word2vec

Mathematics and Applications of Machine Learning

Yannick Couzinié

Ludwig-Maximilians-Universitat Miinchen
Mathematics Deparment

31 May 2017

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 0/ 26

Structure

© What is it?

© Why do we need it?
@ Alternatives

© Easy version
o Conceptual
o Code

@ General version
e CBOW
@ Skip-gram
o Comparison
@ Improvements

© Google’s model

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 1/26

What is word2vec/word embedding?]

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 2 /26

The paper

Efficient Estimation of Word Representations in

Vector Space

tmikolovBgoogle.com

Greg Corrado
View, CA

gcorrado@google.com

Google Inc., Mountai

Tomas Mikolov
Google Inc., Mountain View, CA

Abstract

Google Inc., Mountain View, CA

kaichen@google.com

Jeffrey Dean
Google Inc., Mountain View, CA

jeff@google.com

e Two 2013 papers accumulating over 7000 citations.

Figure 1: Original paper by Mikolov et al.

w2v - word embeddings

31 May 2017

3/26

The task

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed
diam nonumy eirmod
tempor invidunt ut

labore et dolore magna

Corpus C

w2 - word embeddings YT

The task

Lorem ipsum dolor sit

[Lorem]
amet, consetetur /—\
sadipscing elitr, sed [ipsum]
diam nonumy eirmod dolor]

tempor invidunt ut

labore et dolore magna

Corpus C Vocabulary V

Y. Couzinié (LMU w2v - word embeddings 31 May 2017 5/ 26

The task

Lorem ipsum dolor sit

[lorem]
amet, consetetur /\
sadipscing elitr, sed [ipsum]
diam nonumy eirmod [dolor]

tempor invidunt ut

labore et dolore magna

Corpus C Vocabulary V

[lorem] = (0.1, 0.4, ..., 0.3)

[ipsum] =(2, 0.5, ..., 0)
word2vec

Vectoruépace

Y. Couzinié (LM w2v - word embeddings 31 May 2017 6 /26

Why do we need it?

Why do we want a word embedding algorithm? J

Y. Couzinié (LM w2v - word embeddings 31 May 2017 7 /26

Why do we need it?

Main uses

e Classification.
e Sentence or document analysis.d
e Similarity analysis.

| admire my pet.
| adore my pet. » = adore(l, pet)

| love my pet.

word_vectors.similarity('love', 'adore')
>>0.681687380259
word_vectors.similarity('love', 'admire')
>>0.490552324418
word_vectors.similarity('adore', 'admire')
>>0.637308353311

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017

8 /26

Semantic networks

Synonyms

i BREE@

B Lingua Natural

B natirliche sprache
am

Bidioma
Bengua®
8 iengua natural

" Kieli ™
B tangue
@ angue ethnique
B langue naturelie
i« lingua

& natural language
AnEnglsh e in Conceptet 5.5

Types of natural language

B Afroasiatic

B Amerind)

B 4ustro-asiatic
@ Austronesian)
@5asque™

@ caucasian ™

8 Chukchi language
B oravidian

@ etamitic

@ Eskimo-Aleut ()

@ Hmong language
B indo-£uropean)
B kassite

B Khoisan

@ mother tongue
B Niger-Kordofanian
@ Nilo-Saharan

B papuan

@ Sino-Tibetan ™

(@ tone language
More»

Documentation FAQ _ Chat
Related terms Links to other sites
Bevohve smapenreas NaturalLanguage
) prirozeny jazyk " wmbelorg NaturalLanguage
human ety 106916947-1

airspeak ™
) antisymmetry ()
language

enskiensyary natural language

) categorial grammar)
natural

) computational linguistics ("
@ programming anguage
@ constructed language
B high fevel @

B indexing language

@ anguage isolate

@ montague grammar

@ reification

@ seaspeak ™

B sentiment analysis

@ sign language

B wansformational grammar
More»

Problems:

Figure 2: Screenshot of conceptnet webpage. Source: conceptnet.io

e Newer and rarer words not well covered.

w2v - word embeddings

31 May 2017

9/ 26

N-grams

0.000280%
0.000260%
0.000240%
0.000220%
0.000200%
0.000180%
0.000160%
0.000140% natural language]
0.000120%
0.000100%
0.000080%
0.000060%
0.000040%
0.000020%

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(cick on inebel for focus)

Figure 3: Screenshot of Google's N-gram webpage. Source: https://books.google.com/ngrams/.

Problems:
e Relations one can infer statistically are limited.

w2 - word embeddings YT

You shall know a word by the company it keeps.
J.R. Firth, 1957J

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 11 /26

This is a sentence.

= (this, is) (is, a) (a, sentence)

for word in sentence:
take the current_word_vector
predict the next word
if prediction vector not next_word_vector:
(i.e. if the prediction wrong)
do gradient descent

repeat epoch times

w2v - word embeddings 31 May 2017 12 /26

Architecture

Projection Layer Output Layer

ISEIE
.

Vxd dx% ?—»——

EEE

<[l
<

Figure 4: Architecture network used in the simple w2v-algorithm.

Effectively a 2-layer NN without activation function and cross entropy loss:
T :
vi(we) " - vo(Wet1) = Vprediction — P(Wt) = softmax(Vprediction)

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 13 /26

Extract vocabulary and sentences using NLTK

import nltk
OMT: First read the files as a big string into self.text

nltk.download('punkt')
Separate self.text per sentence into list of strings
self .sents = nltk.sent_tokenize(self.text)

Eztract the unique wvocabulary
nltk.word_tokenize(self.text)
[x.lower() for x in self.vocab]
list(set(self.vocab))

self.vocab
self.vocab
self.vocab

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 14 / 26

e
Assign

inps
outs

context to words

for sent in self.sents:

nltk.word_tokenize(sent)

for i in range(len(sent)-1):

current input word

word = sent[i]

wordID = self.vocab.index(word.lower())
inps.append(wordID) # sparse!

1ts corresponding context

cntxt = sent[i+1]

cntxtID = self.vocab.index(cntxt.lower())
outs.append(cntxtID)

The input data for the NN is inps whereby the i-th element
has the 1-th element of outs as corresponding label
(in NN terms).

Y. Couzinié (LMU)

w2v - word embeddings 31 May 2017 15 / 26

General version

Increasing context window gives two possibilities:
e Predict target word from context (CBOW).
e Predict context from target word (Skip-gram).

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 16 / 26

ceow

Continuous Bag-of-words

Predict target word from context words as input.

Projection Layer Output Layer

Vxd dxV |— H

Avg. sum V
1
Vinput = m Z Ve

ceC

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017

17 / 26

Skip-gram

Predict context words from target word as input.

Source Text

fox jumps over the
The fox jumps over the

| The| quick-fox|jumps|over the

The| quick| brown - jumps| over | the

Figure 5: Image taken from http://mccormickml.com/assets/word2vec/training data.png (27.5.2017).

lazy dog.

lazy dog.

lazy dog.

lazy dog.

w2v - word embeddings

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)

(fox, brown)
(fox, jumps)
(fox, over)

31 May 2017

18 / 26

General version Comparison

Comparison

Computational costs:
e CBOW

Ox(|C|xd+dxV)
e Skip-gram
Ox|C|x(d+dxV)

Which one to use:
e CBOW is faster and better for frequent words.

e Skip-gram good with smaller corpus and rarer words.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017

19 /26

General version Improvements

N-grams

Extend vocabulary with ngrams

[New, York, Times] — [New, York, New York, Times, New York Times]

Introduce bigram score:

count(w;w;) — ¢

score(w;, w;) = count(w;) x count(w;) ’

with discount coefficient ¢ (prevent infrequent n-grams).

e For n-grams run the bigram score multiple times.

Y. Couzinié (LMU) w2v - word embeddings

31 May 2017 20 / 26

General version Improvements

Subsampling

Source Text

fox jumps over the
The fox jumps over the

The| quick-fox | jumps | over the

The| quick| brown - jumps| over | the

Figure 6: Image taken from http://mccormickml.com/assets/word2vec/training data.png (27.5.2017).

= The is meaningless.

lazy dog.

lazy dog.

lazy dog.

lazy dog.

w2v - word embeddings

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

31 May 2017

21 /26

General version Improvements

Subsampling

Probability to remove/subsample:

- z(w)) 0.001 1
P(w;) = (0.001 +1> z(wi) " \/z(w)

with z(w;) the relative frequency of the word.

e Only subsample words with frequency > 0.26%.
e The frequent word does not appear in context windows.

e Deleting the window means up to 4|C| less training data.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 22 /26

s
Negative Sampling

e Gradient descent trains every weight based on one data tuple.
e Push one value to one and others to zero.

e Update only positive word and subset of negative words.

e 5-20 words for smaller and 2-5 for large datasets.
e For usual corpora: < 0.1% of weights!

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 23 /26

s
Negative Sampling

In the code that means:

e Associate probability to each word given by

f(W,')3/4

) = S (wpr)

e Create array of size 100M.
e Enter each word P(w;) x 100M times.
e Select random item from table.

= Frequent words get corrected more frequently.

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 24 / 26

Google's model

import gensim.models.KeyedVectors as kv

model
wordv

'./GoogleNews-vectors-negative300.bin'
kv.load_word2vec_format(model, fbinary=True)

print('What is your base vector?')

positivel = input()

print('What is the vector you want to substract?')
negative = input()

print('What is the vector you then want to add?')
positive 2 = input()

print ('The most similar vector to this corresponds to: \n ')

print (wordv.most_similar(positive=[positivel, positive2],
negative=[negativel]))

Y. Couzinié (LMU) w2v - word embeddings 31 May 2017 25/ 26

Thank you for your attention. J

Y. Couzinié (LM w2v - word embeddings 31 May 2017 26 / 26

	What is it?
	Why do we need it?
	Alternatives

	Easy version
	Conceptual
	Code

	General version
	CBOW
	Skip-gram
	Comparison
	Improvements

	Google's model

