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I Josef Berger and Gregor Svindland recently gave a
constructive proof of the fan theorem for “coconvex” bars.

I They call a set b ⊆ {0, 1}∗ coconvex if for every n and path s

s̄(n) ∈ b → ∃m
(
∀v≤s̄(m)(v ∈ b) ∨ ∀v≥s̄(m)(v ∈ b)

)
,

where v ≤ w means |v | = |w | and v is left of w . Equivalently

s̄(n) ∈ b → ∃p,m
(
(p = 0→ ∀v≤s̄(m)(v ∈ b)) ∧
(p = 1→ ∀v≥s̄(m)(v ∈ b))

)
.

Two “moduli” p and m, depending on s, n and b. Better
name: finally coconvex.
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Uniform coconvexity with modulus d (direction)

I Simplification: p only, depending on node u (i.e., p = d(u)).

I Coconvex in the sense that the b-nodes at height n form the
complement of a convex set.

I Special case of the B&S concept. Goal: better algorithm.

Definition
A set b ⊆ {0, 1}∗ is uniformly coconvex with modulus d if for all u
we have: if the innermost path from u ∗ p (where p := d(u)) hits b
in some node v ∈ b, then{

∀w (w ≤ v → w ∈ b) if p = 0,

∀w (w ≥ v → w ∈ b) if p = 1.
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Data

I Keep type levels low: paths are streams, not functions.

I Use corecursion instead of choice axioms or recursion.

I Free algebra S(ρ): given by one unary constructor C of type
ρ→ S(ρ)→ S(ρ). No nullary constructors: “cototal” objects,
of the form Cx(s) with x of type ρ and s cototal. To construct
such objects we use the corecursion operator coRτS(ρ), of type

τ → (τ → ρ× (S(ρ) + τ))→ S(ρ).

It is defined by

coRxf =

{
y ∗ z if f (x) = 〈y , InL(z)〉,
y ∗ (coRx ′f ) if f (x) = 〈y , InR(x ′)〉.
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Lemma (Cototality of corecursion)

Let f : τ → ρ× (S(ρ) + τ) be of InR-form, i.e., f (x) has the form
〈y , InR(x ′)〉 for all x. Then coRxf ∈ coTS(ρ) for all x.

Proof.
By coinduction with competitor predicate

X := { z | ∃lx(z = coRxf ) }.

Need to prove that X satisfies the clause defining coTS(ρ):

∀z(z ∈ X → ∃dy∃rz ′(z ′ ∈ X ∧ z = y ∗ z ′)).

Let z = coRxf for some x . Since f is assumed to be of InR-form
we have y , x ′ such that f (x) = 〈y , InR(x ′)〉. By the definition of
coRτS(ρ) we obtain coRxf = y ∗ (coRx ′f ). Use coRx ′f ∈ X .
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I View trees as sets of nodes u, v ,w of type L(B) (lists of
booleans), which are downward closed.

I Paths are seen as cototal objects s of type S(B) (streams of
booleans; no nullary constructor).

I Sets of nodes are given by (not necessarily total) functions b
of type L(B)→ B. To be or not to be in b is expressed by
saying that b(u) is defined with 1 or 0 as its value.

I A set b of nodes is a bar if every path s hits the bar, i.e.,
there is an n such that s(n) ∈ b.

For simplicity assume: all bars b considered are upwards closed
(i.e., ∀u,p(u ∈ b → u ∗ p ∈ b)). This does not restrict generality.
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Lemma (Distance)

Let b be a uniformly coconvex bar with modulus d. Then

∀u∃m
(
u ∗ d(u) ∈ Db,m := { u | ∀v (|v | = m→ u ∗ v ∈ b) }

)
.
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Proof. Given u : L(B), extend u ∗ d(u) by appending 1∞ if
d(u) = 0, and 0∞ if d(u) = 1. Assume d(u) = 0. Since b is a bar,
the path u ∗ 0 ∗ 1∞ hits b at u ∗ 0 ∗ 1m for some m. By uniform
coconvexity, all u∗0∗v with |v | = m will be in b. Hence u∗0 ∈ Db,m.

m

u

u∗0

∈ b
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The escape path sd ∈ S(B) is constructed from d corecursively, as
follows. Start with the root node. At any node u, take the
opposite direction to what d(u) says, and continue.

Lemma (Escape)

Let b be a uniformly coconvex bar with modulus d. Then

∀n,u(|u| = n→ u 6= sd(n)→ ∃m(u ∈ Db,m).

Proof. Induction on n. n = 0: false premise.
Step: let |u ∗ p| = n + 1.
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Case u(`) 6= sd(`) for some ` ≤ n. By IH u(`) ∈ Db,m for some m,
hence u ∈ Db,m−(n+1−`).

`

n + 1

m−(n+1−`)

m
u

u(`)
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Case u(n) = sd(n) and p 6= (sd)n. Then p = d(u) by definition of
sd . Hence u ∗ p ∈ Db,m for some m, by the Distance lemma.

n + 1

m

u(n)

u = u(n) ∗ p, p = d(u)
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Lemma (Bounds)

Let b be a uniformly coconvex bar with modulus d. Then for every
n there are bounds `n, rn for the b-distances of all nodes of the
same length n that are left / right of sd(n).

Proof. For n = 0 there are no such nodes.
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Consider sd(n + 1) = u ∗ (sd)n of length n + 1. Assume (sd)n = 0.
Then every node to the left of u ∗ 0 is a successor node of one to
the left of u, and hence `n+1 = `n − 1. The nodes to the right of
u ∗ 0 are u ∗ 1 and then nodes which are all successor nodes of one
to the right of u. Since u ∗ 1 is u ∗ d(u), lemma Distance gives its
b-distance m. Let rn+1 = max(m, rn − 1).

`n

n

`n+1

u

u+d(u)

m

rn

rn+1
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Theorem
Let b be a uniformly coconvex bar with modulus d. Then b is a
uniform bar, i.e.,

∃m∀u(|u| = m→ u ∈ b).
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Let sd be the escape path. Since b is a bar, the escape path sd
hits b at some length n. Use lemma Bounds: the uniform bound is
n + max(`n, rn)

`n

n

∈ b

sd(n)

rn
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