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AI in different areas
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How do organisms learn?
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Classification: microscopic model Behaviour (policy): "black box"

Neural Networks, Clustering, … Reinforcement Learning, …

not a pandapanda

flee

approach
panda

?
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The RL Problem

5

(episodic tasks: T < ∞)



Basic Not(at)ions
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o States:

o Actions:

o Rewards:

o Policies:

(Probability to select action a being in state s)

(i.g. randomly distributed)

"input"

"output"



Examples (blackboard)
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o Pole Balancing

o Gridworld



Reward vs. Return vs. Value
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Learner should achieve an overall goal (not just immediate reward)

o Return: 

o State Value:



State-Action Value
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Alternative quantity:

(Expected return after choosing action a in state s and then following policy ϖ)

+ No search for best action necessary

– Higher computational cost



Bellman Equation
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Strictly applies only to Markov Decision Processes (MDP)!



There is at least one "optimal" policy , i.e.:

(M.L. Puterman, "Markov Decision Processes", 2016)

Optimal Policies
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→ = "Always choose action with highest value" (greedy)

→ But we don‘t know corresponding q



General RL Algorithms
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RL problem solved by finding , with:

Apply Bellman equation:

only for

Unique solution exists for finite MDP!



Common RL Methods
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Dynamic
Programming

Monte
Carlo

Temporal Difference-/
Q-Learning

Q(λ)-Learning



Dynamic Programming
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Example: Policy Iteration

1) Use Bellman eq. iteratively to update v for given policy

2) Find better policy by selecting argmax of q as action

+ Guaranteed convergence (finite MDP)

– Computationally expensive

– Complete knowledge of MDP required
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Policy Iteration
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Monte Carlo
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Suppose only sample of MDP kown, not full process

1) Approximate value functions empirically

2) Improve policy similar to DP

+ Requires only sample returns/episodes

– Maintaining exploration

– Can only update after each episode



On-/Off-Policy
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o On-Policy: follow and evaluate same policy ϖ (as before)

o Off-Policy: follow behaviour policy ϖ / evaluate estimation policy ϖ΄

→ Can choose exploring (soft) policy to sample whole state space

Examples: ε-greedy, Softmax, …



Temporal Difference Learning
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General idea (combine DP and MC):

Gradually update q towards optimum

e.g. update towards G after full episode (MC): 

learning rate

error/temporal difference
= "target – current value"



One Step TD Learning
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On-Policy: SARSA

Off-Policy: Q-Learning



Eligibility Traces
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Update more than one previosly visited states

→ Compromise between full MC and one step TD



TD(λ) Algorithms
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New update rule:

With eligibility trace:
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Sarsa(λ)



Summary
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1) Model specific tasks with state and action spaces

2) Define goal via reward funcion

3) RL problem: find optimal policy/value function

4) Methods: systematic policy improvement (DP), learning from
experience (MC, TD, Q)



*References

25

• https://qph.fs.quoracdn.net/main-qimg-330e8b2941bc0164211bbdc7d5c693f3

• https://de.wikipedia.org/wiki/Datei:AlphaGo.svg

• https://de.wikipedia.org/wiki/Clusteranalyse#/media/File:EM-Gaussian-data.svg

• https://www.dailydot.com/debug/face-detection-algorithm-image-search/

• http://m.koreatimes.co.kr/pages/article.asp?newsIdx=260722

• Any other graphics are taken from Sutton and Barto, 2012

https://qph.fs.quoracdn.net/main-qimg-330e8b2941bc0164211bbdc7d5c693f3
https://de.wikipedia.org/wiki/Datei:AlphaGo.svg
https://de.wikipedia.org/wiki/Clusteranalyse#/media/File:EM-Gaussian-data.svg
https://www.dailydot.com/debug/face-detection-algorithm-image-search/
http://m.koreatimes.co.kr/pages/article.asp?newsIdx=260722

