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The von Neumann minimax theorem

Theorem 1 (classical)

Let A be an n ×m matrix. Then

max
y∈Sm

min
x∈Sn

xTAy = min
x∈Sn

max
y∈Sm

xTAy,

where Sn is the n-dimensional simplex.

I Sn and Sm are inhabited compact convex subsets of normed
spaces Rn and Rm, respectively;

I (x, y) 7→ xTAy is a uniformly continuous function from
Sn × Sm into R;

I (·)TAy : Sn → R is convex for each y ∈ Sm;

I xTA(·) : Sm → R is concave for each x ∈ Sn.



Inhabited sets and constructive suprema

Definition 2
A set S is inhabited if there exists x such that x ∈ S .

Definition 3
Let S be a subset of R. Then s = supS ∈ R is a supremum of S if
∀x ∈ S(x ≤ s) and ∀ε > 0∃x ∈ S(s < x + ε).

Proposition 4

An inhabited subset S of R with an upper bound has a supremum
if and only if for each a, b ∈ R with a < b, either ∃x ∈ S(a < x) or
∀x ∈ S(x < b).



Metric spaces

Definition 5
A metric space is a set X equipped with a metric d : X × X → R
such that

I d(x , y) = 0↔ x = y ,

I d(x , y) = d(y , x),

I d(x , y) ≤ d(x , z) + d(z , y),

for each x , y , z ∈ X .

Remark 6
Let X and Y be metric spaces with metrics dX and dY ,
respectively. Then X × Y is a metric space with a metric

dX×Y ((x , y), (x ′, y ′)) = dX (x , x ′) + dY (y , y ′)

for each (x , y), (x ′, y ′) ∈ X × Y .



Closures and closed subsets

Definition 7
The closure S of a subset S of a metric space X is defined by

S = {x ∈ X | ∀ε > 0∃y ∈ S [d(x , y) < ε]}.

A subset S of a metric space X is closed if S = S .

Definition 8
A sequence (xn) of X converges to x ∈ X if

∀ε > 0∃N∀n ≥ N[d(xn, x) < ε].

Remark 9
A subset S of a metric space X is closed if and only if x ∈ S
whenever there exists a sequence (xn) of S converging to x .



Uniform continuity and total boundedness

Definition 10
A mapping f between metric spaces X and Y is uniformly
continuous if for each ε > 0 there exists δ > 0 such that

∀xy ∈ X [d(x , y) < δ→ d(f (x), f (y)) < ε].

Definition 11
A metric space X is totally bounded if for each ε > 0 there exist
x1, . . . , xn ∈ X such that ∀y ∈ X∃i ∈ {1, . . . , n}[d(xi , y) < ε].

Proposition 12

If f is a uniformly continuous function from an inhabited totally
bounded metric space X into R, then supx∈X f (x) exists.



Complete and compact metric spaces

Definition 13
A sequence (xn) of a metric space is a Cauchy sequence if

∀ε > 0∃N∀mn ≥ N[d(xm, xn) < ε].

A metric space is complete if every Cauchy sequence converges.

Definition 14
A metric space is compact if it is totally bounded and complete.



Convex sets and convex functions

Definition 15
A subset C of a linear space is convex if λx + (1− λ)y ∈ C for
each x , y ∈ C and λ ∈ [0, 1].

Definition 16
A function f from a convex subset C of a linear space into R is

I convex if

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

for each x , y ∈ C and λ ∈ [0, 1];

I concave if

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y)

for each x , y ∈ C and λ ∈ [0, 1].



Normed spaces

Definition 17
A normed space is a linear space E equipped with a norm
‖ · ‖ : E → R such that

I ‖x‖ = 0↔ x = 0,

I ‖ax‖ = |a|‖x‖,
I ‖x + y‖ ≤ ‖x‖+ ‖y‖,

for each x , y ∈ E and a ∈ R.

Note that a normed space E is a metric space with the metric

d(x , y) = ‖x − y‖.

Definition 18
A Banach space is a normed space which is complete with respect
to the metric.



The minimax theorem

Theorem 19
Let K and C be inhabited totally bounded convex subsets of
normed spaces E and F , respectively, and let f : K × C → R be a
uniformly continuous function such that

I f (·, y) : K → R is convex for each y ∈ C;

I f (x , ·) : C → R is concave for each x ∈ K.

Then
sup
y∈C

inf
x∈K

f (x , y) = inf
x∈K

sup
y∈C

f (x , y).



General lemmata

Lemma 20
Let X and Y be inhabited totally bounded metric spaces, and let
f : X × Y → R be a uniformly continuous function. Then
supy∈Y infx∈X f (x , y) and infx∈X supy∈Y f (x , y) exist, and

sup
y∈Y

inf
x∈X

f (x , y) ≤ inf
x∈X

sup
y∈Y

f (x , y).

Lemma 21
Let X and Y be inhabited totally bounded metric spaces, let
f : X × Y → R be a uniformly continuous function, and let c ∈ R.
If c < infx∈X supy∈Y f (x , y), then there exist y1, . . . , yn ∈ Y such
that

c < inf
x∈X

max{f (x , yi ) | 1 ≤ i ≤ n}.



Fan’s theorem for inequalities

Theorem 22
Let K be an inhabited totally bounded convex subset of a normed
space E, let f1, . . . , fn be uniformly continuous convex functions
from K into R, and let c ∈ R. Then

c < inf
x∈K

max{fi (x) | 1 ≤ i ≤ n}

if and only if there exist nonnegative numbers λ1, . . . , λn with∑n
i=1 λi = 1 such that

c < inf
x∈K

n∑
i=1

λi fi (x).

Proof.
We will give a proof after a proof of the minimax theorem.



A proof of the minimax theorem

Proof.
By Lemma 20, it suffices to show that

sup
y∈C

inf
x∈K

f (x , y) ≥ inf
x∈K

sup
y∈C

f (x , y).

Let c = supy∈C infx∈K f (x , y), and suppose that

c < inf
x∈K

sup
y∈C

f (x , y).

Then, by Lemma 21, there exist y1, . . . , yn ∈ C such that

c < inf
x∈K

max{f (x , yi ) | 1 ≤ i ≤ n}.



A proof of the minimax theorem

Proof.
Therefore, by Theorem 22, there exist nonnegative numbers
λ1, . . . , λn with

∑n
i=1 λi = 1 such that

c < inf
x∈K

n∑
i=1

λi f (x , yi ).

Since f (x , ·) : C → R is concave for each x ∈ K , we have

c < inf
x∈K

n∑
i=1

λi f (x , yi ) ≤ inf
x∈K

f (x ,
n∑

i=1

λiyi ) ≤ sup
y∈C

inf
x∈K

f (x , y),

a contradiction.



Hilbert spaces

Definition 23
An inner product space is a linear space E equipped with an inner
product 〈·, ·〉 : E × E → R such that

I 〈x , x〉 ≥ 0 and 〈x , x〉 = 0↔ x = 0,

I 〈x , y〉 = 〈y , x〉,
I 〈ax , y〉 = a〈x , y〉,
I 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉

for each x , y , z ∈ E and a ∈ R.

Note that an inner product space E is a normed space with the
norm

‖x‖ = 〈x , x〉1/2.

Definition 24
A Hilbert space is an inner product space which is a Banach space.



Hilbert spaces

Remark 25
Let E be an inner product space. Then

I ‖x + y‖2 = ‖x‖2 + 2〈x , y〉+ ‖y‖2,

I ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2

for each x , y ∈ E .

Example 26

Define an inner product on Rn by

〈x, y〉 =
∑n

i=0 xiyi

for each x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.
Then Rn is a Hilbert space.



Closest points

Lemma 27
Let C be a convex subset of a Hilbert space H, and let x ∈ H be
such that d = d(x ,C ) = inf{‖x − y‖ | y ∈ C} exists. Then there
exists z ∈ C such that ‖x − z‖ = d.

Proof.
We may assume without loss of generality that x = 0. Let (yn) be
a sequence in C such that ‖yn‖ → d as n→∞. Then

‖ym − yn‖2 = 2‖ym‖2 + 2‖yn‖2 − 4‖(ym + yn)/2‖2

≤ 2‖ym‖2 + 2‖yn‖2 − 4d2 → 0

as m, n→∞, and hence (yn) is a Cauchy sequence in H.
Therefore (yn) converges to a limit z ∈ C , and so ‖z‖ = d .



A separation theorem

Proposition 28

Let C be a convex subset of a Hilbert space H, and let x ∈ H be
such that d = d(x ,C ) exists and 0 < d. Then there exists z0 ∈ H
such that ‖z0‖ = 1 and d + 〈z0, x〉 ≤ 〈z0, y〉 for each y ∈ C.



A separation theorem

Proof.
We may assume without loss of generality that x = 0. By Lemma
27, there exists z ∈ C such that ‖z‖ = d . Note that ‖z‖ ≤ ‖y‖ for
each y ∈ C . Let z0 = z/d , and let y ∈ C . Then ‖z0‖ = 1. Since

‖z‖2 ≤ ‖(1− 1/n)z + (1/n)y‖2 = ‖z + (1/n)(y − z)‖2

= ‖z‖2 + (2/n)〈z , y − z〉+ (1/n2)‖y − z‖2,

we have 0 ≤ (2/n)〈z , y − z〉+ (1/n2)‖y − z‖ for each n, and hence

0 ≤ 〈z , y − z〉+ (1/2n)‖y − z‖2

for each n. Therefore, letting n→∞, we have 0 ≤ 〈z , y − z〉, and
so d2 ≤ 〈z , y〉. Thus d ≤ 〈z0, y〉.



Fan’s theorem for inequalities

Theorem 29
Let K be an inhabited totally bounded convex subset of a normed
space E, let f1, . . . , fn be uniformly continuous convex functions
from K into R, and let c ∈ R. Then

c < inf
x∈K

max{fi (x) | 1 ≤ i ≤ n}

if and only if there exist nonnegative numbers λ1, . . . , λn with∑n
i=1 λi = 1 such that

c < inf
x∈K

n∑
i=1

λi fi (x).



A proof of Fan’s theorem

Since the “if” part is trivial, we show the “only if” part.

Define a subset C of Rn+1 by

C = {(u1, . . . ,un+1) ∈ Rn+1 |
∃x ∈ K∀i ∈ {1, . . . , n}(fi (x) ≤ ui + un+1 + c)}.

Lemma 30
C is inhabited.

Proof.
Let x0 ∈ K , and let t0 ∈ R be such that 0 < t0 and
max{fi (x0) | 1 ≤ i ≤ n} < t0 + c . Then (0, . . . , 0, t0) ∈ C .



A proof of Fan’s theorem

Lemma 31
C is a convex subset of Rn+1.

Proof.
Let u = (u1, . . . , un+1), v = (v1, . . . , vn+1) ∈ C , and let λ ∈ [0, 1].
Then there exist x and y in K such that fi (x) ≤ ui + un+1 + c and
fi (y) ≤ vi + vn+1 + c for each i ∈ {1, . . . , n}, and, since fi is
convex for each i ∈ {1, . . . , n}, we have

fi (λx + (1− λ)y) ≤ λfi (x) + (1− λ)fi (y)

≤ (λui + (1− λ)vi ) + (λun+1 + (1− λ)vn+1) + c

for each i ∈ {1, . . . , n}. Therefore, since K is convex, we have
λu + (1− λ)v ∈ C .



A proof of Fan’s theorem

Suppose that d = d(0,C ) exists and 0 < d .
Then, by Proposition 28, there exists (α1, . . . , αn+1) ∈ Rn+1 such
that

∑n+1
i=1 |αi |2 = 1 and

d ≤
n+1∑
i=1

αiui

for each u ∈ C .

Lemma 32
0 < αn+1 and 0 ≤ αi for each i ∈ {1, . . . , n}.

Proof.
Since (0, . . . , 0, t0) ∈ C , we have d ≤ αn+1t0, and hence
0 < d/t0 ≤ αn+1. Since (0, . . . , 0,m, 0, . . . , 0, t0) ∈ C for each m,
we have d ≤ mαi + αn+1t0 for each i ∈ {1, . . . , n} and m, and
hence 0 ≤ αi for each i ∈ {1, . . . , n}.



A proof of Fan’s theorem

Let λi = αi/αn+1 for each i ∈ {1, . . . , n}, and recall that

C = {(u1, . . . ,un+1) ∈ Rn+1 |
∃x ∈ K∀i ∈ {1, . . . , n}(fi (x) ≤ ui + un+1 + c)}.

Then, for each r ∈ R and x ∈ K , since

(f1(x)− c + r , . . . , fn(x)− c + r ,−r) ∈ C ,

we have

d ≤
n∑

i=1

αi (fi (x)− c + r)− αn+1r ,

and hence

d

αn+1
≤

n∑
i=1

λi (fi (x)− c) + r

(
n∑

i=1

λi − 1

)
.



A proof of Fan’s theorem

Lemma 33∑n
i=1 λi = 1.

Proof.
For r > 0 and x = x0, we have

d

αn+1r
≤ 1

r

n∑
i=1

λi (fi (x0)− c) +

(
n∑

i=1

λi − 1

)
,

and hence, letting r →∞, we have 1 ≤
∑n

i=1 λi .
For r < 0 and x = x0, we have

d

αn+1r
≥ 1

r

n∑
i=1

λi (fi (x0)− c) +

(
n∑

i=1

λi − 1

)
,

and hence, letting r → −∞, we have 1 ≥
∑n

i=1 λi .



A proof of Fan’s theorem

Lemma 34
c < infx∈K

∑n
i=1 λi fi (x).

Proof.
By Lemma 33, we have

d

αn+1
≤

n∑
i=1

λi (fi (x)− c) =
n∑

i=1

λi fi (x)− c

for each x ∈ K , and hence c < infx∈K
∑n

i=1 λi fi (x).

It remains to show that d = d(0,C ) exists and 0 < d .



A proof of Fan’s theorem

Lemma 35
There exists d ′ > 0 such that d ′ < ‖u‖ for each u ∈ C.

Proof.
Let d ′ ∈ R be such that

c < 4d ′ + c < inf
x∈K

max{fi (x) | 1 ≤ i ≤ n},

and let u = (u1, . . . , un+1) ∈ C . If |ui | < 2d ′ for each
i = 1, . . . , n + 1, then there exists x ′ ∈ K such that

fi (x
′) ≤ ui + un+1 + c < 2d ′ + 2d ′ + c = 4d ′ + c

< inf
x∈K

max{fi (x) | 1 ≤ i ≤ n}

for each i ∈ {1, . . . , n}, a contradiction. Therefore d ′ < |ui | for
some i = 1, . . . , n + 1, and so d ′ < (

∑n+1
i=1 |ui |2)1/2 = ‖u‖.



A proof of Fan’s theorem

Lemma 36
d = d(0,C ) exists.

Proof.
Since {‖u‖ | u ∈ C} is inhabited and has a lower bound 0, it
suffices, by Proposition 4, to show that for each a, b ∈ R with
a < b, either

I ‖u‖ < b for some u ∈ C , or

I a < ‖u‖ for each u ∈ C .

Let a, b ∈ R with a < b, and let ε = (b − a)/5.



A proof of Fan’s theorem

Proof.
Then, since f1, . . . , fn are uniformly continuous, there exists δ > 0
such that

∀xy ∈ K∀i ∈ {1, . . . , n}(‖x − y‖ < δ→ |fi (x)− fi (y)| < ε).

Since K is totally bounded, there exist y1, . . . , ym ∈ K such that

∀x ∈ K∃j ∈ {1, . . . ,m}(‖x − yj‖ < δ).

Also, since
B = {w ∈ Rn+1 | ‖w‖ < b}

is a totally bounded subset of Rn+1, there exist
w1 = (w1

1 , . . . ,w
1
n+1), . . . ,wl = (w l

1, . . . ,w
l
n+1) ∈ B such that

∀u ∈ B∃k ∈ {1, . . . , l}(‖u−wk‖ < ε).



A proof of Fan’s theorem

Proof.
Either

I ∀i ∈ {1, . . . , n}(fi (yj) < wk
i + wk

n+1 + c) for some
j ∈ {1, . . . ,m} and k ∈ {1, . . . , l}, or

I ∃i ∈ {1, . . . , n}(fi (yj) + ε > wk
i + wk

n+1 + c) for each
j ∈ {1, . . . ,m} and k ∈ {1, . . . , l}.

In the former case, ‖u‖ < b for some u ∈ C .
In the latter case, assume that ‖u‖ < a + ε for some
u = (u1, . . . , un+1) ∈ C .



A proof of Fan’s theorem

Proof.
Then there exists x ∈ K such that

∀i ∈ {1, . . . , n}(fi (x) ≤ ui + un+1 + c).

Therefore there exists j ∈ {1, . . . ,m} such that ‖x − yj‖ < δ, and
so

∀i ∈ {1, . . . , n}(fi (yj) < fi (x) + ε).

Let u′ = (u1, . . . , un, un+1 + 4ε). Then

‖u′‖ = (
n∑

i=1

|ui |2 + |un+1 + 4ε|2)1/2 ≤ (‖u‖2 + 8ε‖u‖+ (4ε)2)1/2

= ‖u‖+ 4ε < a + 5ε = b,

and hence there exists k ∈ {1, . . . , l} such that ‖u′ −wk‖ < ε.



A proof of Fan’s theorem

Proof.
Therefore, since

fi (yj) + 3ε < fi (x) + 4ε ≤ ui + (un+1 + 4ε) +c < wk
i +wk

n+1 +c + 2ε

for each i ∈ {1, . . . , n}, we have

∀i ∈ {1, . . . , n}(fi (yj) + ε < wk
i + wk

n+1 + c),

a contradiction.
Thus a < a + ε ≤ ‖u‖ for each u ∈ C .



A generalization

Definition 37
Let X and Y be metric spaces. Then a function f : X × Y → R.
is convex-concave like if

I for each x , x ′ ∈ X and λ ∈ [0, 1], there exists z ∈ X such that

f (z , y) ≤ λf (x , y) + (1− λ)f (x ′, y)

for each y ∈ Y , and

I for each y , y ′ ∈ Y and λ ∈ [0, 1], there exists z ∈ Y such that

f (x , z) ≥ λf (x , y) + (1− λ)f (x , y ′)

for each x ∈ X .



A generalization

Definition 38
A set {fi | i ∈ I} of functions between metric spaces X and Y is
uniformly equicontinuous if for each ε > 0 there exists δ > 0 such
that

∀i ∈ I∀xy ∈ X [d(x , y) < δ→ d(fi (x), fi (y)) < ε].



A generalization

Theorem 39
Let X and Y be metric spaces, and let f : X × Y → R be a
convex-concave like function such that the set {f (·, y) | y ∈ Y } of
functions from X into R is uniformly equicontinuous.
If X is totally bounded, and supy∈Y infx∈X f (x , y) and
infx∈X supy∈Y f (x , y) exist, then

sup
y∈Y

inf
x∈X

f (x , y) = inf
x∈X

sup
y∈Y

f (x , y).
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