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What is word2vec/word embedding? ]
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The paper
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Greg Corrado
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Google Inc., Mountai

Tomas Mikolov
Google Inc., Mountain View, CA

Abstract

Google Inc., Mountain View, CA
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Jeffrey Dean
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e Two 2013 papers accumulating over 7000 citations.

Figure 1: Original paper by Mikolov et al.
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The task

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed
diam nonumy eirmod
tempor invidunt ut

labore et dolore magna

Corpus C
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The task

Lorem ipsum dolor sit

[Lorem]
amet, consetetur /—\
sadipscing elitr, sed [ipsum]
diam nonumy eirmod dolor]

tempor invidunt ut

labore et dolore magna

Corpus C Vocabulary V
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The task

Lorem ipsum dolor sit

[lorem]
amet, consetetur /\
sadipscing elitr, sed [ipsum]
diam nonumy eirmod [dolor]

tempor invidunt ut

labore et dolore magna

Corpus C Vocabulary V

[lorem] = (0.1, 0.4, ..., 0.3)

[ipsum] =(2, 0.5, ..., 0)
word2vec

Vectoruépace
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Why do we need it?

Why do we want a word embedding algorithm? J

Y. Couzinié (LM w2v - word embeddings 31 May 2017 7 /26




Why do we need it?

Main uses

e Classification.
e Sentence or document analysis.d
e Similarity analysis.

| admire my pet.
| adore my pet. » = adore(l, pet)

| love my pet.

word_vectors.similarity('love', 'adore')
>>0.681687380259
word_vectors.similarity('love', 'admire')
>>0.490552324418
word_vectors.similarity('adore', 'admire')
>>0.637308353311
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Semantic networks

Synonyms
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Problems:

Figure 2: Screenshot of conceptnet webpage. Source: conceptnet.io

e Newer and rarer words not well covered.
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N-grams
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(cick on inebel for focus)

Figure 3: Screenshot of Google's N-gram webpage. Source: https://books.google.com/ngrams/.

Problems:
e Relations one can infer statistically are limited.
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You shall know a word by the company it keeps.
J.R. Firth, 1957J
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This is a sentence.

= (this, is) (is, a) (a, sentence)

for word in sentence:
take the current_word_vector
predict the next word
if prediction vector not next_word_vector:
(i.e. if the prediction wrong)
do gradient descent

repeat epoch times
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Architecture

Projection Layer Output Layer

ISEIE
.

Vxd dx% ?—»——
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Figure 4: Architecture network used in the simple w2v-algorithm.

Effectively a 2-layer NN without activation function and cross entropy loss:
T :
vi(we) " - vo(Wet1) = Vprediction — P(Wt) = softmax(Vprediction)
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Extract vocabulary and sentences using NLTK

import nltk
# OMT: First read the files as a big string into self.text

nltk.download('punkt')
# Separate self.text per sentence into list of strings
self .sents = nltk.sent_tokenize(self.text)

# Eztract the unique wvocabulary
nltk.word_tokenize(self.text)
[x.lower() for x in self.vocab]
list(set(self.vocab))

self.vocab
self.vocab
self.vocab
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e
Assign

inps
outs

context to words

for sent in self.sents:

nltk.word_tokenize(sent)

for i in range(len(sent)-1):

# current input word

word = sent[i]

wordID = self.vocab.index(word.lower())
inps.append(wordID) # sparse!

# 1ts corresponding context

cntxt = sent[i+1]

cntxtID = self.vocab.index(cntxt.lower())
outs.append(cntxtID)

# The input data for the NN is inps whereby the i-th element
# has the 1-th element of outs as corresponding label
# (in NN terms).

Y. Couzinié (LMU)
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General version

Increasing context window gives two possibilities:
e Predict target word from context (CBOW).
e Predict context from target word (Skip-gram).
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ceow

Continuous Bag-of-words

Predict target word from context words as input.

Projection Layer Output Layer

Vxd dxV |— H

Avg. sum V
1
Vinput = m Z Ve

ceC
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Skip-gram

Predict context words from target word as input.

Source Text

fox jumps over the
The fox jumps over the

| The| quick-fox|jumps|over the

The| quick| brown - jumps| over | the

Figure 5: Image taken from http://mccormickml.com/assets/word2vec/training data.png (27.5.2017).

lazy dog.

lazy dog.

lazy dog.

lazy dog.

w2v - word embeddings

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)

(fox, brown)
(fox, jumps)
(fox, over)
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General version Comparison

Comparison

Computational costs:
e CBOW

Ox(|C|xd+dxV)
e Skip-gram
Ox|C|x(d+dxV)

Which one to use:
e CBOW is faster and better for frequent words.

e Skip-gram good with smaller corpus and rarer words.
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General version Improvements

N-grams

Extend vocabulary with ngrams

[New, York, Times] — [New, York, New York, Times, New York Times]

Introduce bigram score:

count(w;w;) — ¢

score(w;, w;) = count(w;) x count(w;) ’

with discount coefficient ¢ (prevent infrequent n-grams).

e For n-grams run the bigram score multiple times.
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General version Improvements

Subsampling

Source Text

fox jumps over the
The fox jumps over the

The| quick-fox | jumps | over the

The| quick| brown - jumps| over | the

Figure 6: Image taken from http://mccormickml.com/assets/word2vec/training data.png (27.5.2017).

= The is meaningless.

lazy dog.

lazy dog.

lazy dog.

lazy dog.
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Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)
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General version Improvements

Subsampling

Probability to remove/subsample:

- z(w)) 0.001 1
P(w;) = ( 0.001 +1> z(wi) " \/z(w)

with z(w;) the relative frequency of the word.

e Only subsample words with frequency > 0.26%.
e The frequent word does not appear in context windows.

e Deleting the window means up to 4|C| less training data.
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s
Negative Sampling

e Gradient descent trains every weight based on one data tuple.
e Push one value to one and others to zero.

e Update only positive word and subset of negative words.

e 5-20 words for smaller and 2-5 for large datasets.
e For usual corpora: < 0.1% of weights!
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s
Negative Sampling

In the code that means:

e Associate probability to each word given by

f(W,')3/4

) = S (wpr)

e Create array of size 100M.
e Enter each word P(w;) x 100M times.
e Select random item from table.

= Frequent words get corrected more frequently.
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Google's model

import gensim.models.KeyedVectors as kv

model
wordv

'./GoogleNews-vectors-negative300.bin'
kv.load_word2vec_format( model, fbinary=True)

print('What is your base vector?')

positivel = input()

print('What is the vector you want to substract?')
negative = input()

print('What is the vector you then want to add?')
positive 2 = input()

print ('The most similar vector to this corresponds to: \n ')

print (wordv.most_similar(positive=[positivel, positive2],
negative=[negativel]))
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Thank you for your attention. J
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