
Constructive Operations Research (CORE)

Josef Berger∗ and Gregor Svindland†

Mathematisches Institut

Ludwig-Maximilians-Universität München

Theresienstr. 39, 80333 München

March 8, 2016

Abstract

We approach problems in operations research with a constructive
methodology.

1 Project description

Operations Research applies mathematical techniques in pursuit of improv-
ing decision-making and efficiency. This encompasses using a wide range
of mathematical tools from fields like mathematical optimization, stochas-
tics, econometrics, etc. Typically one constructs a mathematical model that
attempts to describe a given system and then one tries to optimize decision-
making and thereby efficiency within that system based on the model. It
is the underlying mathematical theory which interests us and to which this
project relates. Given its relevance for practical decision-making, this math-
ematical theory should ideally also be computable in the sense that there are
algorithms to compute the objects which appear in the results. For instance,
knowing that there is an optimal solution to a decision-making problem one
would wish to actually be able to compute it. Unfortunately, this is not
always possible. And even if there is some numerical method to find the

∗email: jberger@math.lmu.de, tel: 2180-4416
†email: svindla@math.lmu.de, tel: 2180-4628

1

solution, this can contain two types of errors: Type 1 errors are approxima-
tive errors which in a sense are inevitable by the limitations of the machine.
Type 2 errors occur in cases where the applied method suggests a solution
which in fact is wrong. Think for instance of computing the zeros of a func-
tion f : R → R. Suppose that f has zeros {x1, . . . , xk} (i.e. f(xi) = 0 for
i = 1, . . . , k) and that there is a point x̃ ∈ R such that f(x̃) is very close
to zero but in fact f(y) > 0 for all y ∈ (x̃ − ε, x̃ + ε) for some large ε > 0.
Depending on machine accuracy, a program computing the zeros may come
up with the wrong solutions set S = {x1, . . . , xk, x̃}. This set shows a type
2 error since x̃ ∈ S. It also typically shows inevitable type 1 errors which
stem from the fact that for example irrational elements in S can only be
approximated up to a controlled machine error. If one is only interested in
small values of f , the solution set S is probably not a problem as it is guar-
anteed that also f(x̃) is small even if there is no zero in the neighborhood of
x̃. Also a user who knows f may adjust the machine accuracy such that x̃ is
excluded from the output. But if f is a function that is defined deep down
in a program depending on the input and maybe some other computations
on the way – so the user does not actually see f – and if the aim is not to
find small values of f , but to be sure to find points which are characterized
as zeros of f , and which are then used in a sequence of further computations,
then having x̃ ∈ S may yield abstruse solutions. Hence, while the machine
design dictates type 1 errors, which can to some extent be controlled by the
user, avoiding type 2 errors is often possible and very desirable. Without
type 2 errors, the user can be sure to obtain a true (approximative) solution.

We are thus presented with the following problems:

(i) Characterize to which extent the existence of some given optimal (or
improved) decision making process (solution) is constructive in the
sense of being computable.

(ii) Classify computable results to understand to which extent type 2 errors
can be avoided. This means splitting up the results in parts that can
be computed without type 2 errors and parts where these errors are
inevitable. Thereby understanding where mistakes stem from.

(iii) Ideally build programs for computable solutions which as far as possible
avoid type 2 errors.

A key to deal with these problems is constructive mathematics: Construc-
tive mathematics is distinguished from its classical counterpart by avoiding

2

the law of excluded middle (for every statement A, either A is true, or its
negation ¬A is true) as a proof tool. Consequently, the phrase ‘there ex-
ists’ is strictly interpreted as ‘we can construct’. Hence, it is not sufficient
to derive a contradiction out of the assumption that no object with the de-
sired properties exists, in order to conclude its existence. In other words,
constructive mathematics, is, roughly speaking, mathematics without using
indirect proofs. As a benefit, the proof of an existential statement yields an
algorithm to actually construct (compute) the desired object. Consequently,
results that allow for constructive proofs are computable without type 2 er-
rors, and are thus as good as possible in view of problems (i), (ii), and (iii).
We refer to [5] and [9] for more information about constructive mathematics.

Unfortunately, many important results cannot be proved constructively,
even though they can be approached by numerical methods. In these cases,
it is important to understand to which ‘degree’ they are nonconstructive.
This in order to understand which part of the result is computable without
type 2 errors, and which part is computable if we allow for type 2 errors,
ideally knowing in the latter case what kind of type 2 errors can occur. A
proper method to address this problem (ii) is therefore constructive reverse
mathematics – a discipline in which one basically characterizes the degree of
deviation of classical results to being constructive by a certain set of decision
principles which are necessary and sufficient in order to prove this result.
For example the Limited Principle of Omniscience (LPO) allows us to decide
for each real numbers x ∈ R whether x < 0, x > 0, or x = 0. Results
requiring LPO for their proofs are clearly highly nonconstructive.1 There
are weakenings of LPO such as the Lesser Limited Principle of Omniscience
(LLPO) which allows us decide for a real number x ∈ R whether x ≥ 0 or
x ≤ 0 (clearly LPO ⇒ LLPO), or Markov’s Principle (MP) which states
that ¬(|x| = 0) implies |x| > 0. Also the latter principles are not true
constructively but they allow us characterize the degree of deviation from
constructiveness (see [12, 13] for more on constructive reverse mathematics).
For instance in [2] we prove that the fundamental theorem of asset pricing is
equivalent to MP: The fundamental theorem of asset pricing is an important
result in mathematical finance where one characterizes the price dynamics in
a stochastic model of financial markets. The theorem basically states that if
there are no free lunches – also called arbitrage strategies – in the market, that
is there exist no investments which yield a sure revenue without any risk for

1Constructively one could for example decide whether x < 0 or x > −ε for ε > 0.

3

the investor, then the discounted prices are expectations under some so-called
risk-neutral probability measure.2 To compute this risk-neutral probability
measure is important in order to decide on reasonable prices for derivatives
of the market. Thus the fundamental theorem of asset pricing plays a major
role in optimization of investment and in financial risk management. Its
proof relies on basic tools from the field of convex optimization. In our
analysis of the fundamental theorem of asset pricing in [2] it turned out that
surprisingly much of the underlying theory is constructive, and that only at
one point we need to make a decision which involves (and is indeed equivalent
to) MP. Our result is encouraging for two reasons: Firstly, it shows that if
we know a little more about the market, which makes the decision based on
MP unnecessary, we have a constructive proof for finding the risk-neutral
probability measure, and thus an algorithm computing it in a controlled
amount of time. This illustrates a quite typical side-effect of such studies in
general. Indeed by classifying results in reverse constructive mathematics we
get an idea of how much more we need to know about the initial problem
in order to obtain a purely constructive proof. Secondly, even without this
additional information, a result requiring MP is not entirely unconstructive.
To see this we remark that another characterization of MP is that if we have
a sequence of elements taking the values 0 or 1, and if we know that not all
are 0, then MP implies that we can find an element of that sequence which
is 1. This may occur as a quite natural property. But it is not constructive
because simply knowing that not all elements in the sequence are 0 does not
tell us which element must be one. A constructive proof of that principle
would have to provide such an element, which is in general not possible.
On the other hand, algorithmically speaking, one could simply touch each
element of the sequence and wait until one suddenly equals 1—this must
eventually be the case. What this tells us is that results which are provable
constructively with the help of MP still yield an algorithm for computing the
object without type 2 errors. What we do not know, however, is an upper
bound for the termination time of that algorithm. So these results are in
some sense not entirely bad. In contrast, results relying on LPO basically
require the full classical machinery and thus type 2 errors are necessarily
present, which bring us back to question (ii).

2Note that investments in a bank account giving a sure revenue determined by the
interest rate are no free-lunches since the interest rate basically covers inflation. In the
stochastic model the prices are therefore discounted, so that a sure investment in such a
bank account would stay constant over time, i.e. no sure revenue.

4

As regards the numerical implementation of the constructive parts, we
first formulate the definitions and results in a suitable formal system like Type
Theory3. The final step is to pass from Type Theory to actual programs.
Here, the use of proof assistants makes it possible to automatize the transition
from a paper proof to an explicit computable term, i.e. a program. A proof
assistant is a computer program which guides the user in construction of a
fully formal proof. It provides some degree of automation, searches libraries
for existing theorems, and most importantly extracts numerical algorithms
from the resulting constructive proofs. Examples of such proof assistants
are Coq (see [10]) based on Type Theory or Minlog (see [15]) based on the
Theory of Partial Computable Functionals TCF which is developed by the
Munich Logic group. This pattern, first to find a constructive proof of a
theorem, then to translate it into TCF (see [18]) and implement it in Minlog
has already been done successfully in many cases (see for example the study
of Dickson’s lemma in [1], of the contrapositive of countable choice in [16]
and the fundamentals of constructive analysis in [17]).

References

[1] Josef Berger and Helmut Schwichtenberg, A bound for Dickson’s lemma,
to appear in LMCS

[2] Josef Berger and Gregor Svindland, A separating hyperplane theorem, the
fundamental theorem of asset pricing, and Markov’s principle, preprint

[3] Josef Berger and Gregor Svindland, Convexity and constructive infima,
preprint

[4] Errett Bishop, Foundations of Constructive Analysis. McGraw-Hill, New
York (1967)

[5] Errett Bishop and Douglas Bridges, Constructive Analysis, Springer-
Verlag (1985), 477pp.

[6] Douglas Bridges, Constructive methods in mathematical economics,
in Mathematical Utility Theory, J. Econ. (Zeitschrift für Na-
tionalökonomie), Suppl. 8, 121, 1999

3That means everything is based on the notion of functions (instead of sets) and the
admissible proof methods are explicitly determined.

5

[7] Douglas Bridges, First steps in constructive game theory, Math. Log.
Quart. 50, No. 4/5, 501–506 (2004)

[8] Douglas Bridges and Fred Richman, Varieties of Constructive Mathemat-
ics. London Math. Soc. Lecture Notes 97, Cambride Univ. Press (1987)

[9] Douglas Bridges and Luminita Simona Vita, Techniques of Constructive
Analysis, Universitext, Springer-New-York (2006), 216pp.

[10] Coq Development Team: The Coq Proof Assistant Reference Manual,
INRIA-Rocquencourt, 2012

[11] Matthew Hendtlass and Peter Schuster, Minima and best approxima-
tions in constructive analysis Journal of Logic and Analysis 3:5 (2001)
1-17

[12] Hajime Ishihara, Constructive Reverse Mathematics: Compactness
Properties. In: From Sets and Types to Analysis and Topology: Towards
Practicable Foundations for Constructive Mathematics (L. Crosilla and P.
Schuster, eds), Oxford University Press. Oxford Logic Guides 48 (2005),
245–267

[13] Hajime Ishihara, Reverse mathematics in Bishop’s constructive mathe-
matics. Philosophia Scientiae, Cahier Special 6 (2006), 43–59

[14] Hajime Ishihara and Luminita Vita, Locating Subsets of a Normed Space
Proceedings of the American Mathematical Society Vol. 131, No. 10 (Oct.,
2003), pp. 3231-3239

[15] The Minlog system http://minlog-system.de/

[16] Iosif Petrakis, The Contrapositive of Countable Choice for Inhabited Sets
of Naturals, Journal of Universal Computer Science, Vol. 18, No. 20, 2012,
2879-2892

[17] Helmut Schwichtenberg, Constructive Analysis with Witnesses, lecture
notes, 2015

[18] Helmut Schwichtenberg and Stanley S. Wainer, Proofs and Computa-
tions. Perspectives in Mathematical Logic, Cambridge University Press
(2011), 480pp

6

http://minlog-system.de/

	Project description

