattern Recognition and Machine Learning, Springer Verlag
2The EM algorithm is a much broader and more general algorithm, but we will not

deal with this algorithm in detail

Cluster analysis 7

emphasize this we shall use the terms E step and M step in the context of
the K-means algorithm.
Consider first the determination of the rnk. Because J in 2.1 is a linear
function of rnk, this optimization can be performed easily to give a closed
form solution. The terms involving di�erent n are independent and so we can
optimize for each n separately by choosing rnk to be 1 for whichever value of
k gives the minimum value of Îxn ≠ µkÎ

2 . In other words, we simply assign
the nth data point to the closest cluster centre. More formally, this can be
expressed as

rnk =

Y
]

[
1 if k = argminj

...xn ≠ µj

...
2

0 otherwise.
Now consider the optimization of the µk with the rnk held fixed. The loss

function j is a quadratic function of µk and it can be minimized by setting
its derivative with respect to µk to zero. This will give us:

2
Nÿ

n=1
rnk(xn ≠ µk) = 0

which we can easily solve for µk:

µk =
q

n rnkxnq
n rnk

(2.2)

The denominator in this expression is equal to the number of points as-
signed to cluster k, and so this result has a simple interpretation, namely set
µk equal to the mean of all of the data points xn assigned to the cluster k.
For this reason, the procedure is called K-means algorithm.

The two phases of dd-assigning data points to clusters and re-computing
the cluster means are repeated in turn until there is no further change in the
assignments (or until some maximum number of iterations is exceeded). Be-
cause each phase reduces the value of the objective function J , convergence
of the algorithm is assured. However, it may converge to a local rather than
global minimum of J . The convergence properties of the K-means algorithm
were studied by MacQueen (1967)3. Let us now summarize how the algo-
rithm looks like and also prove the convergence of the algorithm.

3J. MacQueen - Some methods for classification and analysis of multivariate observa-
tions, https: // projecteuclid. org/ euclid. bsmsp/ 1200512992

Cluster analysis 8

K-means algorithm (pseudocode)

1 for k=1 to K do
2 µk Ω some random location randomly initialize mean for kth cluster
3 end for
4 repeat
5 for n = 1 to N do
6 rnk Ω argminkÎxn ≠ µkÎ

2
E-step: assign n-th data point to closest center

7 end for
8 for k = 1 to K do
9 µk Ω MEANk(xn,rnk) M -step: re-estimate mean of cluster k with 2.2
10 end for
11 until converged
12 return r return cluster assignments

Theorem (K-means Convergence Theorem): For any dataset D
and any number of clusters K, the K-means algorithm converges in a finite
number of iterations, where convergence is measured by J ceasing the change.

We follow the proof given by Hal Daumé III in his book A Course in Machine

Learning.

Proof : The proof works as follows. There are only two points in which
the K-means algorithm changes the values of µk or rnk: lines 6 and 9. We
will show that both of these operations can never increase the value of J .
Assuming this is true, the rest of the argument is as follows. After the first
pass through the data, there are only finitely many possible assignments to
rnk and µk, because rnk is discrete and because µk can only take on a finite
number of values: means of some subset of the data. Furthermore, J is lower-
bounded by zero (since J is just a sum of Euclidean (L2) distances). Together,
this means that J cannot decrease more than a finite number of times. Thus,
it must stop decreasing at some point, and at that point the algorithm has
converged. It remains to show that lines 6 and 9 decrease J . For line 6, when
looking at example n, suppose that the value of rna was 1, and now rnb is
1, and rna is zero. It must be the case that Îxn ≠ µbÎ Æ Îxn ≠ µaÎ. Thus,
changing from a to b can only decrease J . For line 9, consider the second
form of J . Line 9 computes µb as the mean of the data points for which
rnb = 1, which are precisely the points that minimize the squared distances.
Thus, this update to µk can only decrease J . ⇤

There are several aspects of K-means that are unfortunate. First, the
convergence is only to a local optimum of J . In practice, this means that you

Cluster analysis 9

should usually run it 10 times with di�erent initializations and pick the one
with minimal resulting J . Second, one can show that there are input datasets
and initializations on which it might take an exponential amount of time to
converge. Fortunately, these cases almost never happen in practice, and in
fact it has recently been shown that (roughly) if you limit the floating point
precision of your machine, K-means will converge in polynomial time (though
still only to a local optimum), using techniques of smoothed analysis.4

2.1.1 Variations of the K-means algorithm
A direct implementation of the K-means algorithm as discussed here can be
relatively slow, because in each E step it is necessary to compute the Eu-
clidean distance between the prototype vector and every data point. Various
schemes have been proposed for speeding up the K-means algorithm, some
of which are based on precomputing a data structure such as a tree such
that nearby points are in the same subtree (Ramasubramanian and Paliwal,
1990; Moore, 2000). Other approaches make use of the triangle inequality
for distances, thereby avoiding unnecessary distance calculations (Hodgson,
1998; Elkan, 2003).
The biggest practical issue in K-means is initialization. If the cluster means
are initialized poorly, you often get convergence to uninteresting solutions.
It can also happen that we have two centroids concentrated in one cluster.
A useful heuristic is the furthest-first heuristic. This gives a way to perform
a semi-random initialization that attempts to pick initial means as far from
each other as possible. The heuristic is sketched below:

• Pick a random example m and set µ1 = x(m).

• For k = 2, .., K: Find the example m that is as far as possible from all
previously selected means; namely: m = argmaxmminkÕ < k Îxm ≠ µkÕÎ.

In this heuristic, the only bit of randomness is the selection of the first data
point. After that, it is completely deterministic (except in the rare case that
there are multiple equidistant points in the second step). It is extremely
important that when selecting the third mean, you select that point that
maximizes the minimum distance to the closest other mean. You want the
point that’s as far away from all previous means as possible. The furthest-
first heuristic is just that: a heuristic. It works very well in practice, though
can be somewhat sensitive to outliers (which will often get selected as some

4Smoothed Analysis of the k-Means Method, Arthur, Manthey, Röglin: http:
//wwwhome.math.utwente.nl/~mantheyb/journals/JACM_ArthurEA_kMeansSmoothed.
pdf

Cluster analysis 10

of the initial means). However, this outlier sensitivity is usually reduced after
one iteration through the K-means algorithm. Despite being just a heuristic,
it is quite useful in practice.
You can turn the heuristic into an algorithm by adding a bit more random-
ness. This is the idea of the K-means++ algorithm, which is a simple
randomized tweak on the furthest-first heuristic. The idea is that when you
select the kth mean, instead of choosing the absolute furthest data point, you
choose a data point at random, with probability proportional to its distance
squared.

K-means ++ algorithm (pseudocode)

1 µ1 Ω xm - initialize first centroid, m is random;
2 for k = 2 to K do
3 dn Ω minkÕ < kÎxn ≠ µkÕÎ

2, ’n - compute distances
4 p Ω

1q
n

nd
d - normalize to probabilty distribution

5 m Ω random sample from p - pick an example at random
6 µk Ω xm

7 end for
8 run K-means using µ as initial centers

The advantage of the K-means ++ algorithm in comparison to the usual
K-means algorithm is reflected in this theorem, that we state without proof:

Theorem: Let J̃ be the value of the loss function 2.1 obtained by
running K-means++, and let J (opt) be the true global minimum. Then
E[J̃] Æ 8(log K + 2)J (opt). Moreover, if the data is “well suited” for clus-
tering, then E[J̃] Æ O(1)J (opt).
The notion of “well suited” for clustering informally states that the advan-
tage of going from K ≠ 1 clusters to K clusters is “large.” Formally, it means
that J (opt)

K Æ ‘2J (opt)
K≠1 , where ‘ is the desired degree of approximation.

This theorem states that, with the help of the K++ algorithm, we will
surely get “closer” to the global minimum of the loss function.

Of course, there is still the problem of choosing k, the number of clusters.
Usually, you don’t know beforehand how many clusters the data contains,
and usually we cannot look at the data directly because it lies in a higher
dimension than two or three. (Indeed, if you can look at your data and see
obvious clusters like you can here, you may be better o� clustering manually).
So in practice, people often try di�erent values of k and see how their results
vary. We will discuss some other algorithms that help overcome this problem.

Cluster analysis 11

2.1.2 Gaussian Mixture Models
Using an algorithm such as K-Means leads to hard assignments, meaning
that each point is definitively assigned a cluster center. The Euclidean dis-
tance approach classifies data into hard hyperspheres. This leads to some
interesting problems: what if the true clusters actually overlap? What about
data that is more spread out; how do we assign clusters then? What about
data that cannot be separated by spheres? In the following picture we can
see a dataset where clearly the K-means algorithm fails to separate the data
into the two correct clusters:

Figure 2.1: Clustering of data using the K-means algorithm. We see that
K-means fails to classify the two moon-like datasets.

In order to soften the way that the K-means algorithm works and also
allow for some flexibility, we can use so-called mixture models

5. Mixture
models allow us to give a distribution of data as a superposition of simpler
distributions. One of the most used mixture models is the Gaussian mixture
model (GMM). The idea behind Gaussian Mixture Models is to find the
parameters of the Gaussians that best explain our data.

5Mixture model is a probabilistic model for representing the presence of sub-populations
within an overall population, without requiring that an observed data set should identify
the sub-population to which an individual observation belongs.

Cluster analysis 12

Figure 2.2: A distribution approximated as a superposition of two Gaussians

The motivation for Gaussian mixture models comes from the Central
Limit Theorem, which tells us that enough random samples from any distri-
bution will look like the normal distribution.
As a quick reminder, the multidimensional Gaussian distribution is:

N (µ, �) = det(2fi�)≠ 1
2 e≠ 1

2 (x≠µ)|�≠1(x≠µ) (2.3)

where � is the variance matrix, and µ is the mean vector. The covariance
matrix, in addition to telling us the variance of each dimension, also tells us
the relationship between the inputs, i.e., if we change x, how does y tend to
change?

Figure 2.3: Section of a 2D elliptical Gaussian

Cluster analysis 13

Figure 2.4: A dataset generated by two Gaussians

Additionally, K-Means does not take into account the covariance of our
data. If we take a closer look at the Figure 2.4, the blue points seem to
have a relationship between x and y: larger x values tend to produce larger
y values. If we had two points that were equidistant from the center of the
cluster, but one followed the trend and the other did not, K-Means would
regard them as being equal, since it uses Euclidean distance. But it seems
certainly more likely that the point that follows the trend should match closer
to the Gaussian than the point that does not.

Since we know these data are Gaussian, let us try to fit Gaussians to
them instead of a single cluster center.
This is sometimes called generative modeling. We are assuming that these
data are Gaussian and we want to find parameters that maximize the likeli-
hood of observing these data. In other words, we regard each point as being
generated by a mixture of Gaussians and can compute that probability:

p(x) =
kÿ

j=1
„jN (µj, �j) (2.4)

with the constraint

kÿ

j=1
„j = 1 (2.5)

The first equation tells us that a particular data point x is a linear com-
bination of the k Gaussians. We weight each Gaussian with „j, which repre-
sents the strength of that Gaussian. The second equation is a constraint on

Cluster analysis 14

the weights: they all have to sum up to 1. We have three di�erent parameters
that we need to write update: the weights for each Gaussian „j, the means
of the Gaussians µj, and the covariances of each Gaussian �j.

If we try to directly solve for the parameter, it turns out that we can
actually find closed-forms, but we have to know the „j‘s. In other words, if
we knew exactly which combination of Gaussians a particular point was taken
from, then we could easily figure out the means and covariances. But this
one critical flaw prevents us from solving GMMs using this direct technique.
Instead, we have to come up with a better approach to estimate the weights,
means, covariances. And actually we can do so, by using the EM algorithm.

The first part is the expectation step. In this step, we have to com-
pute the probability that each data point was generated by each of the k
Gaussians. In contrast to the K-Means hard assignments, these are called
soft assignments since we’re using probabilities. Note that we’re not assign-
ing each point to a Gaussian, we’re simply determining the probability of a
particular Gaussian generating a particular point. We compute this prob-
ability for a given Gaussian by computing „jN (x; µj, �j) and normalizing
by dividing by qk

q=1 „qN (x; µq, �q). We are directly applying the Gaussian
equation, but multiplying it by its weight „j. Then, to make it a probability,
we normalize. In K-Means, the expectation step is analogous to assigning
each point to a cluster. In the very first step, we assign random or uniformly
distributed values for the parameters.
The second part is the maximization step. In this step, we need to update
our weights, means, and covariances. Recall in K-Means, we simply took the
mean of the set of points assigned to a cluster to be the new mean. We’re
going to do something similar here, except apply our expectations that we
computed in the previous step. To update a weight „j, we simply sum up the
probability that each point was generated by Gaussian j and divide by the
total number of points. For a mean µj, we compute the mean of all points
weighted by the probability of that point being generated by Gaussian j.
For a covariance �j, we compute the covariance of all points weighted by
the probability of that point being generated by Gaussian j. We do each of
these for each Gaussian j. This way we have updated the weights, means,
and covariances! In K-Means, the maximization step is analogous to moving
the cluster centers.

Cluster analysis 15

Mathematically, at the expectation step, we are e�ectively computing a
matrix where the rows are the data point and the columns are the Gaussians.
An element at row i, column j is the probability that x(i) was generated by
Gaussian j, namely:

W (i)
j = „jN (x(i); µj, �j)

kÿ

q=1
„qN (x(i); µq, �q)

The denominator just sums over all values to make each entry in W a
probability. Now, we can apply the update rules.

„j = 1
N

Nÿ

i=1
W (i)

j

µj =
qN

i=1 W (i)
j x(i)

qN
i=1 W (i)

j

�j =
qN

i=1 W (i)
j (x(i)

≠ µj)(x(i)
≠ µj)T

qN
i=1 W (i)

j

The first equation is just the sum of the probabilites of a particular
Gaussian j divided by the number of points. In the second equation, we are
just computing the mean, except we multiply by the probabilities for that
cluster. Similarly, in the last equation, we are just computing the covariance,
except we multiply by the probabilities for that cluster.

2.1.3 Python implementations
K-means clustering implementation

A nice application - Picture rendering

GMM

Will be discussed in class (I guess it doesn’t make sense to write lines of
code in LATEX)

Cluster analysis 16

2.2 Hierarchical clustering
Hierarchical clustering techniques are a second important category of cluster-
ing methods. As with K-means, these approaches are relatively old compared
to many clustering algorithms, but they still enjoy widespread use. There
are two basic approaches for generating a hierarchical clustering:

• Agglomerative: Start with the points as individual clusters and, at each
step, merge the closest pair of clusters. This requires defining a notion
of cluster proximity.

• Divisive: Start with one, all-inclusive cluster and, at each step, split a
cluster until only singleton clusters of individual points remain. In this
case, we need to decide which cluster to split at each step and how to
do the splitting.

Agglomerative hierarchical clustering techniques are by far the most com-
mon, and, in this section, we will focus exclusively on these methods. A hi-
erarchical clustering is often displayed graphically using a tree-like diagram
called a dendrogram, which displays both the cluster relationships and the
order in which the clusters were merged (agglomerative view) or split (di-
visive view). For sets of two-dimensional points, such as those that we will
use as examples, a hierarchical clustering can also be graphically represented
using a nested cluster diagram. Figure 2.5 shows an example of these two
types of figures for a set of four two-dimensional points. These points were
clustered using the single-link technique, which we will discuss in the next
subsection.

Figure 2.5: Hierarchical clustering

2.2.1 Basic Agglomerative Hierarchical Clustering Al-
gorithm

Many agglomerative hierarchical clustering techniques are variations on a sin-
gle approach: starting with individual points as clusters, successively merge

Cluster analysis 17

the two closest clusters until only one cluster remains. This approach is ex-
pressed more formally in the algorithm below.

Basic agglomerative hierarchical clustering algorithm
1: Compute the proximity matrix, if necessary.
2: repeat
3: Merge the closest two clusters.
4: Update the proximity matrix to reflect the proximity

between the new cluster and the original clusters.
5: until Only one cluster remains.

2.2.2 Defining Proximity between Clusters
The key operation of the algorithm above is the computation of the proximity
between two clusters, and it is the definition of cluster proximity that di�eren-
tiates the various agglomerative hierarchical techniques that we will discuss.
Cluster proximity is typically defined with a particular type of cluster in
mind. For example, many agglomerative hierarchical clustering techniques,
such as MIN, MAX, and Group Average, come from a graph-based view of
clusters. MIN defines cluster proximity as the proximity between the closest
two points that are in di�erent clusters. Alternatively, MAX takes the prox-
imity between the farthest two points in di�erent clusters to be the cluster
proximity (If our proximities are distances, then the names, MIN and MAX,
are short and suggestive. For similarities, however, where higher values in-
dicate closer points, the names seem reversed. For that reason, we usually
prefer to use the alternative names, single link and complete link, respec-
tively.) Another graph-based approach, the group average technique, defines
cluster proximity to be the average pairwise proximities (average length of
edges) of all pairs of points from di�erent clusters. We illustrate these three
approaches in the following figure:

Figure 2.6: Di�erent proximities that we can define between clusters

Cluster analysis 18

2.2.3 Group Average
For the group average version of hierarchical clustering, the proximity of two
clusters is defined as the average pairwise proximity among all pairs of points
in the di�erent clusters. This is an intermediate approach between the single
and complete link approaches. Thus, for group average, the cluster proximity
(Ci, Cj) of clusters Ci and Cj, which are of size mi and mj, respectively, is
expressed by the following equation:

Proximity(Ci, Cj) =
q

xœCi,yœCj
proximity(x, y)

mi ◊ mj

2.2.4 Ward’s method
If, instead, we take a prototype-based view, in which each cluster is rep-
resented by a centroid, di�erent definitions of cluster proximity are more
natural. When using centroids, the cluster proximity is commonly defined as
the proximity between cluster centroids. An alternative technique, Ward’s6

method, also assumes that a cluster is represented by its centroid, but it mea-
sures the proximity between two clusters in terms of the increase in the Eu-
clidean distance that results from merging the two clusters. Like K-means,
Ward’s method attempts to minimize the sum of the squared distances of
points from their cluster centroids.

2.2.5 An instructive example
Blackboard

2.3 DBSCAN
Now we turn to another category of clustering, called density-based clustering.
DBSCAN stands for Density-based spatial clustering of applications with
noise. We will first talk about density, and then see how does the DBSCAN
algorithm work.

Traditional Density: Center-Based Approach

Although there are not as many approaches for defining density as there are
for defining similarity, there are several distinct methods. In this section
we dis- cuss the center-based approach on which DBSCAN is based. In the

6For physicists: No, not that Ward from QFT.

Cluster analysis 19

center-based approach, density is estimated for a particular point in the data
set by counting the number of points within a specified radius, ‘, of that
point. This includes the point itself. This method is simple to implement,
but the density of any point will depend on the specified radius.
The center-based approach to density allows us to classify a point as being

• in the interior of a dense region (a core point)

• on the edge of a dense region (a border point), or

• in a sparsely occupied region (a noise or background point).
Figure 2.8 graphically illustrates the concepts of core, border, and noise
points.
Core points: These points are in the interior of a density-based cluster. A
point is a core point if the number of points within a given neighborhood
around the point as determined by the distance function and a user-specified
distance parameter, ‘, exceeds a certain threshold, MinPts, which is also a
user-specified parameter. In Figure 2.7, point A is a core point, for the indi-
cated ‘ if MinPts Æ 7.
Border points: A border point is not a core point, but falls within the neigh-
borhood of a core point. In Figure 2.8, point B is a border point. A border
point can fall within the neighborhoods of several core points.
Noise points: A noise point is any point that is neither a core point nor a
border point. In Figure 2.8, point C is a noise point.

Figure 2.7: A ball of radius ‘

Figure 2.8: Core, border and noise point

Cluster analysis 20

2.3.1 The DBSCAN algorithm
Given the previous definitions of core points, border points, and noise points,
the DBSCAN algorithm can be informally described as follows. Any two core
points that are close enough—within a distance ‘ of one another—are put
in the same cluster. Likewise, any border point that is close enough to a
core point is put in the same cluster as the core point. (Ties may need to
be resolved if a border point is close to core points from di�erent clusters.)
Noise points are discarded. The formal details are given in the algorithm
below. This algorithm uses the same concepts and finds the same clusters as
the original DBSCAN, but is optimized for simplicity, not e�ciency.

DBSCAN algorithm
1: Label all points as core, border, or noise points.
2: Eliminate noise points.
3: Put an edge between all core points that are within Eps

of each other.
4: Make each group of connected core points into a separate

cluster.
5: Assign each border point to one of the clusters of its

associated core points.

DBSCAN can find many clusters that could not be found using K-means.
However, DBSCAN has trouble when the clusters have widely varying densi-
ties. It also has trouble with high-dimensional data because density is more
di�cult to define for such data. Finally, DBSCAN can be expensive when
the computation of nearest neighbors requires computing all pairwise prox-
imities, as is usually the case for high-dimensional data. Here is an example
of the DBSCAN algorithm in action.

Figure 2.9: Sample data

Cluster analysis 21

Figure 2.10: Cluster analysis with the help of the DBSCAN algorithm

Chapter 3

Anomaly detection

In data mining, anomaly detection (also outlier detection) is the identifica-
tion of rare items, events or observations which raise suspicions by di�ering
significantly from the majority of the data. Typically the anomalous items
will translate to some kind of problem such as bank fraud, a structural de-
fect, medical problems or errors in a text. Anomalies are also referred to as
outliers, novelties, noise, deviations and exceptions.
In particular, in the context of abuse and network intrusion detection, the
interesting objects are often not rare objects, but unexpected bursts in activ-
ity. This pattern does not adhere to the common statistical definition of an
outlier as a rare object, and many outlier detection methods (in particular
unsupervised methods) will fail on such data, unless it has been aggregated
appropriately. Instead, a cluster analysis algorithm may be able to detect
the micro clusters formed by these patterns.

3.1 Local Outlier Factor - LOF
We will discuss one of the most used algorithms for anomaly detection,
namely the Local Outlier Factor algorithm. The local outlier factor is based
on a concept of a local density, where locality is given by k nearest neigh-
bors, whose distance is used to estimate the density. By comparing the local
density of an object to the local densities of its neighbors, one can identify
regions of similar density, and points that have a substantially lower density
than their neighbors (similarly as in the DBSCAN algorithm). These are
considered to be outliers.

The local density is estimated by the typical distance at which a point
can be reached from its neighbors. The definition of reachability distance

used in LOF is an additional measure to produce more stable results within

Anomaly detection 23

clusters.

Figure 3.1: Basic idea of LOF: comparing the local density of a point with
the densities of its neighbors. A has a much lower density than its neighbors.

Let k-distance(A) be the distance of the object A to the k-th nearest
neighbor. Note that the set of the k nearest neighbors includes all objects
at this distance, which can in the case of a “tie” be more than k objects.
We denote the set of k nearest neighbors as Nk(A). This distance is used to
define what is called reachability distance:

reachability-distancek(A, B) = max{k-distance(B), d(A, B)}

In words, the reachability distance of an object A from B is the true
distance of the two objects, but at least the k-distance of B. Objects that
belong to the k nearest neighbors of B (the core of B, as we have defined while
analyzing the DBSCAN algorithm) are considered to be equally distant. The
reason for this distance is to get more stable results. Note that this is not
a distance in the mathematical definition, since it is not symmetric (While
it is a common mistake to always use the k-distance, this yields a slightly
di�erent method, referred to as Simplified LOF).

The local reachability density of an object A is defined by

lrdk(A) := 1/

Aq
BœNk(A) reachability-distancek(A, B)

|Nk(A)|

B

which is the inverse of the average reachability distance of the object
A from its neighbors. Note that it is not the average reachability of the
neighbors from A (which by definition would be the k-distance(A)), but the

Anomaly detection 24

distance at which A can be “reached” from its neighbors. With duplicate
points, this value can become infinite.

Figure 3.2: Illustration of the reachability distance. Objects B and C have
the same reachability distance (k=3), while D is not a k nearest neighbor

The local reachability densities are then compared with those of the
neighbors using:

LOFk(A) :=
q

BœNk(A)
lrd(B)
lrd(A)

|Nk(A)| =
q

BœNk(A) lrd(B)
|Nk(A)| /lrd(A)

which is the average local reachability density of the neighbors divided by the
object’s own local reachability density. A value of approximately 1 indicates
that the object is comparable to its neighbors (and thus not an outlier). A
value below 1 indicates a denser region (which would be an inlier), while
values significantly larger than 1 indicate outliers.

3.1.1 Python implementation
https://scikit-learn.org/stable/auto_examples/neighbors/plot_lof_
outlier_detection.html

