The space of located subsets

Tatsuji Kawai

Universtà di Padova

Second CORE meeting, 27 January 2017, LMU

The space of located subsets

We are interested in a $_{\text{point-free}}$ topology on the located subsets of some given structure.

Examples

- ▶ Extended Dedekind reals (L, U), i.e. extended with $+\infty, -\infty$.
 - $P q \in U \iff (\exists q' < q) \, q' \in U,$
 - $\qquad \qquad \blacktriangleright \ p \in L \iff (\exists p' > p) \, p' \in L,$
 - $ightharpoonup L \cap U = \emptyset$,

An extended Dedekind reals (L,U) is equivalent to a located (possibly unbounded) upper real U.

- $P q \in U \iff (\exists q' < q) \, q' \in U,$
- $\blacktriangleright \ \ \mbox{(locatedness)} \ p < q \implies p \notin U \lor q \in U.$
- ▶ Compact (including \emptyset) subsets of a compact metric space (X, d) with the Hausdorff metric whose values are in the extended reals.

$$d(A,B) = \max \left\{ \sup_{a \in A} \inf_{b \in B} d(a,b), \sup_{b \in B} \inf_{a \in A} d(a,b) \right\}.$$

Outline

1. Located subsets of continuous lattices

2. Examples of located subsets

- 3. The (point-free) space of located subsets
- 4. Universal property

Continuous covers (Continuous lattices)

An **continuous cover** is a structure $S = (S, \lhd, wb)$ where $\lhd \subseteq S \times Pow(S)$ is a **cover** satisfying

$$\begin{array}{l} \underline{a \in U} \\ \underline{a \vartriangleleft U}, & \underline{a \vartriangleleft U} \ \underline{U} \vartriangleleft V \\ U \vartriangleleft V & \stackrel{\mathsf{def}}{\Longleftrightarrow} (\forall a \in U) \, a \vartriangleleft V, \end{array}$$

and wb is function wb: $S \to Pow(S)$ such that

- **1.** $a \triangleleft \mathsf{wb}(a)$,
- **2.** $(\forall b \in \mathsf{wb}(a)) b \ll a$.

Here, ≪ is the way-below relation

$$b \ll a \stackrel{\mathrm{def}}{\Longleftrightarrow} \forall U \in \mathrm{Pow}(S) \left[a \vartriangleleft U \to (\exists U_0 \in \mathrm{Fin}(U)) \ b \vartriangleleft U_0 \right].$$

Note that $a \ll b \iff (\exists A \in \mathsf{Fin}(S)) \, a \lhd A \ \& \ A \subseteq \mathsf{wb}(b)$, so we can safely use the notation \ll without compromising predicativity.

The $Sat(S) \stackrel{\mathsf{def}}{=} \{ \mathcal{A} \ U \mid U \subseteq S \}$ where $\mathcal{A} \ U = \{ a \in S \mid a \vartriangleleft U \}$ forms a **continuous lattice** with a base $\{ \mathcal{A} \ B \mid B \in \mathsf{Fin}(S) \}$.

Located subsets of continuous covers

Fix a continuous cover $\mathcal{S} = (S, \lhd, \mathsf{wb})$. A subset $V \subseteq S$ is **splitting** if

$$a \vartriangleleft U \& a \in V \implies (\exists b \in U) b \in V.$$

Lemma. A subset $V \subseteq S$ is splitting iff

- **1.** $a < \{a_0, \ldots, a_{n-1}\} \& a \in V \implies (\exists i < n) a_i \in V$,
- **2.** $a \in V \implies (\exists b \ll a) \ b \in V$.

 $\begin{array}{l} \textbf{Proof.} \ (\Rightarrow) \ 1 \ \text{is trivial.} \ 2 \ \text{is by} \ a \ \lhd \ \text{wb}(a) \ \text{and} \ b \in \text{wb}(a) \ \Longrightarrow \ b \ll a. \\ (\Leftarrow) \ \text{Assume} \ 1 \ \& \ 2. \ \text{Then} \ a \ \lhd \ U \ \& \ a \in V \ \stackrel{\text{by} \ 2}{\Longrightarrow} \ (\exists b \ll a) \ b \in V \ \stackrel{\text{def} \ \ll}{\Longrightarrow} \\ (\exists A \in \text{Fin}(U)) \ b \ \lhd \ A \ \stackrel{\text{by} \ 1}{\Longrightarrow} \ (\exists a \in A) \ a \in V. \end{aligned}$

A splitting subset $V \subseteq S$ is a **located** if $a \ll b \implies a \notin V \lor b \in V$.

Lemma. A subset $V \subseteq S$ is located iff $a \in \mathsf{wb}(b) \implies a \notin V \lor b \in V$.

Proof. (\Leftarrow) Suppose $a \ll b$. Since $a \ll b \iff (\exists A \in \mathsf{Fin}(S)) \ a \lhd A \subseteq \mathsf{wb}(b)$, either $A \subseteq S \setminus V$ or $b \in V$. Hence, $a \notin V \lor b \in V$.

Example (Scott topology on Pow(\mathbb{N}))

$$\mathcal{P}\omega=(\mathrm{Fin}(\mathbb{N}),\,\lhd_{\,\omega},\mathrm{wb})$$
 where

$$\begin{array}{ccc} A \vartriangleleft_{\omega} U & \stackrel{\mathsf{def}}{\Longleftrightarrow} \left(\exists B \in U \right) B \subseteq A, \\ & \mathsf{wb}(A) \stackrel{\mathsf{def}}{=} \left\{ B \in \mathsf{Fin}(S) \mid A \subseteq B \right\}. \end{array}$$

- ▶ $V \subseteq Fin(\mathbb{N})$ is splitting iff it is closed downwards w.r.t. \subseteq .
- ▶ A splitting subset V is located iff it is detachable (NB. $A \ll A$).

A splitting subset V corresponds to a subset $\bigcup V \in \mathsf{Pow}(\mathbb{N})$. A located subset of $\mathcal{P}\omega$ corresponds to a detachable subset of \mathbb{N} .

Example (Scott topology on the bounded upper reals)

 $\mathcal{R}^{\it u}=(\mathbb{Q},\,\lhd_{\it u},{\sf wb})$ where

$$\begin{split} q \vartriangleleft_u U & \stackrel{\mathsf{def}}{\Longleftrightarrow} \left(\forall p < q \right) \left(\exists q' \in U \right) p < q', \\ \mathsf{wb}(q) & \stackrel{\mathsf{def}}{=} \left\{ p \in \mathbb{Q} \mid p < q \right\}. \end{split}$$

▶ $V \subseteq \mathbb{Q}$ is splitting iff it is an upper real, i.e.

$$q \in V \iff (\exists p < q) p \in V.$$

▶ A splitting subset V is located iff it is a located upper real (extended real), i.e. $p < q \implies p \notin V \lor q \in V$.

Example (Binary tree C (Formal Cantor space))

$$\mathcal{C} = (\{0,1\}^*, \triangleleft_{\mathcal{C}}, \mathsf{wb})$$
 where

$$a \lhd_{\mathcal{C}} U \overset{\mathsf{def}}{\Longleftrightarrow} (\exists k \in \mathbb{N}) (\forall c \in a[k]) (\exists b \in U) \ b \preccurlyeq c$$
 $\iff U \text{ is a uniform bar of } a.$
 $a[k] \overset{\mathsf{def}}{=} \{a * b \mid |b| = k\},$
 $\mathsf{wb}(a) \overset{\mathsf{def}}{=} \{b \in \{0,1\}^* \mid a \preccurlyeq b\}.$

- ▶ $V \subseteq \{0,1\}^*$ is splitting iff $a \in V \iff (\exists i \in \{0,1\}) \ a * \langle i \rangle \in V$.
- ► A splitting subset V is located iff it is detachable (NB. a ≪ a), i.e. it is a (possibly empty) "spread".

Example (Locally compact metric spaces, Palmgren (2007))

Given a (Bishop) locally compact metric space (X,d), its **localic** completion is the continuous cover $\mathcal{M}(X)=(M_X,\lhd_X,\mathsf{wb})$ where

- ▶ $a \lhd_X U \stackrel{\mathsf{def}}{\Longleftrightarrow} (\forall b <_X a) (\exists A \in \mathsf{Fin}(U)) (\exists \theta \in \mathbb{Q}^{>0}) b \sqsubseteq_\theta A,$ $b \sqsubseteq_\theta A \stackrel{\mathsf{def}}{\Longleftrightarrow} (\forall \, \mathsf{b}(x,\varepsilon) <_X b) \, \varepsilon < \theta \to (\exists a \in A) \, \mathsf{b}(x,\varepsilon) <_X a.$
- $\blacktriangleright \ \mathsf{wb}(a) \stackrel{\mathsf{def}}{=} \{b \in M_X \mid b <_X a\}.$

Consider \mathbb{R}^2 . We have $a \lhd_{\mathbb{R}^2} \{b, c\}$.

Proposition

▶ A splitting subset $V \subseteq M_X$ corresponds to a closed subset

$$X_V \stackrel{\mathsf{def}}{=} \left\{ x \in X \mid (\forall \, \mathsf{b}(y, \delta) \in M_X) \, d(x, y) < \delta \,{\to}\, \mathsf{b}(y, \delta) \in V \right\}.$$

A closed subset $Y \subseteq X$ corresponds to a splitting subset

$$V_Y \stackrel{\mathsf{def}}{=} \{ \mathsf{b}(x,\varepsilon) \in M_X \mid (\exists y \in Y) \, d(x,y) < \varepsilon \} \, .$$

The correspondence is bijective.

▶ (Coquand et al. (2011)) A splitting subset $V \subseteq M_X$ is located iff $X_V \subseteq X$ is semi-located, i.e. for each $x \in X$, the distance

$$d(x, X_V) \stackrel{\mathsf{def}}{=} \left\{ q \in \mathbb{Q}^{>0} \mid (\exists y \in X_V) \, d(x, y) < q \right\}$$

is a located upper real (we allow empty set to be semi-located).

The space of located subsets

Geometric theory

A geometric theory T=(P,R) over a set P of propositional symbols is a set R of axioms of the form

$$p_0 \wedge \cdots \wedge p_{n-1} \vdash \bigvee_{i \in I} q_0^i \wedge \cdots \wedge q_{n_i-1}^i$$
.

A **model** (ideal) of T is subset $\alpha \subseteq P$ such that

$$\{p_0,\ldots,p_{n-1}\}\subseteq\alpha\implies(\exists i\in I)\{q_0^i,\ldots,q_{n_i-1}^i\}\subseteq\alpha$$

for all axioms $p_0 \wedge \cdots \wedge p_{n-1} \vdash \bigvee_{i \in I} q_0^i \wedge \cdots \wedge q_{n_i-1}^i$ in T.

Problem. Given a continuous cover S, find a geometric theory $T_{\mathcal{L}}$ whose models are the located subsets of S.

Geometric theory

Example (Theory of splitting subsets)

Let $S = (S, \triangleleft, wb)$ be a continuous cover.

Recall that $V \subseteq S$ is splitting iff

1.
$$a < \{a_0, \ldots, a_{n-1}\} \& a \in V \implies (\exists i < n) a_i \in V$$
,

2.
$$a \in V \implies (\exists b \ll a) b \in V$$
.

Thus, splitting subsets of S are the models of a geometric over S with the following axioms:

$$a \vdash \bigvee_{b \leqslant a} b, \qquad a \vdash \bigvee_{k \leqslant n} a_k \qquad (a \lhd \{a_0, \dots, a_{n-1}\})$$

Non-example (Located subsets)

A locatedness $a \ll b \implies a \notin V \lor b \in V$ is not geometric.

A naive approach requires non-geometric axiom:

$$\top \vdash (a \to \bot) \lor b \qquad (a \ll b)$$

where $\top \stackrel{\text{def}}{=} \land \emptyset$.

But there is a way out ..., inspired by the following example

Example (Theory of extended Dedekind reals)

- ▶ Consider $\mathcal{R}^u = (\mathbb{Q}, \triangleleft_u, \mathsf{wb})$ whose located subsets are the located (unbounded) upper reals.
- ▶ A located upper real is equivalent to an **extended Dedekind real** (L, U), a pair of disjoint lower and upper reals that is located: $p < q \implies p \in L \lor q \in U$.

Extended Dedekind reals are the models of a theory T_D over the propositional symbols $\{(p,+\infty)\mid p\in\mathbb{Q}\}\cup\{(-\infty,q)\mid q\in\mathbb{Q}\}$ with the following axioms:

$$\begin{aligned} &(-\infty,q) \vdash \bigvee_{q' < q} (-\infty,q') \\ &(-\infty,q) \vdash (-\infty,q') \end{aligned} \qquad (q < q')$$

Dual axioms for $(p, +\infty)$

$$\begin{array}{c} (q,+\infty) \wedge (-\infty,q) \vdash \bot \\ & \top \vdash (p,+\infty) \wedge (-\infty,q) \\ & \top \stackrel{\mathsf{def}}{=} \wedge \emptyset, \quad \bot \stackrel{\mathsf{def}}{=} \vee \emptyset. \end{array}$$

Cuts of a continuous cover

Let $\mathcal{S}=(S,\lhd,\mathsf{wb})$ be a continuous cover. A cut of \mathcal{S} is a pair (L,U) of subsets of S such that

- **1.** $a \triangleleft \{a_0, \ldots, a_{n-1}\} \& a \in U \implies (\exists k < n) a_k \in U$,
- **2.** $a \in U \implies (\exists b \ll a) \ b \in U$,
- **3.** $a < \{a_0, \ldots, a_{n-1}\} \& \{a_0, \ldots, a_{n-1}\} \subseteq L \implies a \in L$,
- **4.** $a \in L \implies (\exists \{a_0, \dots, a_{n-1}\} \gg a) \{a_0, \dots, a_{n-1}\} \subseteq L$,
- **5.** $L \cap U = \emptyset$,
- **6.** $a \ll b \implies a \in L \lor b \in U$.

Note that U is a located subset of S.

Proposition

There exists a bijective correspondence between the located subsets of S and the cuts of S given by

$$V \mapsto (L_V, V)$$
,
$$L_V \stackrel{\mathsf{def}}{=} \{ a \in S \mid (\exists \{a_0, \dots, a_{n-1}\} \gg a) \, (\forall k < n) \, a_k \notin V \}.$$

Theory of located subsets

Given a continuous cover S, define a geometric theory $T_{\mathcal{L}}$ over a propositional symbols $P = \{\mathbf{l}(a) \mid a \in S\} \cup \{\mathbf{u}(a) \mid a \in S\}$ consisting of axioms:

$$\mathbf{u}(a) \vdash \bigvee_{k < n} \mathbf{u}(a_k) \qquad (a \lhd \{a_0, \dots, a_{n-1}\})$$

$$\mathbf{u}(a) \vdash \bigvee_{b \ll a} \mathbf{u}(b)$$

$$\mathbf{l}(a_0) \land \dots \land \mathbf{l}(a_{n-1}) \vdash \mathbf{l}(a) \qquad (a \lhd \{a_0, \dots, a_{n-1}\})$$

$$\mathbf{l}(a) \vdash \bigvee_{\{a_0, \dots, a_{n-1}\} \gg a} \mathbf{l}(a_0) \land \dots \land \mathbf{l}(a_{n-1})$$

$$\mathbf{l}(a) \land \mathbf{u}(a) \vdash \bot$$

$$\top \vdash \mathbf{l}(a) \lor \mathbf{u}(b) \qquad (a \ll b)$$

A model $\alpha \subseteq P$ corresponds to a cut of S via

$$\alpha \mapsto (\{a \mid \mathbf{l}(a) \in \alpha\}, \{a \mid \mathbf{u}(a) \in \alpha\}).$$

Universal property

a bit of topology ... for specialists

Formal topology

A formal topology S is a triple $S = (S, \lhd, \leq)$ where (S, \leq) is a preorder and $\lhd \subseteq S \times \mathsf{Pow}(S)$ is called a **cover** on S such that

$$\frac{a \in U}{a \vartriangleleft U}, \quad \frac{a \leq b}{a \vartriangleleft b}, \quad \frac{a \vartriangleleft U \quad U \vartriangleleft V}{a \vartriangleleft V}, \quad \frac{a \vartriangleleft U \quad a \vartriangleleft V}{a \vartriangleleft U \downarrow V},$$

for all $a, b \in S$ and $U, V \subseteq S$ where

$$U\downarrow V\stackrel{\mathsf{def}}{=} \downarrow U\cap \downarrow V=\left\{c\in S\mid (\exists a\in U)\,(\exists b\in V)\,c\leq a\,\,\&\,\,c\leq b\right\}.$$

A geometric theory T over propositional symbols P determines a formal topology $\mathcal{S}_T=(\operatorname{Fin}(P),\,\lhd_T,\supseteq)$, where \lhd_T is the smallest cover on $\operatorname{Fin}(P)$ such that

$$\{p_0,\ldots,p_{n-1}\} \lhd_T \{\{q_0^i,\ldots,q_{n_i-1}^i\} \mid i \in I\}$$

for each axiom $p_0 \wedge \cdots \wedge p_{n-1} \vdash \bigvee_{i \in I} q_0^i \wedge \cdots \wedge q_{n-1}^i$ in T.

Compact regular formal topologies

A formal topology $S = (S, \lhd, \leq)$ is **regular** if

$$a \vartriangleleft \{b \in S \mid b \lll a\},\,$$

where $a \ll b \stackrel{\mathsf{def}}{\Longleftrightarrow} S \lhd a^* \cup \{b\}$ and $b^* \stackrel{\mathsf{def}}{=} \{c \in S \mid b \downarrow c \lhd \emptyset\}$. Intuitively, $b \ll a \iff$ "the closure of b is contained in a".

A formal topology S is **compact** if

$$S \lhd U \implies (\exists A \in Fin(U)) S \lhd A.$$

Lemma (Johnstone (1982))

Every compact regular formal topology $S = (S, \lhd, \leq)$ is a continuous cover (S, \lhd, wb) with

$$\mathsf{wb}(a) \stackrel{\mathsf{def}}{=} \{b \in S \mid b \lll a\}.$$

Morphisms

A perfect map between continuous covers $\mathcal{S}=(S,\lhd,\mathsf{wb})$ and $\mathcal{S}'=(S',\lhd',\mathsf{wb}')$ is a relation $r\subseteq S\times S'$ such that

- 1. $a \triangleleft' U \implies r^-\{a\} \triangleleft r^-U$,
- **2.** $a \ll' b \implies r^-\{a\} \ll r^-\{b\}$.

Let **CCov** be the category of continuous covers and perfect maps.

A continuous map between formal topologies $\mathcal{S}=(S, \lhd, \leq)$ and $\mathcal{S}'=(S', \lhd', \leq')$ is a relation $r\subseteq S\times S'$ such that

- 1. $S \triangleleft r^-S'$,
- **2.** $r^{-}\{a\} \downarrow r^{-}\{b\} \lhd r^{-}(a \downarrow' b),$
- **3.** $a \triangleleft' U \implies r^-\{a\} \triangleleft r^-U$.

Lemma

Continuous maps between regular formal topologies are perfect. Hence, the category **KReg** of compact regular formal topologies and continuous maps is a full subcategory of **CCov**.

The space of located subsets

Let \mathcal{S} be a continuous cover, and let $\mathcal{L}(\mathcal{S})$ be the formal topology associated with the geometric theory $T_{\mathcal{L}}$; call $\mathcal{L}(\mathcal{S})$ the space of located subsets of \mathcal{S} .

Theory $T_{\mathcal{L}}$

Propositional symbols $\{\mathbf{l}(a) \mid a \in S\} \cup \{\mathbf{u}(a) \mid a \in S\}$ with axioms:

$$\mathbf{u}(a) \vdash \bigvee_{k < n} \mathbf{u}(a_k) \qquad (a \lhd \{a_0, \dots, a_{n-1}\})$$

$$\mathbf{u}(a) \vdash \bigvee_{b \ll a} \mathbf{u}(b)$$

$$\mathbf{l}(a_0) \land \dots \land \mathbf{l}(a_{n-1}) \vdash \mathbf{l}(a) \qquad (a \lhd \{a_0, \dots, a_{n-1}\})$$

$$\mathbf{l}(a) \vdash \bigvee_{\{a_0, \dots, a_{n-1}\} \gg a} \mathbf{l}(a_0) \land \dots \land \mathbf{l}(a_{n-1})$$

$$\mathbf{l}(a) \land \mathbf{u}(a) \vdash \bot$$

$$\top \vdash \mathbf{l}(a) \lor \mathbf{u}(b) \qquad (a \ll b)$$

Universal property

Proposition

- **1.** $\mathcal{L}(S)$ is a compact regular formal topology.
- **2.** There exists a perfect map $\iota_{\mathcal{S}} \colon \mathcal{L}(\mathcal{S}) \to \mathcal{S}$ such that for any compact regular formal topology \mathcal{S}' and a perfect map $r \colon \mathcal{S}' \to \mathcal{S}$, there exists a unique continuous map $\widetilde{r} \colon \mathcal{S}' \to \mathcal{L}(\mathcal{S})$ such that

Theorem

The construction $\mathcal{L}(\mathcal{S})$ is the right adjoint to the forgetful functor $\textit{KReg} \to \textit{CCov}.$

Lawson topology

Classically, the left adjoint to the forgetful functor $\mathbf{KReg} \to \mathbf{CCov}$ is defined by the Lawson topologies on continuous lattices.

Theorem

The space $\mathcal{L}(\mathcal{S})$ of located subsets of \mathcal{S} represents the Lawson topology on \mathcal{S} .

The above adjunction induces a monad $K_{\mathcal{L}}=(\mathcal{L},\eta_{\mathcal{L}},\mu_{\mathcal{L}})$ on **KReg**. By an easy analogy to the classical domain theory, we have

Theorem

The monad $K_{\mathcal{L}}$ induced by the adjunction is naturally isomorphic to the Vietoris monad on **KReg**.

Note: Vietoris monad is a point-free extension of Hausdorff metric on compact subsets on a compact metric space.

Summary

- ► The notion located subset for continuous cover captures well-known examples of located subsets.
- Located subsets can be characterised geometrically via an equivalent notion of cuts.
- ▶ The space $\mathcal{L}(\mathcal{S})$ of located subsets of a continuous cover \mathcal{S} is the Lawson topology on \mathcal{S} .
- \blacktriangleright The monad on KReg induced by the construction $\mathcal{L}(-)$ is the Vietoris monad on KReg.

References

- Thierry Coquand, Erik Palmgren, and Bas Spitters. Metric complements of overt closed sets. *MLQ Math. Log. Q.*, 57(4): 373–378, 2011.
- G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott . *Continuous Lattices and Domains*. Cambridge University Press, 2003.
- Tatsuji Kawai. Lawson topology as the space of located subsets. preprint.
- Erik Palmgren. A constructive and functorial embedding of locally compact metric spaces into locales. *Topology Appl.*, 154: 1854–1880, 2007.
- Bas Spitters. Locatedness and overt sublocales. *Ann. Pure Appl. Logic*, 162(1):36–54, 2010.
- Peter. T. Johnstone. Stone Spaces. Cambridge University Press, 1982.