
word2vec
Mathematics and Applications of Machine Learning

Yannick Couzinié

Ludwig-Maximilians-Universität München
Mathematics Deparment

31 May 2017

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 0 / 26

Structure

1 What is it?

2 Why do we need it?
Alternatives

3 Easy version
Conceptual
Code

4 General version
CBOW
Skip-gram
Comparison
Improvements

5 Google’s model

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 1 / 26

What is it?

What is word2vec/word embedding?

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 2 / 26

What is it?

The paper

Figure 1: Original paper by Mikolov et al.

• Two 2013 papers accumulating over 7000 citations.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 3 / 26

What is it?

The task

Lorem ipsum dolor sit

amet, consetetur

sadipscing elitr, sed

diam nonumy eirmod

tempor invidunt ut

labore et dolore magna

Corpus C

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 4 / 26

What is it?

The task

Lorem ipsum dolor sit

amet, consetetur

sadipscing elitr, sed

diam nonumy eirmod

tempor invidunt ut

labore et dolore magna

[Lorem]

[ipsum]

[dolor]

...

Corpus C Vocabulary V

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 5 / 26

What is it?

The task

Lorem ipsum dolor sit

amet, consetetur

sadipscing elitr, sed

diam nonumy eirmod

tempor invidunt ut

labore et dolore magna

[lorem]

[ipsum]

[dolor]

...

Corpus C Vocabulary V
[lorem] = (0.1, 0.4, ..., 0.3)

 [ipsum] = (2, 0.5, ..., 0)

....
word2vec

Vector Space

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 6 / 26

Why do we need it?

Why do we want a word embedding algorithm?

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 7 / 26

Why do we need it?

Main uses

• Classification.

• Sentence or document analysis.d

• Similarity analysis.

I admire my pet.

I adore my pet.

I love my pet.

⇒ adore(I, pet)

word_vectors.similarity('love', 'adore')

>>0.681687380259

word_vectors.similarity('love', 'admire')

>>0.490552324418

word_vectors.similarity('adore', 'admire')

>>0.637308353311

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 8 / 26

Why do we need it? Alternatives

Semantic networks

Figure 2: Screenshot of conceptnet webpage. Source: conceptnet.io

Problems:

• Newer and rarer words not well covered.
Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 9 / 26

Why do we need it? Alternatives

N-grams

Figure 3: Screenshot of Google’s N-gram webpage. Source: https://books.google.com/ngrams/.

Problems:

• Relations one can infer statistically are limited.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 10 / 26

Easy version Conceptual

You shall know a word by the company it keeps.
J.R. Firth, 1957

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 11 / 26

Easy version Conceptual

This is a sentence.

⇒ (this, is) (is, a) (a, sentence)

for word in sentence:

take the current_word_vector

predict the next word

if prediction vector not next_word_vector:

(i.e. if the prediction wrong)

do gradient descent

repeat epoch times

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 12 / 26

Easy version Conceptual

Architecture

0
0
0
...

1
0

0

...

V

Projection Layer Output Layer

V x d d x V

V

T

Figure 4: Architecture network used in the simple w2v-algorithm.

Effectively a 2-layer NN without activation function and cross entropy loss:

vI (wt)
T · vO(wt+1) = vprediction → p(wt) := softmax(vprediction)

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 13 / 26

Easy version Code

Extract vocabulary and sentences using NLTK

import nltk

OMT: First read the files as a big string into self.text

nltk.download('punkt')

Separate self.text per sentence into list of strings

self.sents = nltk.sent_tokenize(self.text)

Extract the unique vocabulary

self.vocab = nltk.word_tokenize(self.text)

self.vocab = [x.lower() for x in self.vocab]

self.vocab = list(set(self.vocab))

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 14 / 26

Easy version Code

Assign context to words

inps = []

outs = []

for sent in self.sents:

sent = nltk.word_tokenize(sent)

for i in range(len(sent)-1):

current input word

word = sent[i]

wordID = self.vocab.index(word.lower())

inps.append(wordID) # sparse!

its corresponding context

cntxt = sent[i+1]

cntxtID = self.vocab.index(cntxt.lower())

outs.append(cntxtID)

The input data for the NN is inps whereby the i-th element

has the i-th element of outs as corresponding label

(in NN terms).
Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 15 / 26

General version

Increasing context window gives two possibilities:

• Predict target word from context (CBOW).

• Predict context from target word (Skip-gram).

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 16 / 26

General version CBOW

Continuous Bag-of-words

Predict target word from context words as input.

Projection Layer Output Layer

V x d d x V

VAvg. sum

1
0
0

0
1
0

0
0

1

vInput =
1

|C |
∑
c∈C

vc

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 17 / 26

General version Skip-gram

Skip-gram

Predict context words from target word as input.

Figure 5: Image taken from http://mccormickml.com/assets/word2vec/training data.png (27.5.2017).

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 18 / 26

General version Comparison

Comparison

Computational costs:

• CBOW

O ∝ (|C | × d + d × V)

• Skip-gram

O ∝ |C | × (d + d × V)

Which one to use:

• CBOW is faster and better for frequent words.

• Skip-gram good with smaller corpus and rarer words.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 19 / 26

General version Improvements

N-grams

Extend vocabulary with ngrams

[New, York, Times]→ [New, York, New York, Times, New York Times]

Introduce bigram score:

score(wi ,wj) =
count(wiwj)− δ

count(wi)× count(wj)
,

with discount coefficient δ (prevent infrequent n-grams).

• For n-grams run the bigram score multiple times.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 20 / 26

General version Improvements

Subsampling

Figure 6: Image taken from http://mccormickml.com/assets/word2vec/training data.png (27.5.2017).

⇒ The is meaningless.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 21 / 26

General version Improvements

Subsampling

Probability to remove/subsample:

P(wi) =

(√
z(wi)

0.001
+ 1

)
0.001

z(wi)
≈ 1√

z(wi)
,

with z(wi) the relative frequency of the word.

• Only subsample words with frequency ≥ 0.26%.

• The frequent word does not appear in context windows.

• Deleting the window means up to 4|C | less training data.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 22 / 26

General version Improvements

Negative Sampling

• Gradient descent trains every weight based on one data tuple.

• Push one value to one and others to zero.

• Update only positive word and subset of negative words.

• 5-20 words for smaller and 2-5 for large datasets.
• For usual corpora: ≤ 0.1% of weights!

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 23 / 26

General version Improvements

Negative Sampling

In the code that means:

• Associate probability to each word given by

P(wi) =
f (wi)

3/4∑(
f (wj)3/4

) .
• Create array of size 100M.

• Enter each word P(wi)× 100M times.

• Select random item from table.

⇒ Frequent words get corrected more frequently.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 24 / 26

Google’s model

import gensim.models.KeyedVectors as kv

model = './GoogleNews-vectors-negative300.bin'

wordv = kv.load_word2vec_format(model, fbinary=True)

print('What is your base vector?')

positive1 = input()

print('What is the vector you want to substract?')

negative = input()

print('What is the vector you then want to add?')

positive 2 = input()

print('The most similar vector to this corresponds to: \n ')

print(wordv.most_similar(positive=[positive1, positive2],

negative=[negative]))

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 25 / 26

End

Thank you for your attention.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 26 / 26

	What is it?
	Why do we need it?
	Alternatives

	Easy version
	Conceptual
	Code

	General version
	CBOW
	Skip-gram
	Comparison
	Improvements

	Google's model

