word2vec
 Mathematics and Applications of Machine Learning

Yannick Couzinié

Ludwig-Maximilians-Universität München
Mathematics Deparment

31 May 2017

Structure

(1) What is it?
(2) Why do we need it?

- Alternatives
(3) Easy version
- Conceptual
- Code

4 General version

- CBOW
- Skip-gram
- Comparison
- Improvements
(5) Google's model

What is word2vec/word embedding?

The paper

Figure 1: Original paper by Mikolov et al.

- Two 2013 papers accumulating over 7000 citations.

The task

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed
diam nonumy eirmod
tempor invidunt ut
labore et dolore magna

Corpus C

The task

The task

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed
diam nonumy eirmod
tempor invidunt ut
labore et dolore magna

Corpus C

$$
\begin{aligned}
& {[\text { lorem }=(0.1,0.4, \ldots, 0.3)} \\
& {[\text { ipsum }]=(2,0.5, \ldots, 0)}
\end{aligned}
$$

Vector Space

Why do we want a word embedding algorithm?

Main uses

- Classification.
- Sentence or document analysis.d
- Similarity analysis.

word_vectors.similarity('love', 'adore')
>>0. 681687380259
word_vectors.similarity('love', 'admire')
>>0. 490552324418
word_vectors.similarity('adore', 'admire')
>>0.637308353311

Semantic networks

en natural language			Documentation	FAQ	Chat	Blog
An English term in Concept						
View this term in the Apt						
Synonyms	Types of natural language	Related terms	Links to ot	er sit		
14．自然言語 ${ }^{(a)}$	－Afroasiatic ${ }^{(m)}$	Enelve	swepencyecren Natu	ILang		
［ill Lingua Natural ${ }^{(n)+}$	－n Amerind ${ }^{(n)}$－	© prirozeny jazyk ${ }^{(0)}$－	umbelarg Natura	nguag		
dif naturliche sprache－	－n Austro－Asiatic ${ }^{(m)}$	en human－	werdree－relt princeton	10691	－7－n	
－ as $^{(m)}$	－m Austronesian ${ }^{(n)}$－	－${ }^{\text {arirspeak }}{ }^{(n)}$	enwikionuryerg na	al lang	e	
	En Basque ${ }^{(n)}$－	Enatisymmetry ${ }^{(\mathrm{n})}$				
	en Caucasian ${ }^{(n)}$	m language				
a idioma ${ }^{(n)}$	m Chukchi language ${ }^{(n)}$	en categorial grammar ${ }^{(0)}$				
［1llengua ${ }^{(n)}$	en Dravidian ${ }^{(n)}+$	en natural－				
－llengua natural ${ }^{(n)} \rightarrow$	en Elamitic ${ }^{(n)}+$	－computational linguistics ${ }^{(0)}$－				
llenguatge natural ${ }^{(r)}$	en Eskimo－Aleut ${ }^{(\mathrm{n})}$－	en programming language－				
$\text { das sprog }{ }^{(n)}$	tn Hmong language ${ }^{(n)}$	n constructed language ${ }^{(n)}$				
tongue ${ }^{(n)}$	－n Indo－European ${ }^{(n)}+$	en high level ${ }^{(3)}$				
er idioma ${ }^{(n)}$－	Enhoisan ${ }^{(\mathrm{n})}$	m indexing language en language isolate ${ }^{(m)}$				
as lengua ${ }^{(n)}$	m mother tongue ${ }^{(n)}$	m montague grammar（ n ）－				
ta venb $3^{4} 5^{(n)}$	－n ${ }^{\text {Niger－Kordofanian }}{ }^{(n)}$	en reification ${ }^{(\mathrm{n})}$				
$\mathrm{n}^{\text {¢ }}$ kieli ${ }^{(n)}$－	en Nilo－Saharan ${ }^{(\mathrm{n})}$	en seaspeak ${ }^{(0)}+$				
（t）langue ${ }^{(\mathrm{r})}-$	en Papuan ${ }^{(n)}+$	en sentiment analysis ${ }^{(m)}$－				
［f．langue ethnique ${ }^{(t)}+$	－n Sino－Tibetan ${ }^{(n)}+$	n sign language ${ }^{(n)}+$				
Ffr langue naturelle ${ }^{(n)} \rightarrow$	－m tone language ${ }^{(0)}$	en transformational grammar ${ }^{(0)}$ ．				
it lingua ${ }^{(n)}+$	More＊	More，${ }^{\text {a }}$				

Figure 2：Screenshot of conceptnet webpage．Source：conceptnet．io

Problems：

－Newer and rarer words not well covered．

N -grams

Figure 3: Screenshot of Google's N-gram webpage. Source: https://books.google.com/ngrams/.

Problems:

- Relations one can infer statistically are limited.

You shall know a word by the company it keeps.
J.R. Firth, 1957

This is a sentence.
\Rightarrow (this, is) (is, a) (a, sentence)
for word in sentence:
take the current_word_vector predict the next word
if prediction vector not next_word_vector:
(i.e. if the prediction wrong)
do gradient descent
repeat epoch times

Architecture

Figure 4: Architecture network used in the simple w2v-algorithm.

Effectively a 2-layer NN without activation function and cross entropy loss:

$$
v_{l}\left(w_{t}\right)^{T} \cdot v_{O}\left(w_{t+1}\right)=v_{\text {prediction }} \rightarrow p\left(w_{t}\right):=\operatorname{softmax}\left(v_{\text {prediction }}\right)
$$

Extract vocabulary and sentences using NLTK

```
import nltk
# OMT: First read the files as a big string into self.text
nltk.download('punkt')
# Separate self.text per sentence into list of strings
self.sents = nltk.sent_tokenize(self.text)
# Extract the unique vocabulary
self.vocab = nltk.word_tokenize(self.text)
self.vocab = [x.lower() for x in self.vocab]
self.vocab = list(set(self.vocab))
```


Assign context to words

```
inps = []
outs = []
for sent in self.sents:
    sent = nltk.word_tokenize(sent)
    for i in range(len(sent)-1):
        # current input word
        word = sent[i]
        wordID = self.vocab.index(word.lower())
        inps.append(wordID) # sparse!
        # its corresponding context
        cntxt = sent[i+1]
        cntxtID = self.vocab.index(cntxt.lower())
        outs.append(cntxtID)
# The input data for the NN is inps whereby the i-th element
# has the i-th element of outs as corresponding label
# (in NN terms).
```

Increasing context window gives two possibilities:

- Predict target word from context (CBOW).
- Predict context from target word (Skip-gram).

Continuous Bag-of-words

Predict target word from context words as input.

Avg. sum

Projection Layer

Output Layer

v

$$
\mathbf{v}_{\text {lnput }}=\frac{1}{|C|} \sum_{c \in C} \mathbf{v}_{c}
$$

Skip-gram

Predict context words from target word as input.

Figure 5: Image taken from http://mccormickml.com/assets/word2vec/training_data.png (27.5.2017).

Comparison

Computational costs:

- CBOW

$$
O \propto(|C| \times d+d \times V)
$$

- Skip-gram

$$
O \propto|C| \times(d+d \times V)
$$

Which one to use:

- CBOW is faster and better for frequent words.
- Skip-gram good with smaller corpus and rarer words.

N -grams

Extend vocabulary with ngrams
[New, York, Times] \rightarrow [New, York, New York, Times, New York Times]

Introduce bigram score:

$$
\operatorname{score}\left(w_{i}, w_{j}\right)=\frac{\operatorname{count}\left(w_{i} w_{j}\right)-\delta}{\operatorname{count}\left(w_{i}\right) \times \operatorname{count}\left(w_{j}\right)},
$$

with discount coefficient δ (prevent infrequent n -grams).

- For n-grams run the bigram score multiple times.

Subsampling

Figure 6: Image taken from http://mccormickml.com/assets/word2vec/training_data.png (27.5.2017).

$$
\Rightarrow \text { The is meaningless. }
$$

Subsampling

Probability to remove/subsample:

$$
P\left(w_{i}\right)=\left(\sqrt{\frac{z\left(w_{i}\right)}{0.001}}+1\right) \frac{0.001}{z\left(w_{i}\right)} \approx \frac{1}{\sqrt{z\left(w_{i}\right)}},
$$

with $z\left(w_{i}\right)$ the relative frequency of the word.

- Only subsample words with frequency $\geq 0.26 \%$.
- The frequent word does not appear in context windows.
- Deleting the window means up to $4|C|$ less training data.

Negative Sampling

- Gradient descent trains every weight based on one data tuple.
- Push one value to one and others to zero.
- Update only positive word and subset of negative words.
- 5-20 words for smaller and 2-5 for large datasets.
- For usual corpora: $\leq 0.1 \%$ of weights!

Negative Sampling

In the code that means:

- Associate probability to each word given by

$$
P\left(w_{i}\right)=\frac{f\left(w_{i}\right)^{3 / 4}}{\sum\left(f\left(w_{j}\right)^{3 / 4}\right)}
$$

- Create array of size 100 M .
- Enter each word $P\left(w_{i}\right) \times 100 M$ times.
- Select random item from table.
\Rightarrow Frequent words get corrected more frequently.
import gensim.models.KeyedVectors as kv

```
model = './GoogleNews-vectors-negative300.bin'
wordv = kv.load_word2vec_format( model, fbinary=True)
print('What is your base vector?')
positive1 = input()
print('What is the vector you want to substract?')
negative = input()
print('What is the vector you then want to add?')
positive 2 = input()
```

print('The most similar vector to this corresponds to: \n ')
print(wordv.most_similar(positive=[positive1, positive2],
negative=[negative]))

Thank you for your attention.

