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The von Neumann minimax theorem

Theorem 1 (classical)
Let A be an n X m matrix. Then

max min x” Ay = min max x' Ay,
yeS™ xeSn xeSnyesSm

where S" is the n-dimensional simplex.

» S” and S™ are inhabited compact convex subsets of normed
spaces R” and R™, respectively;

» (x,y) — xT Ay is a uniformly continuous function from
S" % S™into R;

» ()T Ay : S" — R is convex for each y € S™;

» x"A(-) : S™ — R is concave for each x € S".



Inhabited sets and constructive suprema

Definition 2
A set S is inhabited if there exists x such that x € S.

Definition 3
Let S be a subset of R. Then s =sup S € R is a supremum of S if

Vx € 5(x <'s) and Ve > 03x € 5(s < x + ¢).

Proposition 4

An inhabited subset S of R with an upper bound has a supremum
if and only if for each a, b € R with a < b, either 3x € S(a < x) or
Vx € 5(x < b).



Metric spaces

Definition 5
A metric space is a set X equipped with a metricd : X x X — R
such that

> d(Xa)’):OHX:yv

> d(x,y) =d(y,x),

> d(x,y) < d(x,z)+d(z,y),
for each x,y,z € X.
Remark 6

Let X and Y be metric spaces with metrics dx and dy,
respectively. Then X x Y is a metric space with a metric

dxxv((x,y), (x',¥")) = dx(x,x") + dy(y,y")

for each (x,y),(x,y") e X x Y.



Closures and closed subsets

Definition 7
The closure S of a subset S of a metric space X is defined by

S={xe€ X |Ve>03y e S[d(x,y) < €]}
A subset S of a metric space X is closed if S = S.

Definition 8
A sequence (x,) of X converges to x € X if

Ve > 03NVn > N[d(xn, x) < €.

Remark 9
A subset S of a metric space X is closed if and only if x € §
whenever there exists a sequence (x,) of S converging to x.



Uniform continuity and total boundedness

Definition 10
A mapping f between metric spaces X and Y is uniformly
continuous if for each € > 0 there exists § > 0 such that

Vxy € X[d(x,y) < 0 = d(f(x),f(y)) < €.

Definition 11
A metric space X is totally bounded if for each € > 0 there exist
X1,...,Xn € X such that Vy € X3i € {1,...,n}[d(x;,y) < €.

Proposition 12

If f is a uniformly continuous function from an inhabited totally
bounded metric space X into R, then sup,x f(x) exists.



Complete and compact metric spaces

Definition 13
A sequence (x,) of a metric space is a Cauchy sequence if

Ve > 03NVmn > N[d(Xm, xn) < €].
A metric space is complete if every Cauchy sequence converges.

Definition 14
A metric space is compact if it is totally bounded and complete.



Convex sets and convex functions

Definition 15
A subset C of a linear space is convex if Ax + (1 — \)y € C for

each x,y € C and A € [0,1].
Definition 16

A function f from a convex subset C of a linear space into R is

» convex if
FOx + (1= A)y) < M(x)+ (1= Nf(y)

for each x,y € C and \ € [0, 1];

» concave if
F(Ax 4+ (1= N)y) > M (x) + (1 = N)f(y)

for each x,y € C and X € [0, 1].



Normed spaces

Definition 17
A normed space is a linear space E equipped with a norm

Il -] : E— R such that
> [[x|| =0+ x=0,
> [Jax]| = falllx]]
> ot yll < Il + Dyl
for each x,y € E and a € R.
Note that a normed space E is a metric space with the metric

d(x,y) = lIx =yl

Definition 18
A Banach space is a normed space which is complete with respect
to the metric.



The minimax theorem

Theorem 19
Let K and C be inhabited totally bounded convex subsets of

normed spaces E and F, respectively, and let f : K x C — R be a
uniformly continuous function such that

» f(-,y): K — R is convex for each y € C;

» f(x,:): C — R is concave for each x € K.
Then

sup inf f(x,y) = inf supf(x,y).
yeC x€EK x€K yecC



General lemmata

Lemma 20

Let X and Y be inhabited totally bounded metric spaces, and let
f: X x Y — R be a uniformly continuous function. Then
sup,cy infxex f(x,y) and infyex sup,cy f(x, y) exist, and

sup inf f(x,y) < inf sup f(x,y).
yey xeX xeX yey

Lemma 21

Let X and Y be inhabited totally bounded metric spaces, let

f: X x Y — R be a uniformly continuous function, and let ¢ € R.
If ¢ <iinfyex sup,cy f(x,y), then there exist y1,...,y, € Y such
that

c< inf( max{f(x,y;) | 1 <i < n}.
Xe



Fan's theorem for inequalities

Theorem 22
Let K be an inhabited totally bounded convex subset of a normed
space E, let fi,...,f, be uniformly continuous convex functions

from K into R, and let c € R. Then

inf fi 1<i<
c<):2Kmax{ i(x) |1 <i<n}

if and only if there exist nonnegative numbers A1, ..., A, with
S°% 1 Ai =1 such that

inf ifi(x).
c<X.2K’;A (x)

Proof.

We will give a proof after a proof of the minimax theorem. ]



A proof of the minimax theorem

Proof.
By Lemma 20, it suffices to show that

sup inf f(x,y) > inf sup f(x,y).
yeCXGK xeK yeC

Let ¢ = sup,ccinfxek f(x,y), and suppose that

¢ < inf sup f(x,y).
xeK yeC

Then, by Lemma 21, there exist y1,...,y, € C such that

c< inf{max{f(x,y,-) |1<i<n}.
xX€



A proof of the minimax theorem

Proof.

Therefore, by Theorem 22, there exist nonnegative numbers
A1, ..oy Ap with 77 1 Aj = 1 such that
n
c < inf Nif (%, yi)-

eK
x i=1

Since f(x,-) : C — R is concave for each x € K, we have

< inf D" NF(x) < inf F(x, Y A < £ f
c X'EK; (x,y1) < in Z; i) < sup inf £(x,y)

a contradiction.



Hilbert spaces

Definition 23
An inner product space is a linear space E equipped with an inner
product (-,-) : E X E — R such that

» (x,x) >0and (x,x) =0« x =0,
> (X, y) =y, x),
> (ax,y) = a(x,y),
> (xt+y,z)=(x,2) +(y,2)
for each x,y,z € E and a € R.

Note that an inner product space E is a normed space with the
norm
1/2
x| = (x, )2,
Definition 24
A Hilbert space is an inner product space which is a Banach space.



Hilbert spaces

Remark 25
Let E be an inner product space. Then

> x +y 2 = lxIZ + 206 y) + DIy l1%,
> [lx + yIP + [Ix = vl = 2)x]? + 2]y [I?
for each x,y € E.

Example 26

Define an inner product on R” by

(x,y) =2 1o Xiyi

for each x = (x1,...,%n), ¥y = (V1,---,¥n) € R".
Then R” is a Hilbert space.



Closest points

Lemma 27

Let C be a convex subset of a Hilbert space H, and let x € H be
such that d = d(x, C) = inf{||x — y|| | y € C} exists. Then there
exists z € C such that ||x — z|| = d.

Proof.
We may assume without loss of generality that x = 0. Let (y,) be
a sequence in C such that ||y,|| — d as n — oo. Then

lym = yall* = 2llymlI* + 2llyall* = 4]l (v + yn)/2I?
< 2/|yum|? + 2l yn[|* — 4d* — 0

as m,n — 0o, and hence (y;) is a Cauchy sequence in H.
Therefore (y,) converges to a limit z € C, and so ||z|| = d. O



A separation theorem

Proposition 28

Let C be a convex subset of a Hilbert space H, and let x € H be
such that d = d(x, C) exists and 0 < d. Then there exists zp € H
such that ||z|| = 1 and d + (zy, x) < (zy, y) for each y € C.



A separation theorem

Proof.

We may assume without loss of generality that x = 0. By Lemma
27, there exists z € C such that ||z|| = d. Note that ||z|| < ||y]| for
each y € C. Let zg = z/d, and let y € C. Then ||z]|| = 1. Since

21 < (1 = 1/m)z + (1/my|? = |z + (1/n)(y — 2)|?
= |lz]1* + (2/n){z.y — 2) + (1/n®)|ly — 2|I%,

we have 0 < (2/n)(z,y — z) + (1/n?)|ly — z|| for each n, and hence
0<(z,y —2z)+(1/2n)lly - 2|

for each n. Therefore, letting n — oo, we have 0 < (z,y — z), and
so d?> < (z,y). Thus d < (zg,y). O



Fan's theorem for inequalities

Theorem 29
Let K be an inhabited totally bounded convex subset of a normed
space E, let f1,...,f, be uniformly continuous convex functions

from K into R, and let c € R. Then
c < inf max{fi(x) |1 <i<n}
xeK

if and only if there exist nonnegative numbers A1, ..., A, with
o1 Ai =1 such that

n

c< x|2f< 2 Aifi(x).



A proof of Fan's theorem

Since the "if” part is trivial, we show the “only if” part.

Define a subset C of R™! by

C= {(u17 v 7un+1) € Rn+1 ’
Ix e KVYie{l,...,n}(fi(x) < uj+ upy1 +©)}.

Lemma 30
C is inhabited.

Proof.
Let xg € K, and let tyg € R be such that 0 < ty and
max{fi(xo) | 1 <i<n} <ty+c. Then (0,...,0,t) € C.



A proof of Fan's theorem

Lemma 31
C is a convex subset of R™t1,

Proof.

Let u= (u1,...,Un+1),v=(v1,...,vpt1) € C, and let X\ € [0, 1].
Then there exist x and y in K such that fi(x) < u; + up41 + ¢ and
fi(y) < vi+ vpy1 + c foreach i € {1,...,n}, and, since f; is
convex for each i € {1,...,n}, we have

fi(Ax + (1= A)y) < Mi(x) + (1 = ANfi(y)
<(Aui+ 1 =A)vi)+ Atpr1r + (1= AN vpr1) + ¢

for each i € {1,...,n}. Therefore, since K is convex, we have
Au+ (1 -—XMveC. O



A proof of Fan's theorem

Suppose that d = d(0, C) exists and 0 < d.
Then, by Proposition 28, there exists (aq,...,ap+1) € Rt such
that 32" |2 = 1 and

d < Z i uj
i=1

for each u € C.

Lemma 32

0 < apy1 and 0 < «; foreach i € {1,...,n}.

Proof.

Since (0,...,0,t) € C, we have d < ap11to, and hence

0 <d/ty < apyi. Since (0,...,0,m,0,...,0,t) € C for each m,
we have d < ma; + apy1to for each i € {1,...,n} and m, and

hence 0 < «; for each i € {1,...,n}. O



A proof of Fan's theorem

Let \j = aj/apt1 for each i € {1,...,n}, and recall that

C = {(U]_7 e ,Un+1) € Rn+1 ’
Ix e KVie{l,...,n}(fi(x) < uj+ upy1+ ©)}.

Then, for each r € R and x € K, since
(A(x)—c+r,....fo(x)—c+r,—r) e C,
we have

n
d < Za;(f,—(x) —Cc+r)—apyf,
i=1

and hence




A proof of Fan's theorem

Lemma 33
SriAi=1
Proof.

For r > 0 and x = xg, we have

<z Z)\ +(x0) — ¢) + (ix,-q),
i=1

and hence, letting r — 0o, we have 1 < 27:1 A
For r < 0 and x = xg, we have

- Z)\ “(x0) — ¢) + (iA;—l),
i=1

and hence, letting r — —oco, we have 1 > Y7 | A

Opt1lr

Opt1r



A proof of Fan's theorem

Lemma 34
c < infyek D 1q Aifi(x).

Proof.
By Lemma 33, we have

d

Qpt1

<D X)) =) =) Aifi(x) — ¢
i=1 i=1

for each x € K, and hence ¢ < infyekx > 1 q Aifi(x).

It remains to show that d = d(0, C) exists and 0 < d.



A proof of Fan's theorem

Lemma 35
There exists d' > 0 such that d’ < ||u|| for eachu € C.

Proof.
Let d’ € R be such that

c <4d + c < inf max{fi(x) |1 < i< n},
xeK

and let u = (uy,...,up+1) € C. If Juj| < 2d’ for each
i=1,...,n+ 1, then there exists x’ € K such that

ixXY<ui+ups1+c<2d +2d +c=4d +c¢

inf fi 1<i<
<X|2Kmax{,(x)] <i<n}

for each i € {1,..., n}, a contradiction. Therefore d’ < |u;| for
some i=1,...,n41, and so d' < (77 [ui]?)/? = |u].



A proof of Fan's theorem

Lemma 36
d = d(0, C) exists.

Proof.
Since {||u|| | u € C} is inhabited and has a lower bound 0, it
suffices, by Proposition 4, to show that for each a, b € R with
a < b, either

> |ju]| < b for some u € C, or

» a < ||lu|| for eachu € C.

Let a,b € R with a < b, and let ¢ = (b — a)/5.



A proof of Fan's theorem
Proof.

Then, since fi, ..., f, are uniformly continuous, there exists 6 > 0
such that

Vxy € KVi e {1,...,n}(||x — y|| < d = |fi(x) — fi(y)| < ¢€).
Since K is totally bounded, there exist y1, ..., ym € K such that
Vx € K3j e {1,...,m}(|[x — yj|| <9).

Also, since
B = {weR™ | |w| < b}

is a totally bounded subset of R, there exist

1_ (pl 1 I — (! /
wh=(Wj,...,Wpq),...,W = (wy,...,w,, 1) € B such that

VYue BIke{1,....1}(JJu—wk| <e).



A proof of Fan's theorem

Proof.
Either
» Vie{1,...,n}fi(y;)) < wf+ wk, ; + c) for some
Jj€{l,...,m}and k€ {1,... 1}, or
» Jie{1,...,n}(fi(y;) + € > wk+ wk | + c) for each
je{l,....,m}and ke {1,... 1}
In the former case, |Ju]| < b for some u € C.
In the latter case, assume that ||u]| < a + € for some
U:(Ul,...,un+1) e C.



A proof of Fan's theorem

Proof.
Then there exists x € K such that

Vie{l,...,n}fi(x) < uj + tupt1 + ©).

Therefore there exists j € {1,..., m} such that ||x — y;|| < J, and
so

Vie{l,...,n}(fi(y;) < fi(x) +¢).
r_
—_ g ooy ns n+ .
Let v’ = (g Up, Unt1 + 4€). Then

n

'l = (il + [unrs + 4¢)H2 < ([Jul® + 8¢|lul| + (4€)*)"/
i=1
= ||u]| +4e < a+ 5¢ = b,

and hence there exists k € {1,...,/} such that ||u’ —wX|| <e. [



A proof of Fan's theorem

Proof.

Therefore, since
fi(y;) +3e < fi(x) +4e < uj+ (Upy1 +4€) ¢ < wf+wk +c+2e
for each i € {1,..., n}, we have

Vie{1,...,n}(fi(y;)) +e < wf+whq+c),

a contradiction.
Thus a < a+ € < ||lu|| for each u € C. O



A generalization

Definition 37
Let X and Y be metric spaces. Then a function f : X x Y — R.
is convex-concave like if

» for each x,x’ € X and A € [0, 1], there exists z € X such that
F(z,y) S M(x,y) + (1= Nf(X,y)

for each y € Y, and
» for each y,y’ € Y and X € [0, 1], there exists z € Y such that

f(x,z) > M(x,y)+ (1 =N f(x,y)

for each x € X.



A generalization

Definition 38
A set {f; | i € I} of functions between metric spaces X and Y is

uniformly equicontinuous if for each € > 0 there exists § > 0 such
that

Vie IVxy € X[d(x,y) < d — d(fi(x), fi(y)) < €.



A generalization

Theorem 39

Let X and Y be metric spaces, and let f : X X Y — R be a
convex-concave like function such that the set {f(-,y) |y € Y} of
functions from X into R is uniformly equicontinuous.

If X is totally bounded, and sup,cy infxex f(x,y) and

infxex sup,cy f(x,y) exist, then

sup inf f(x,y) = inf sup f(x,y).
sup Jof floy) = Jnf sup fx.y)
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