Reinforcement Learning A short introduction (powered by *Sutton and Barto, 2012*)

10.01.2019

Severin Angerpointner LMU Munich

AI in different areas

S. AlphaGo

How do organisms learn?

Classification: microscopic model

panda

100

Neural Networks, Clustering, ...

Behaviour (policy): "black box"

Reinforcement Learning, ...

Dynamic-Programming Agent Policy On-Policy Return Off-Policy Environment Action Bellman-Equation Reinforcement Value Learning State Q-learning Reward **Temporal-Difference**

The RL Problem

 $t \in \{0, 1, ..., T\}$ (episodic tasks: $T < \infty$)

Basic Not	(at)ions	
• States:	$oldsymbol{S}_{oldsymbol{t}}\in\mathcal{S}$	
• Actions:	$A_t \in \mathcal{A}(S_t)$	- "input"
• Rewards:	$R_t \in \mathbb{R}$ (i.g. randomly distributed)	
• Policies:	$\pi: \mathcal{S} \to PDF[\mathcal{A}]$]
	$oldsymbol{s}\mapsto \pi(oldsymbol{a}\midoldsymbol{s})$	- "output'
	(Probability to select action a being in state s)	

Examples (blackboard)

• Pole Balancing

o Gridworld

Reward vs. Return vs. Value

Learner should achieve an overall goal (not just immediate reward)

• Return:
$$G_t = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{T-t-1} R_T$$
 $\gamma \in [0, 1]$

• State Value: $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$

State-Action Value

Alternative quantity: $q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$

(Expected return after choosing action a in state s and then following policy π)

+ No search for best action necessary

- Higher computational cost

$$q_{\pi}(s,a) = \sum_{s'} p(s' \mid s,a) \left[r(s,a,s') + \gamma \sum_{a'} \pi(a' \mid s') q_{\pi}(s',a') \right]$$

$$p(s' | s, a) = p(S_{t+1} = s' | S_t = s, A_t = a)$$

$$r(s, a, s') = \mathbb{E}_{\pi} [R_{t+1} | S_t = s, A_t = a, S_{t+1} = s']$$

Strictly applies only to Markov Decision Processes (MDP)!

Optimal Policies

There is at least one "optimal" policy π_* , i.e.:

$$\forall s \in S \ \forall a \in A(s) : q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

(M.L. Puterman, "Markov Decision Processes", 2016)

 $\rightarrow \pi_* =$ "Always choose action with highest value" (greedy)

 \rightarrow But we don't know corresponding q

General RL Algorithms

RL problem solved by finding q_* , with:

 $\pi_*(a_* \mid s) \neq 0$ only for $a_* = \arg \max_a q_*(s,a)$

Apply Bellman equation:

$$q_*(s,a) = \sum_{s'} p(s' \mid s,a) \left[r(s,a,s') + \gamma \max_{a'} q_*(s',a') \right]$$

Unique solution exists for finite MDP!

Common RL Methods

Dynamic Programming

Example: Policy Iteration

Use Bellman eq. iteratively to update v for given policy
Find better policy by selecting argmax of q as action

+ Guaranteed convergence (finite MDP)

- Computationally expensive
- Complete knowledge of MDP required

Policy Iteration

1. Initialization $v(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$ 2. Policy Evaluation Repeat $\Delta \leftarrow 0$ For each $s \in S$: $temp \leftarrow v(s)$ $v(s) \leftarrow \sum_{s'} p(s'|s, \pi(s)) \left[r(s, \pi(s), s') + \gamma v(s') \right]$ $\Delta \leftarrow \max(\Delta, |temp - v(s)|)$ until $\Delta < \theta$ (a small positive number) 3. Policy Improvement policy-stable $\leftarrow true$ For each $s \in S$: $temp \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg \max_a \sum_{s'} p(s'|s, a) \left| r(s, a, s') + \gamma v(s') \right|$ If $temp \neq \pi(s)$, then policy-stable \leftarrow false If *policy-stable*, then stop and return v and π ; else go to 2

15

Monte Carlo

Suppose only sample of MDP kown, not full process

Approximate value functions empirically
Improve policy similar to DP

 $q_{\pi}(s,a) \leftarrow rac{1}{N} \sum_{m=1}^{N} G_t^{(m)}$

+ Requires only sample returns/episodes

– Maintaining exploration

- Can only update after each episode

On-/Off-Policy

• On-Policy: follow and evaluate same policy π (as before)

• Off-Policy: follow behaviour policy π / evaluate estimation policy π '

 \rightarrow Can choose exploring (*soft*) policy to sample whole state space

Examples: *ɛ-greedy*, *Softmax*, ...

Temporal Difference Learning

General idea (combine DP and MC):

Gradually update q towards optimum

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \delta_t$

error/temporal difference = "target – current value"

learning rate

e.g. update towards G after full episode (MC): $\delta_t = G_t^{(m)} - Q(S_t, A_t)$

One Step TD Learning

On-Policy: SARSA $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$

Off-Policy: Q-Learning

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_a Q(S_{t+1}, a) - Q(S_t, A_t) \right]$

Eligibility Traces

Update more than one previosly visited states → Compromise between full MC and one step TD

$TD(\lambda)$ Algorithms

New update rule: $\forall s \in S \ \forall a \in A(s)$:

$$Q(s,a) \leftarrow Q(s,a) + \alpha \, \delta_t \, Z_t(s,a)$$

With eligibility trace:

$$Z_t(s,a) = \gamma \lambda Z_{t-1}(s,a) + \delta_{S_t,s} \delta_{A_t,a}$$

Sarsa(λ)

Initialize Q(s, a) arbitrarily, for all $s \in S, a \in \mathcal{A}(s)$ Repeat (for each episode): Z(s, a) = 0, for all $s \in S, a \in \mathcal{A}(s)$ Initialize S, ARepeat (for each step of episode): Take action A, observe R, S'Choose A' from S' using policy derived from Q (e.g., ε -greedy) $\delta \leftarrow R + \gamma Q(S', A') - Q(S, A)$ $Z(S, A) \leftarrow Z(S, A) + 1$ For all $s \in S, a \in \mathcal{A}(s)$: $Q(s, a) \leftarrow Q(s, a) + \alpha \delta Z(s, a)$ $Z(s,a) \leftarrow \gamma \lambda Z(s,a)$ $S \leftarrow S': A \leftarrow A'$ until S is terminal

Summary

1) Model specific tasks with state and action spaces

2) Define goal via reward funcion

3) RL problem: find optimal policy/value function

 Methods: systematic policy improvement (DP), learning from experience (MC, TD, Q)

*References

- <u>https://qph.fs.quoracdn.net/main-qimg-330e8b2941bc0164211bbdc7d5c693f3</u>
- <u>https://de.wikipedia.org/wiki/Datei:AlphaGo.svg</u>
- <u>https://de.wikipedia.org/wiki/Clusteranalyse#/media/File:EM-Gaussian-data.svg</u>
- <u>https://www.dailydot.com/debug/face-detection-algorithm-image-search/</u>
- <u>http://m.koreatimes.co.kr/pages/article.asp?newsIdx=260722</u>
- Any other graphics are taken from *Sutton and Barto, 2012*