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ABSTRACT
Multizeta values: Lie algebras and periods on M0,n

Sarah Carr
Leila Schneps, Advisor

This thesis is a study of algebraic and geometric relations between multizeta values.
There are many such known sets of relations, coming from different theories, which are
conjecturally equivalent to each other and which conjecturally describe all relations on
multizeta values. This thesis was inspired by the conjectures of equivalence of these
relations.

To study the algebraic relations, we begin by looking at the double shuffle Lie al-
gebra associated to multizeta values, which encodes the double shuffle relations. In
chapter 2 of this thesis, we prove a result which gives the dimension of the associated
depth-graded pieces of the double shuffle Lie algebra in depths 1 and 2, thus verifying
the conjecture that the double shuffle Lie algebra is isomorphic to the Grothendieck-
Teichmüller Lie algebra in small depths.

Another conjecturally equivalent set of relations between multizeta values comes
from their expression as periods on M0,n, stemming originally from the work of Cartier
and Kontsevich (among others). In chapters 3 and 4, we study these geometric relations.
The results obtained from this study provide some evidence toward the conjecture that
the associated formal period algebra is isomorphic to the formal zeta value algebra. The
key ingredient in this study is the top dimensional de Rham cohomology of partially
compactified moduli spaces of genus 0 curves with n marked points, Hn−3(Mδ

0,n). In
order to encode multizeta values in a formal period algebra, we give an explicit expres-
sion for a basis of Hn−3(Mδ

0,n). The techniques used in this construction are generalized
in chapter 4, in which we explicitly describe the bases of the cohomology of other par-
tially compactified moduli spaces. This thesis concludes with a result which gives a
new presentation of Pic(M0,n).
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RÉSUMÉ
Valeurs multizêta : algèbres de Lie et périodes sur M0,n

Sarah Carr
Leila Schneps, directrice de thèse

Cette thèse est une étude des relations algébriques et géométriques entre valeurs mul-
tizêta. Il y a de nombreux ensembles de telles relations, provenant de théories dif-
férentes. Conjecturalement, ces ensembles sont équivalents et décrivent de plus toutes
les relations entre valeurs multizêta. Cette thèse s’inspire de ces conjectures portant sur
l’équivalence de ces relations.

Afin d’étudier les relations algébriques, on commence par regarder l’algèbre de Lie,
ds, qui encode les relations de double mélange. Dans le chapitre 2, on démontre un
résultat qui donne la dimension des parties graduées de ds associées à sa filtration par
profondeur en profondeurs 1 et 2. On démontre donc que ds est isomorphe a l’algèbre
de Lie grt dans les petites profondeurs.

Un autre ensemble de relations entre multizêtas, conjecturalement équivalent au
système de double mélange, découle de leur expression comme périodes sur M0,n, suiv-
ant les méthodes de Cartier et Kontsevich (parmi d’autres). Dans les chapitres 3 et 4,
on étudie ces relations géométriques. Les résultats obtenus sont en accord avec la con-
jecture affirmant que l’algèbre formelle des périodes est isomorphe à l’algèbre formelle
des multizêtas. L’ingrédient principal dans cette étude est la cohomologie de de Rham
des espaces de modules de courbes en genre 0 avec n points marqués partiellement
compactifiés, Hn−3(Mδ

0,n). Afin d’encoder les valeurs multizêta dans l’algèbre formelle
des périodes, on donne une expression explicite pour une base de Hn−3(Mδ

0,n). Ces
techniques sont généralisées dans le chapitre 4, dans lequel on décrit explicitement les
bases de la cohomologie d’autres espaces de modules partiellement compactifiés. Dans
la dernière partie, on fournit une nouvelle présentation de Pic(M0,n).
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Chapter 1

Introduction

My research focuses on the study of multizeta values, real numbers defined by the
iterated sums,

ζ(k1, ..., kd) =
∑

n1>n2>···>nd>0

1

nk1
1 nk2

2 · · ·nkd
d

ki ∈ Z, (k1 ≥ 2).

Multizeta values are objects meriting much attention of late, and the multizeta value
has acquired many nicknames in the process. We will refer to a multizeta value as a
multiple zeta value, a multizeta, an MZV , a zeta value, or simply a zeta.

There is a myriad of conjectures and important recent results about multizeta values
in various fields. One well-known number theoretic question is “Are multizeta values
transcendental numbers?” Euler proved that ζ(2n) is a rational multiple of π2n and
more recently R. Apéry and T. Rivoal showed that certain ζ(2n + 1) are irrational. The
conjecture underlying my research interests however is an even larger question, the un-
derstanding of which would prove the transcendence conjecture. The conjecture arises
from number theoretic and geometric identities on multizeta values.

If one multiplies two multizeta values, one obtains a sum of multizeta values ac-
cording to the double shuffle multiplication laws, shuffle and stuffle. The shuffle mul-
tiplication law comes from multizetas viewed as periods on the moduli space of genus
0 curves, while stuffle multiplication (already known to Euler) comes from the number
theoretic expression of multizetas. We may then endow the vector space overQ of mul-
tizetas with multiplication given by shuffle, and therefore multizetas form an algebra
with a set of quadratic relations given by stuffle. We denote byZ , the algebra generated
byQ and multizeta values, and call the set of multiplication relations the double shuffle
(there is universal convention to consider 1 = ζ(∅), so that Q ⊂ Z).

Definition 1.1. The depth of ζ(k1, ..., kd) is d and its weight is
∑d

i=1 ki.

Both the stuffle and shuffle relations preserve the weight of an expression for mul-
tizetas. I emphasize “expression” since two expressions for a multizeta value may give
the same number. Although the depth of an expression for a multizeta is easy to un-
derstand, it is not an invariant of a multizeta number. One example of this was known
already to Euler, who proved that ζ(3) = ζ(2, 1). The study of the weight and depth of
multizetas leads to the main algebraic conjecture on multizetas.

Conjecture 1.2. A generating system of relations overQ between multizeta values is essentially
given by the shuffle and stuffle relations (for complete detail see definition 1.12). In particular,
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there are no linear relations between multizetas of different weight, hence Z forms a graded
algebra.

This thesis is not an attempt to make progress toward this conjecture, which is ex-
tremely difficult because of the analytic nature of the transcendence problem. Rather,
this thesis is an attempt to better understand its implications, in particular the combi-
natorial identities that arise from the known relations on multizeta values. Hence, we
may define graded algebras that satisfy major families relations on multizetas and see
what we can learn about multizetas from these algebras. This thesis is a study and com-
parison of two such algebras, the double shuffle Lie algebra and the period algebra of
formal cell numbers.

In chapter 1, I give the main objects and state well-known theorems on which this
study of multizetas is based. In this introduction, I will define the algebras and Lie alge-
bras associated to multizeta values and explain how they are related and what the main
conjectures are. These conjectures are there to provide the reader with a flavor of the
questions that inspired this thesis. The conjectures presented in chapter 1 may be sum-
marized as saying that all of the maps between the algebras (in upper case calligraphic
font) and the maps between Lie algebras (in lower case Fraktur font) in the following
commutative diagram are isomorphisms. Those shown are known to exist, except for
the dotted arrows, whose conjectural definitions are known, but which are not proved
to be well-defined, much less isomorphisms.

nfz // ñfz

FC

²²²²

oo // FZ

OOOO

²²²²

ds∨ oo //

²²²²

grt∨

||||yy
yy

yy
yy

C Z // // nz.

Chapter 2 presents some evidence toward the well-known conjecture that the double
shuffle Lie algebra, ds, is isomorphic to the Grothendieck-Teichmüller Lie algebra, grt.
In chapter 2, I calculate the dimensions of the first two associated depth-graded parts of
ds, confirming the conjecture that ds ' grt in small depths since the analogous dimen-
sions were computed by Ihara [Ih2] for grt. (I note here that I found these dimensions
in 2005. The result I present has since been published in [IKZ] using different methods.)

Chapters 3 and 4 deal with the algebra of periods and the study of the cohomol-
ogy of Mδ

0,n, the partially compactified moduli space of genus 0 curves with n marked
points consisting of M0,n, with the boundary divisors that bound the standard asso-
ciahedron adjoined. Chapter 3 is an intact article which is joint work with F. Brown
and L. Schneps. The main result presented in this article is the presentation of an ex-
plicit basis for the top dimensional de Rham cohomology of the partially compactified
moduli space, Hn−3(Mδ

0,n). This presentation allows us to compute the dimension of
the cohomology using a recursive formula. In this article, we construct the algebra of
periods on Mδ

0,n, denoted C, which is isomorphic to the algebra of multizeta values,
Z [Br]. This leads us to define an algebra of formal cell numbers, FC, which encodes
the known combinatorial relations coming from geometry on certain special generating
periods called cell numbers. Since multizeta values are cell numbers, there is reason to
believe that these geometric combinatorial relations describe all relations on multizeta
values.
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In chapter 4, I generalize the results of chapter 3 to calculate the top dimensional
de Rham cohomology of some more general partial compactifications of M0,n and give
explicit dimensions for each cohomology. The investigation into the description of the
cohomology also led to finding a new presentation of the Picard group, Pic(M0,n).

Although the chapters have disparate titles, they are intimately linked by the search
for the connection between sets of relations and properties coming from the different
geometric and number theoretic expressions for multizeta values. I outline these here
because the goal of this thesis is to present results that emphasize the common proper-
ties of these different points of view. The double shuffle Lie algebra is an object which
encodes both the number theoretic expression of multizeta values and the geometric
expression of multizeta values as periods. In fact, it was recently shown with a clever
manipulation of Cartier [Br], that the number theoretic identity, stuffle, may be seen as
a period identity on multizeta values. This observation (among others) led naturally
from our study of the Lie algebra of multizetas to the period algebra and we believe
that all of the identities on multizeta values may be encoded as the identities which
we derived from the geometry of moduli spaces. In this way, the study of the double
shuffle Lie algebra is closely related to that of the period algebra.

1.1 Properties of multizeta values

In this section, I give the basic properties of multizeta values and the definitions from
which this thesis is built.

To a sequence of positive integers, (k1, ..., kd), we associate a sequence in the non-
commutative variables, x and y, by associating every ki to the monomial xki−1y. By
concatenation, we then associate the sequence to the monomial,

(k1, ..., kd) ∼ xk1−1y · · ·xkd−1y (1.1.1)

whose degree is the same as the weight of the sequence of integers. Then we denote
ζ(k1, ...kd) by ζ(xk1−1y · · ·xkd−1y).

Definition 1.3. Let k = (k1, ..., kd) be a sequence of positive integers and ε = (ε1, ..., εn) be
corresponding a monomial in x and y. The sequences are convergent if k1 ≥ 2, ε1 = 0 and
εn = 1.

The x, y notation for a multizeta comes from its expression as an iterated integral.
The following proposition is due to Kontsevich and is found in many texts about mul-
tiple zeta values, for example [Dr] and [IKZ].

Proposition 1.4. Let (k1, k2, ..., kr) be a sequence of positive integers and ω the corresponding
word in x and y. We associate to ω a tuple of 0’s and 1’s, ε, by replacing each x and y in ω by 0
and 1 respectively to obtain the sequence,

(εn, . . . , ε1) = (0, . . . , 0, 1, 0, ..., 0, 1),

so that r is the number of 1’s in the tuple, and ε1 = 1.
Then for an indeterminate z, we have

∑

n1>···>nr>0

zn1

nk1
1 · · ·nkr

r

= (−1)r

∫ z

0

dtn
tn − εn

∫ tn

0

dtn−1

tn−1 − εn−1
· · ·

∫ t2

0

dt1
t1 − ε1

. (1.1.2)
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When k1 > 1, by setting z = 1, we have

ζ(k1, . . . , kr) = (−1)r

∫ 1

0

dtn
tn − εn

∫ tn

0

dtn−1

tn−1 − εn−1
· · ·

∫ t2

0

dt1
t1 − ε1

= (−1)r

∫

0<t1<t2<···<tn<1

dt1dt2 · · · dtn
(tn − εn) · · · (t1 − ε1)

.

Proof. We prove (1.1.2) by induction on n. For the base case n = 1, k1 = kr = 1, so
ε1 = 1. We have then that

∫ z

0

dt1
(1− t1)

=
∫ z

0
(
∞∑

n=0

tn1 )dt1

=
∞∑

n=1

zn

n
.

We now check the two base cases where n = 2, namely the tuple (0, 1) and the tuple
(1, 1), by repeated use of the series expansion 1/(1− t) =

∑
i≥0 ti. For the case (1, 1) we

have ∫ z

0

dt2
1− t2

∫ t2

0

dt1
1− t1

=
∑

n1>n2≥1

zn1

n1n2
.

And for (0,1) we have, ∫ z

0

dt2
t2

∫ t2

0

dt1
1− t1

=
∞∑

n=1

zn

n2
.

Now assume (1.1.2) true for tuples of length n− 1 and consider a tuple (εn, . . . , ε1).
Assume first that εn = 0. Then by the induction hypothesis the right hand side of (1.1.2)
becomes

∫ z

0

dtn
tn

∑

n1>···>nr>0

tn1
n

nk1−1
1 · · ·nkr

r

=
∑

n1>···>nr>0

1
nk1−1

1 · · ·nkr
r

∫ z

0
tn1−1
n dtn

=
∑

n1>···>nr>0

zn1

nk1
1 · · ·nkr

r

.

To finish we only need to deal with the case where εn = 1.
∫ z

0

dtn
1− tn

∑

n2>···>nr>0

tn2
n

nk2
2 · · ·nkr

r

=
∑

n2>···>nr>0

1
nk2

2 · · ·nkr
r

∫ z

0

∑

i≥0

ti+n2
n dtn

=
∑

i≥0

∑

n2>···>nr>0

1
nk2

2 · · ·nkr
r

∫ z

0
ti+n2
n dtn

=
∑

i≥0

∑

n2>···>nr>0

1
nk2

2 · · ·nkr
r

zi+n2+1

(i + n2 + 1)

=
∑

n1>n2>···>nr>0

zn1

nk1
1 · · ·nkr

r

,

where in the last line we set n1 = i + n2 + 1 and by the hypothesis that ε1 = 1, k1 = 1.
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1.2 Quadratic relations on multizeta values

If one multiplies two multizeta values, one obtains the sum of multizeta values, but this
expression is not unique. One expression was known already to Euler. In order to give
these identities, we shall first define the shuffle and the stuffle products on sequences.
We let · denote the concatenation product of sequences.

Definition 1.5. For any two sequences of positive integers, a, b the stuffle product of a and b,
denoted st(a, b) or a ∗ b, is the formal sum obtained by the recursion:

1. st(a, ∅) = st(∅, a) = a,

2. st(a0 · a, b0 · b) = a0 · st(a, b0 · b) + b0 · st(a0 · a, b) + (a0 + b0) · st(a, b).

Morally, the stuffle product is obtained by taking permutations of a · b such that the
orders of both sequences are preserved and then adding adjacent pairs of elements, one
from a and one from b, in all possible ways, in other words “stuffing” the elements of a
and b into the same slot.

Example 1.6. The stuffle product (2, 1) ∗ (3) = (2, 1, 3) + (2, 3, 1) + (3, 2, 1) + (2, 4) + (5, 1).

Definition 1.7. Let α = (α1, . . . , αk) and β = (β1, . . . , βl) be two sequences. The shuffle
product of α and β, denoted by sh(α, β), or αxβ, is the formal sum obtained by the recursive
procedure:

1. sh(α, ∅) = sh(∅, α) = α,

2. sh(a0 · α, b0 · β) = a0 · sh(α, b0 · β) + b0 · sh(a0 · α, β).

We will often rely on an equivalent definition of the shuffle product,

sh(α, β) =
∑

σ

σ(α · β),

where σ ∈ Sk+l runs over all permutations which preserve the orders of α and β. For
ease of notation, we write γ ∈ sh(α, β) to mean that γ is a term in the sum sh(α, β).

Example 1.8. (0, 1)x(0, 1) = 2(0, 1, 0, 1) + 4(0, 0, 1, 1).

Both of the combinatorial products above are commutative. They were defined here
in order to present the following two classical expressions for the product of multizetas.

Proposition 1.9 (Euler). Let a1 and a2 be two convergent sequences of positive integers. Then,

ζ(a1)ζ(a2) =
∑

a∈st(a1,a2)

ζ(a) = ζ(a1 ∗ a2).

The iterated integral expression in proposition 1.1.2 for multizetas written in the x, y
notation leads to the following alternative expression for the product of multizetas, also
attributed to Kontsevich.

Proposition 1.10. Let ε1 and ε2 be two convergent sequences in the variables x and y. Then,

ζ(ε1)ζ(ε2) =
∑

ε∈ε1xε2

ζ(ε) = ζ(ε1xε2).
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The shuffle product on multizetas endows the vector space over Q generated by
multizeta values with the structure of a Q algebra, while the stuffle product gives this
algebra a set of relations. The system of relations on multizeta values given by the
shuffle and the stuffle products is known as the system of double shuffle relations. If
we restrict ourselves to double shuffle relations on multizeta values, we do not obtain
what is conjectured to be a complete set of relations on multizetas.

An important system of relations on multizetas comes from regularization of non-
convergent zeta values, a technique from physics to define a notion of cancelling di-
vergences. Based on early work of Ecalle and Zagier (see [IKZ]), one may extend the
double shuffle relations by allowing identities to be obtained from applying the dou-
ble shuffle relations to divergent sums. The following important relation coming from
regularization, known as Hoffman’s Relation, is conjectured to complete the system of
generating relations, along with double shuffle, on multizeta values.

Proposition 1.11 (HO). Let k be a convergent sequence of positive integers and let ω be its
corresponding sequence in x and y by the association (1.1.1). Then,

ζ
( ∑

l∈(1)∗k
l −

∑

λ∈(y)xω

λ
)

= 0.

Note that although Hoffman’s relation comes from regularization, it is a relation
only on convergent zeta values, since each sum in the expression has only one non-
convergent term, (1, k) and (y, ω), but these terms are equal and disappear in the differ-
ence.

The propositions 1.9, 1.10 and 1.11 are conjectured to be a generating set of relations
on the algebra of multizeta values, Z . This conjecture is one of the precise formulations
of conjecture 1.2. As before, the analytic nature of this conjecture renders it out of reach
with present techniques. Furthermore, even the algebraic structure of these three sets
of relations is not fully understood. In order to study these relations, while avoiding
the transcendence problem, we define the algebra of formal multizetas consisting of
symbolic multizeta values and satisfying only these three sets of relations by definition.

Definition 1.12. Let FZ be the formal algebra generated by the symbols,

W = {ζF (ω); where ω is a convergent word in x, y},
and containing the symbols

T = {ζF (a); where a is a convergent sequence of positive integers},
with the following relations,

1. For every ζF (ω) ∈ W there is a unique ζF (a) ∈ T such that ζF (ω) = ζF (a) by the
correspondence (1.1.1),

2. For all ζF (ω1), ζF (ω2) ∈W , ζF (ω1)ζF (ω2) = ζF (ω1xω2),

3. For all ζF (a), ζF (b) ∈ T , ζF (a)ζF (b) = ζF (a ∗ b),

4. For all ω ∈W and a ∈ T such that ζF (ω) = ζF (a) by relation 1,

ζF (
∑

l∈(1)∗(a)

l −
∑

λ∈(y)x(w)

λ) = 0.
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The formal multizeta algebra is graded by weight, so we have

FZ =
∞⊕

n=0

FZn,

where we set FZ0 = Q, FZ1 = 0. We also write FZ>0 =
⊕∞

n=1FZn.

Definition 1.13. We let nfz denote the vector space obtained by quotienting FZ by products,
ζ(2) and Q:

nfz := FZ/〈FZ2
>0 ⊕FZ2 ⊕FZ0〉.

We denote the elements of nfz by z(w) where w is a convergent word, or by z(a) where a is a
convergent sequence of integers.

In the following section, we introduce the double shuffle Lie algebra, ds, and relate
it to a Lie coalgebra, ñfz, which is conjecturally isomorphic to nfz.

1.3 The Lie algebras, ds and grt

The motivation for studying the double shuffle Lie algebra is its close relationship to
multizeta values, which will be outlined in detail in the following section. I will sum-
marize this relationship to motivate the results that are presented in this section.

Definition 1.14. Let Z2 be the ideal in Z generated by products of multizeta values. We
define the Q-vector space of new zeta values to be nz = Z/〈Z2 ⊕ Q · ζ(2) ⊕ Q〉. We denote
an element of nz by ζ(k1, ..., kd) or by ζ(xk1−1y · · ·xkd−1y) where k1, ..., kd is a convergent
sequence of integers.

In G. Racinet’s thesis, he constructs a subspace of the power series algebra,Q〈〈x, y〉〉,
that is conjecturally isomorphic to dual space, nz∨, and proves that this subspace, ds, is
a Lie algebra for the Poisson bracket. We call this Lie algebra the double shuffle Lie
algebra. This section is dedicated to defining the double shuffle Lie algebra.

In this chapter we work in the two noncommutative power series algebras,Q〈〈x, y〉〉
and Q〈〈yi; 1 ≤ i < ∞〉〉. For f a power series in one of these algebras, we denote by
(f |w) the coefficient of the word w in f .

We associate an element inQ〈〈x, y〉〉 toQ〈〈yi〉〉 via the linear map, πY , following [Ec]
and [Ra]. It is closely linked to the alternative notation for a multizeta in the association
(1.1.1).

Definition 1.15.

πY : Q〈〈x, y〉〉 → Q〈〈yi〉〉

π̃Y(xk1−1yxk2−1y · · ·xkn−1yxkn+1) =

{
0 kn+1 6= 0
yk1yk2 · · · ykn kn+1 = 0

πY(f) = π̃Y(f) +
∑

n=2

(f |xn−1y)
(−1)n−1

n
yn
1 .

The polynomial algebras Q〈〈x, y〉〉 and Q〈〈yi〉〉may be equipped with the following
coproducts defined on the generators, x, y, yi, and extended multiplicatively:
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Definition 1.16.

∆x : Q〈〈x, y〉〉 → Q〈〈x, y〉〉 ⊗Q Q〈〈x, y〉〉
x 7→ x⊗ 1 + 1⊗ x

y 7→ y ⊗ 1 + 1⊗ y

∆∗ : Q〈〈yi〉〉 → Q〈〈yi〉〉 ⊗Q Q〈〈yi〉〉
yi 7→

∑

n+m=i

yn ⊗ ym

Definition 1.17. The vector subspace, ds ⊂ Q〈〈x, y〉〉, is generated by elements, f , that are
primitive for ∆x, and such that πY(f) is primitive for ∆∗:

∆x(f) = f ⊗ 1 + 1⊗ f, ∆∗(πY(f)) = πY(f)⊗ 1 + 1⊗ πY(f).

Definition 1.18. The Poisson bracket on elements of Q〈〈x, y〉〉 is the Lie bracket given by

{f, g} = [f, g] + Df (g)−Dg(f)

where [f, g] = fg− gf and the Df are derivations defined recursively by Df (x) = 0, Df (y) =
[y, f ] and such that Df (gh) = Df (g)h + gDf (h).

The following result is one of the key ingredients in the understanding of the formal
multiple zeta algebra (see section 4 for details).

Theorem 1.19. [Ra] The double shuffle vector space, ds, forms a Lie algebra for the Poisson
bracket.

In the next section, we define a vector space ñfz and prove that it is isomorphic to
the dual space ds∨ of ds (thereby proving in particular that ñfz is a Lie coalgebra). The
importance of the double shuffle Lie algebra in relation to multiple zeta values lies in
the fact that the surjection from ñfz (identified with ds∨) to nz given in the following
proposition is conjectured to be an isomorphism.

Proposition 1.20. We have a surjective, Q-linear map from ds∨ to nz,

ds∨ ³ nz.

The proof will be given in section 1.4.
The relationship between ds, multizetas, grt and mixed Tate motives, which will be

outlined in the remainder of this introduction, is what led to our interest in studying
multizeta values.

The double shuffle Lie algebra is graded by weight and each graded piece can be
endowed with a filtration by depth. By definition 1.1, the depth of a monomial in x and
y is the number of times y appears. We denote the depth filtration in the weight n part
by

ds = F 1
nds ⊃ F 2

nds ⊃ · · · ⊃ Fn−1
n ds ⊃ Fn

n (ds) = 0,

where F i
n are generated by weight n polynomials whose terms all have depth greater

than or equal to i. The Lie algebra ds is not graded by depth, since stuffle multiplication
does not preserve depth. However, we may define an associated depth-graded object,

⊕

i≥1

F i
nds/F i+1

n ds.

The dimensions of the vector spaces, F i
nds/F i+1

n ds, are an essential feature of the struc-
ture of ds. This leads us to the main result in chapter 2 of this thesis:
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Theorem 1.21. The dimensions of the associated ith depth-graded parts of ds for i = 0, 1 are

dim(F 1
nds/F 2

nds) =

{
1 n odd
0 n even

dim(F 2
nds/F 3

nds) =

{
0 n odd
bn−2

6 c n even.

(1.3.1)

(This calculation was done before we knew that this result has been known by Za-
gier who published it in 1993 [Za1] and it was restated in [IKZ] and [GKZ].)

Here, I will explain the motivation for theorem 1.21. Y. Ihara defined the Lie algebra,
grt, which is related to the Lie algebra of the braid group on 5 strands, P5 [Ih1].

Definition 1.22. Let P5 be the Lie algebra with generators xi, 1 ≤ i ≤ 5 with the following
relations:

1. [xi, xj ] = 0 whenever 1 < |i− j| < 4,

2. [x1, x2] + [x2, x3] + [x3, x4] + [x4, x5] + [x5, x1] = 0.

Definition 1.23. The Grothendieck-Teichmüller Lie algebra, grt, is the subspace of polynomials,
Q⊕ 〈f ∈ [L[x, y],L[x, y]]〉, such that the generators, f , satisfy the following 3 sets of relations:

1. f(x, y) + f(y, x) = 0,

2. f(x, y) + f(y, z) + f(z, x) = 0, where z = −x− y,

3.
∑

i∈Z/5 f(xi, xi+1) = 0, for xi ∈ P5.

This subspace is a Lie algebra for the Poisson bracket.

One conjectures, and computations have verified in low weight, that ds ' grt and
that the isomorphism is given simply by

f : ds→ grt

f(x, y) 7→ f(x,−y). (1.3.2)

This conjecture remains remarkably elusive, although Ecalle claims to have shown that
elements of ds satisfy the first relation of definition 1.23 and an unpublished and incom-
plete preprint of Deligne and Terasoma claims to have proven that map (1.3.2) gives an
injection grt ↪→ ds.

The algebras, ds and grt, encode two distinct, yet conjecturally equivalent, sets of
relations on multizeta values. We have following theorem, due to Furusho [Fu], based
on properties of the Drinfel’d associator, ΦKZ (see chapter 2). This theorem, analogous
to proposition 1.20, underlines the relationship between grt and ds.

Theorem 1.24. Let grt∨ be the dual vector space to grt. Then there exists a canonical, surjective
Q linear map,

ΨDR : grt∨ ³ nz.

In [Ih2], Y. Ihara finds the following dimensions of the depth-graded pieces of grt:
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Theorem 1.25. The dimensions of the ith depth-graded parts of grt for i = 0, 1 are

dim(F 1
ngrt/F 2

ngrt) =

{
1 n odd
0 n even

dim(F 2
ngrt/F 3

ngrt) =

{
0 n odd
bn−2

6 c n even.

(1.3.3)

Remark: Theorem 1.21 was proved in 2005. Since then, a more general result has
been published in [IKZ], where it is also shown that dim(F i

nds/F i+1
n ds) = 0 whenever

n and i have different parity. They also state without proof that for odd n,

dim(F 3
nds/F 4

nds) ≥ b(n− 3)2 − 1
48

c,

and they conjecture that≥ is an equality, a conjecture which has apparently been proven
by Goncharov [Go1]. Our interpretation of this result is as follows. One conjectures
that ds is a free Lie algebra with one depth 1 generator in each odd weight [Ih2]. We
then believe that F 3

nds/F 4
nds is generated by images of {{fi, fj}, fk} mod F 4

nds, where
fi, fj , fk are depth one elements, fi, fj , fk ∈ ds are homogeneous of odd weight and
i, j, k ≥ 3. Furthermore, we believe that the only linear relations between these depth
3 elements come from bracketing a relation in depth 2 by a depth 1 element. Indeed,
by counting the number of partitions, n = i + j + k, and subtracting off the number
of depth 2 relations from theorem 1.21, we do indeed obtain the expected dimension
b (n−3)2−1

48 c.
The situation in depth 4 (and higher) is much more complicated due to the presence

of other generators that are not just Poisson brackets of depth 1 elements. For example,
it is known by computation that the element, {f3, f9}−3{f5, f7} is an element of depth 4,
where fi for i = 3, 5, 7, 9 is the unique depth 1 element in weight i such that (fi|xi−1y) =
1.

1.4 The double shuffle Lie algebra and multizetas

In this section, we define a vector space, ñfz which by work of Zagier, Ecalle, Le and
Murakami, and finally Furusho, is known to surject onto nz. We prove that nfz is iso-
morphic to the dual of ds defined in the previous section and conclude that ñfz is a Lie
coalgebra. The cobracket on ñfz has been explicitly computed by Goncharov [Go]. Al-
though none of the results in this section are new, they provide a framework for our
work on ds in chapter 2.

Definition 1.26. The Lie coalgebra, ñfz, is the Q vector space generated by symbols zx(w) for
all monomials w inQ〈〈x, y〉〉 and symbols z∗(v) for all monomials v ∈ Q〈〈x, y〉〉y (power series
whose terms end in y) modulo the following relations:

1. zx(w1xw2) = 0,

2. z∗(v1 ∗ v2) = 0,

3. zx(1) = zx(y) = zx(x) = zx(xy) = 0,
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4. If w = v is a word ending in y but not a power of y, then z∗(v) = zx(w), and z∗(yn) =
(−1)n−1

n zx(xn−1y).

Proposition 1.27.
ñfz ' ds∨.

Proof. Let f ∈ ds ⊂ Q〈〈x, y〉〉. The relations in ds∨ are given by the duals of the relations
in ds, which are given by ds1 = ds2 = 0 and relations (1.4.2) and (1.4.3) below, with

πY(f) =
∑

v∈Q〈〈x,y〉〉·y
(f |v)v +

∑

n≥1

(−1)n−1

n
(f |xn−1y)yn. (1.4.1)

Let an element zx(w) ∈ ds∨, be identified with the linear map, ds → Q given by
zx(w)(f) = (f |w) for all f ∈ ds. Let z∗(v) ∈ ds∨ be identified with the linear map,
ds→ Q given by z∗(v)(f) = (πY(f)|v) for all f ∈ ds. Note that in this proof, the symbols
zx and z∗ refer to elements of ds∨, not to elements of ñfz, and the proof shows that they
are equal. As usual, w always stands for an arbitrary word in x and y, and v for a word
ending in y.

We will show that these linear maps, zx(w) ∈ ds∨, satisfy the defining relations 1-4
of ñfz and no others. Indeed, the relations between the linear maps zx(w) are exactly
the duals of the relations in ds. Let us compute the dual relations of each of the four
relations in ds.

First, we know that all f ∈ ds are primitive for ∆x which is equivalent to the condi-
tion: ∑

w∈w1xw2

(f |w) = 0, (1.4.2)

and hence zx(w1xw2) = 0. This is defining relation 1 of ñfz.
Next, we know that since for all f ∈ ds, πY(f) is primitive for ∆∗, which is equiva-

lent to the condition: ∑
v∈v1∗v2

(πY(f)|v) = 0, (1.4.3)

and hence z∗(v1 ∗ v2) = 0. This is defining relation 2 of ñfz.
Finally, we know that ds1 = ds2 = 0. This immediately implies relation 3 of the

definition of ñfz. Notice that nyn = (y)x(yn−1), so that for f ∈ ds, (f |yn) = 0. It follows
immediately that zx(yn) = 0 for all n ≥ 1. Similarly, zx(xn) = 0 for all n ≥ 1.

The last relation in ds is the defining formula (1.4.1). Therefore the coefficients of
any word must be the same on both sides. If v is a word ending in x, this coefficient
is 0 on both sides. If v is a word ending in y but not a power of y, the equality of the
coefficients implies that z∗(v) = zx(v), which is the first part of defining relation 4 of
ñfz. Finally, if v is a power of y, the equality of the coefficients shows that

z∗(yn) = zx(yn) +
(−1)n−1

n
zx(xn−1y)

since zx(yn) = 0 as we showed above.
We have shown that the set of relations of ds∨ is equal to the set of relations from

definition 1.26, thus we have an isomorphism ds∨ ' ñfz.
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Now we can prove proposition 1.20 from the previous section.

Sketch of proof of proposition 1.20. The proof of this proposition relies on proposition
1.27 proving that ds∨ is isomorphic to the Lie coalgebra ñfz defined in 1.26. The conclu-
sion then follows from the regularization formula given by Furusho [Fu] (proposition
3.2.3), expressing non-convergent symbols ñfz as explicit linear combinations of conver-
gent symbols, thus giving an obvious surjection from ñfz to nz by mapping convergent
symbols to the corresponding zeta values. ¤

Another proof of this proposition can be obtained by directly adapting Drinfel’d’s
and Furusho’s proof of theorem 1.24 [Fu].

Now we are in a position to translate theorem 1.21 into the language of multizetas.
As explained above, ñfz surjects onto nz. Theorem 1.21 implies that every depth 2 new
zeta value in nz of odd weight, ζ(a, b) where a + b is odd, is equal to a rational multiple
of the depth 1 new zeta value, ζ(a + b).

The proof of theorem 1.21 yields as a corollary the following formula for the coeffi-
cient of ζ(i, j) in terms of ζ(i + j) in nz, which is actually the simplification of a result
known to Euler, who gave the complete expression for ζ(i, j) in Z .

Corollary 1.28. Assume that i + j is odd, i, j ≥ 2. Then,

ζ(i, j) =
(−1)j−1

(
i+j
j

)− 1

2
ζ(i + j).

1.5 The moduli space of genus 0 curves, M0,n

Chapters 3 and 4 of this thesis are a study of multizeta values as periods on moduli
space via the top dimensional de Rham cohomology, Hn−3(M0,n) (we drop the sub-
script, DR for “de Rham”, for the rest of the text). We begin this section by recalling the
useful notations and properties of moduli space.

Definition 1.29. The moduli space of genus 0 curves over C, M0,n, is the space whose points
are isomorphism classes of Riemann spheres with n distinct, ordered marked points modulo the
action of PSL2(C) on the points.

The action of PSL2 is triply transitive, so we may denote a point in M0,n by (z1, ..., zn)
or by a well-chosen representative in its equivalence class, (0, t1, ..., t`, 1,∞), ` = n− 3.
In this way, we have the isomorphism,

M0,n ' (P1 \ {0, 1,∞})` \∆, (1.5.1)

where ∆ denotes the “fat” diagonal, ∆ = {ti1 = tij ; for all distinct ik, 1 ≤ k ≤ j}.
The moduli space, M0,n is not compact. A stable compactification, M0,n was defined

by Deligne and Mumford [DM]. Adding boundary components to M0,n corresponds
to adding stable curves to M0,n. These are genus 0 Riemann surfaces with nodes, such
that each component has at least 3 marked or singular points. A visual interpretation of
a point on the boundary M0,n \M0,n is given in figure 1, where the simple closed loop
on the left has been pinched to a geodesic of length 0 on the right.
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−→

Figure 1. A point on the boundary of M0,n

The boundary divisors of M0,n are closed, irreducible codimension 1 subvarieties
in M0,n \M0,n. (Many authors use the term boundary divisor to denote M0,n \M0,n,
whereas we use the term for the irreducible components of M0,n \M0,n.) In the asso-
ciation given in (1.5.1), they correspond to blowups of the regions in ∆. We sometimes
denote a boundary divisor by an equation, ti1 = · · · = tij , which is understood to be the
blowup in M0,n of that region in (P1)n−3.

The boundary divisors may be combinatorially enumerated by specifying a parti-
tion of S = {0, t1, ..., t`, 1,∞} into two subsets, A and S \ A, with 2 ≤ |A| ≤ n − 2.
This is because any simple closed loop on the sphere with n marked points partitions
the points of S into two subsets as in figure 1. We may alternatively denote by dA, the
boundary divisor in which the simple closed loop pinches the subset A ⊂ S, hence
dA = dS\A. During sections of this thesis where no confusion may arise, we may simply
denote the boundary divisor by the set A.

Definition 1.30. We denote by M0,n(R) the space of points, {(0, t1, ..., t`, 1,∞); ti ∈ R}.
While M0,n is a connected manifold, M0,n(R) is not connected. Each connected

component in M0,n(R) can be completely described by the real ordering of its marked
points, ti1 < · · · < 0 < · · · < 1 < · · · < tin−3 .

Definition 1.31. A connected component of M0,n(R) is called a cell. The cells in M0,n(R)
are also called associahedra. We denote a cell by the cyclic ordering corresponding to the real
ordering of its marked points, where (s1, s2, ..., sn) denotes to the cell s1 < s2 < · · · < sn such
that {si, 1 ≤ i ≤ n} = {0, t1, ..., t`, 1,∞}.
Example 1.32. Figure 1.1 depicts M0,5(R), where the lines are absent from the space, and the
cells are the regions between the lines.

1.6 Periods on M0,n and the algebra, C
The inspiration for chapters 3 and 4 of this thesis is a recent theorem of Francis Brown
[Br] in which he proves that every period on M0,n is a Q linear combination of multiple
zeta values. This led naturally to the question of whether the structure of the multi-
ple zeta value algebra might not be more transparent or more symmetric by taking all
periods as generators, and relations coming from the geometry of moduli spaces.

Definition 1.33. We define a period on M0,n to be a convergent integral,
∫
γ ω, where γ is a

cell in M0,n(R) and ω is a differential (n − 3)-form which is holomorphic on M0,n and which
has at most simple poles along the boundary divisors. We denote by C the Q algebra generated
by periods on M0,n.

13



t2

1 < t2 < t1 <∞

t1

0<t1<1<t2<∞

0<t1<t2<1

Figure 1.1: M0,5(R)

Up to a variable change corresponding to permuting the marked points, all periods
may be written as integrals over the standard cell, δ := 0 < t1 < ... < tn−3 < 1.

One of the main points of chapter 3 is that the combinatorial properties of periods
can be expressed by using polygons. Let us now explain how polygons can be used to
encode cells on M0,n(R), and also to encode certain differential forms on M0,n called
cell forms.

We may identify an oriented n-gon, γ, to a cell in M0,n(R) by labelling the sides
of the n-gon with the marked points. This n-gon is associated to the cell given by the
clockwise cyclic ordering of the labelled edges of the polygon as in figure 3. Let Z =
{s1, ..., sn} = {0, 1,∞, t1, ..., t`} and let γ be a polygon decorated by Z, such that si is
followed by si+1 in the clockwise labelling of the edges and where i is taken modulo n.
Then we denote γ by (s1, ..., sn) and we have that γ = σ(s1, ..., sn) where σ is any cyclic
permutation in Sn.

Each component of the boundary of γ lies in some boundary divisor dA ⊂ M0,n \
M0,n such that A = {si, si+1, ..., si+j} is a successive block in the cyclically ordered
tuple, (s1, ..., sn).

Example 1.34. A polygon cyclically labelled (t1, 0, t3, 1, t2,∞) = γ is identified with the cell
t1 < 0 < t3 < 1 < t2 <∞ in M0,6(R) as in figure 3.

Figure 3. Polygon representation of a cell

0

1

t2

∞

≈ t1 < 0 < t3 < 1 < t2 <∞

polygon, γ ≈ Connected component in M0,n(R)

t1

t3

For each cell in M0,n(R), there exists a unique differential `-form up to scalar mul-
tiple that is holomorphic on the interior and has simple poles on all of the divisors on

14



1

t2

t3

t1

≈ [0, 1, t1, t3,∞, t2] =
dt1dt2dt3

(−t2)(t3 − t1)(t1 − 1)

≈polygon, γ Cell form, ωγ

0

∞

Figure 1.2: The polygon representation of a cell form

the boundary of that cell. We call such a form associated to the pole divisors of a cell a
cell form.

Definition 1.35. Let γ be the cell, γ = (s1, s2, ..., sn). The cell form, ωγ , associated to γ is
defined as

ωγ =
dt1 ∧ ... ∧ dtn−3

Π(si − si−1)
,

where the si are the cyclically labelled sides of the polygon and where the side labelled∞ is left
out of the product. This form is holomorphic on M0,n and has simple poles along exactly those
boundary divisors bounding γ and nowhere else on M0,n. We denote a cell form ωγ by the cyclic
ordering [s1, ..., sn].

Example 1.36. The polygon cyclically labelled [0, 1, t1, t3,∞, t2] corresponds to the cell form
in figure 1.2, dt1dt2dt3

(−t2)(t3−t1)(t1−1) .

We prove in chapter 3 that cell forms generate the de Rham cohomology group,
H`(M0,n), so that every differential `-form can be written as a linear combination of
these. We also explicitly determine a basis for the subspace H`(Mδ

0,n) of differential `-
forms converging on the boundary divisors which bound the standard associahedron,
δ. To do this, we associate the integral

∫
γ ωβ to the polygon pair (γ, β) (even if this

integral diverges). Because some linear combinations of cell forms, which individually
diverge on γ, may actually converge on γ, the above results show that every convergent
integral over γ can be expressed as a linear combination of pairs of polygons.

Using this association and Brown’s theorem, we have defined (in a joint paper with
F. Brown and L. Schneps, included as chapter 3) a formal algebra of periods, which is
generated by polygon pairs, with relations coming from geometric properties of moduli
spaces. The formal polygon pair algebra, FC, generalizes the formal multizeta algebra
and allows us to prove some results about periods and the cohomology of M0,n. This
gives a new approach to some conjectures about multizeta values and formal multizeta
values. To begin with, in the theorem below, we use polygons to give a new basis for
the top dimensional de Rham cohomology group, H`(M0,n), different from Arnol’d’s
well-known basis and more useful for the study of periods.

Following a theorem of Arnol’d (which is more precise, see chapter 4), we have
the following characterization of the top dimensional de Rham cohomology group,
H`(M0,n) (top dimensional in the sense that Hm(M0,n) = 0 for all m > `).

Claim 1.37. H`(M0,n) is isomorphic to the vector space over Q of differential forms which
are holomorphic on M0,n and which have at most simple poles along the boundary divisors,
M0,n \M0,n.

15



Definitions 1.38. Let PZ be the Q vector space generated by oriented n-gons decorated by the
marked points in M0,n.

Let IZ ⊂ PZ be the vector subspace generated by shuffle sums with respect to∞, in other
words polygon sums of the form ∑

W∈AxB

[W,∞],

where A, B is a partition of {0, t1, ..., tn−3, 1}.
Definition 1.39. Let a cell form corresponding to a polygon in which 0 appears just to the left
of 1 be called a 01-cell form.

Theorem 1.40. PZ/IZ is isomorphic to H`(M0,n) and a basis for H`(M0,n) is given by the set
of 01-cell forms, {[0, 1, σ(∞, t1, ..., t`)], σ ∈ Sn−2}.

Thus, each cohomology class contains a representative 01-cell form.

Definition 1.41. Let Z be the set denoting marked points on M0,n, Z = {z1, ..., zn}. Let ρ be
the set of partitions of Z, in which each set in the partition has cardinality greater than or equal
to 2. We denote by D the disjoint union, ti∈ρDi where each Di is the (irreducible) boundary
divisor in M0,n \M0,n defined by the partition i. Likewise, if γtγc is a partition of ρ, we denote
by Dγc := ti∈γcDi. We denote by M

γ
0,n := M0,n\Dγc and call M

γ
0,n a partial compactification

of M0,n.

So we have M0,n ⊂ M
γ
0,n ⊂ M0,n. When no ambiguity can occur, to lighten the

notation we may note Dδ by δ.
Based on a theorem of Grothendieck [Gr1], we use in chapter 3 and completely

prove in chapter 4 that any period on M0,n may be written as the integral of a linear
combination of 01-forms which converges on Dδ, the set of divisors each of which con-
tains a face of the boundary of the standard associahedron, δ, and such forms span
the top dimensional de Rham cohomology of the partially compactified moduli space,
H`(Mδ

0,n).
Some 01-forms naturally converge on Dδ. We define a chord on a cell form, ω, to

be a set of marked points of a consecutive subsequence on ω of the length between 2
and bn

2 c. The 01-forms which do not have any chords in common with the polygon δ
converge on the cell defined by the cyclic ordering δ.

However, there are also some linear combinations of nonconvergent 01-forms which
converge on Dδ; a basis for the space of these is the set of insertion forms defined in
chapter 3.

With the above definitions, we can state one of the most important theorems in
the article contained in chapter 3, which is a key ingredient in the definition of the
algebra of periods (see next section). It gives a combinatorial construction of an explicit
basis of H`(Mδ

0,n) and allows us to give a recursive formula for the dimension of this
cohomology group.

Theorem 1.42. The insertion forms and the convergent 01-cell forms form a basis for H`(Mδ
0,n).

The proof of this theorem is the heart of our recent work and is given in chapter 3.
The goal is to attain an explicit combinatorial description of an algebra generated by
“formal periods” in analogy with the formal multizeta value algebra, FZ .
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1.7 The algebra of formal periods, FC
The period algebra, C, has three known sets of relations coming from the following three
important geometric properties of moduli spaces:

1. Invariance under the symmetric group action corresponding to a variable change,

2. Forms given by shuffles with respect to one point are identically 0,

3. Product map relations coming from the pullback of maps on moduli spaces (these
are outlined in [BCS] and [Br]).

In the style of [KZ], who conjecture that only algebraic relations of certain geometric
types exist between periods, we conjecture that these are the only relations on the peri-
ods on M0,n. This is why our strategic approach to understanding the implications of
this conjecture is to define a formal algebra on polygon pairs satisfying these and only
these relations.

Definition 1.43. The formal cell number algebra, FC, is defined as the algebra generated by
pairs of polygons, PZ ⊗Q PZ , decorated by the marked points in Z with the following sets of
relations:

1. (γ, ω) = (σ(γ), σ(ω)) ∀σ ∈ Sn,

2. For any e ∈ Z and for any partition A,B of Z \ {e},

((e,AxB), ω) = (γ, (e,AxB)) = 0,

3. For any partition, A, B of Z \ {0, 1,∞}, and for any four polygons, γ1 and ω1 decorated
by A∪{0, 1,∞}, γ2 and ω2 decorated by B∪{0, 1,∞}, we have the product map relation,

(γ1, ω1)(γ2, ω2) = (γ1xγ2, ω1xω2).

The first relation onFC comes from variable changes on periods, the second relation
from theorem 1.40, and the third from product maps on moduli spaces.

Using the definition of the period algebra and Brown’s theorem, one shows easily
that the algebra of periods, C, is isomorphic to the algebra of multizeta values, Z [Br].
This key remark is our main motivation for the definition of FC, and leads naturally
to the conjecture that FC is isomorphic to the formal multizeta value algebra, FZ .
This conjecture seems likely because the algebra of formal cell numbers has shuffle
multiplication andFC encodes multizeta values, so it should also have stuffle. We have
not yet been able to prove this, but computer calculations do support the hypothesis
that FC has the stuffle relation. Such calculations are given at the end of chapter 3.
The relation between the different algebras is depicted in the following commutative
diagram, where f is conjecturally an isomorphism:

FC

²²²²

oo f // FZ

²²²²
C ∼ // Z.
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1.8 Cohomology of partially compactified moduli spaces

Chapter 4 of this thesis extends the methods of chapter 3 to calculating the cohomology
of M

γ
0,n for certain sets of divisors, γ, such that M

γ
0,n is affine. The search for criteria for

affineness led to a new, combinatorial description of the Picard group, Pic(M0,n), with
a basis given by polygons.

In the first two sections of chapter 4, we recall, in a self-contained way, the proof of
the following proposition, using the Leray theorem of spectral sequences and a theorem
of Grothendieck on algebraic de Rham complexes.

Proposition 1.44. If M
γ
0,n is an affine variety, then the top dimensional de Rham cohomology,

H`(Mγ
0,n) is isomorphic to the subspace of H`(M0,n) of the classes of differential forms which

have a representative that is holomorphic on M
γ
0,n and has at most logarithmic singularities

along M0,n \M
γ
0,n.

The third section is dedicated to defining certain criteria for M
γ
0,n to be affine. The

key observation of this section is that if γ is a subset of divisors that bound an associ-
ahedron, then M

γ
0,n is affine. In particular, using the geometry of M0,n, we obtain the

following proposition as a corollary to this observation.

Proposition 1.45. If γ is a set containing only one divisor {dA} , two divisors {dA, dB}, or the
set of three divisors {dA, dB, dA∪B}, then M

γ
0,n is affine.

In section 4 of chapter 4, we generalize the results of chapter 3 to find an explicit
basis of polygons for H`(Mγ

0,n) in the cases given in proposition 1.45. To do this, we
exploit the residue map on polygons and cell forms.

As before, we denote by PSi the Q-vector space generated by polygons decorated
by the marked points in a set Si, and by ISi ⊂ PSi the subspace of shuffles with respect
to one element as in definition 1.38. We associate a divisor, dSi to a chord on a polygon,
ωp = [si1 , ..., sin ] ∈ PZ to be a partition of ωp into consecutive blocks, [sij , ..., sij+k

] and
[sij+k+1

, ..., sij−1 ] such that k ≥ 1 as in the left-hand object in figure 5.

=

0
1

t1

t2

t3

∞

d ⊗

t3

0

1

t1

t2

∞

d

d

Respd

Figure 5. Residue chord of a polygon for the divisor, d = dt1,t2

Now, for every partition Z given by Z = S1 ∪ S2, we define a residue map on
polygons with respect to the divisor, dS1 = dS2 = d:

Resp
d : PZ → PS1∪{d} ⊗Q PS2∪{d},

which is simply the tensor product of the two polygons formed by cutting along the
divisor d.
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Definition 1.46. Let ωp be a polygon in PZ . If the partition S1, S2 corresponds to a chord of
ωp, then it cuts ωp into two subpolygons ωp

i (i = 1, 2) whose edges are indexed by the set Si and
an edge labelled d corresponding to the chord d. We set

Resp
d(ω

p) =

{
ωp

1 ⊗ ωp
2 if d is a chord of ωp

0 if d is not a chord of ωp.
(1.8.1)

Let π : PZ → H`(M0,n) be the map from polygons to cell forms as in definition 1.35.
In chapter 4, the following theorem is proved.

Theorem 1.47. Let γ = {γ1, ..., γk} be a set of boundary divisors of M0,n such that M
γ
0,n is

affine. Then, the Q vector space, H`(Mγ
0,n) coincides with the differential forms in the intersec-

tion of vector spaces,
k⋂

i=1

π((Resp
γi

)−1(Iγi∪{d} ⊗ PZ\γi∪{d})).

Furthermore, a basis for H`(Mγ
0,n) can easily be deduced from a Lyndon basis of the polygons

in Iγi∪{d} ⊗ PZ\γi∪{d} using insertion forms.

As a corollory to this theorem we display explicit bases for H`(Mγ
0,n) for sets γ =

{dA}, {dA, dB} and {dA, dB, dA∪B} and give a closed formula for the dimensions.
The search for criteria on γ such that M

γ
0,n is affine led us to investigate Pic(M0,n).

If a divisor γc is ample in the Picard group, then M
γ
0,n is an affine space. Although we

didn’t succeed in proving that γc was affine, for certain γ that we were interested in
(such as the pole divisors of a multizeta form), this search led to a new presentation of
Pic(M0,n) with a basis of polygons. The final section of this thesis is dedicated to the
statement and proof of this result.
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Chapter 2

Comparison and combinatorics of
the Lie algebras, ds, grt and nfz

In this chapter we prove a dimension result on ds which provides evidence toward the
conjecture stated in the introduction that ds ' grt. Some theorems and definitions given
in the introduction and used in the chapter are restated for easy reference for the reader.

A multizeta value is a real number defined by the iterated sum,

ζ(k1, ..., kd) =
∑

n1>n2>···>nd>0

1

nk1
1 nk2

2 · · ·nkd
d

,

where (k1, ..., kd) is a sequence of positive integers such that k1 ≥ 2. We may call a mul-
tizeta value a multiple zeta value, a multizeta, an MZV , a zeta value or simply a zeta.
The depth of ζ(k1, ..., kd) is d and its weight is

∑d
i=1 ki. Let Z denote the algebra over

Q generated by multizeta values, and let Zn denote the vector space over Q generated
by multizeta values of weight n.

Although Z is simple to define, there remain many open questions about this al-
gebra. The motivation for the results in this chapter stem from the following open
problem about Z . It is believed that all linear relations over Q on multizeta values are
generated by the double shuffle relations and Hoffman’s relation, relations which pre-
serve the weight of elements in Z . This in turn would imply the well-known “direct
sum conjecture”:

Conjecture. The algebra, Z , is graded by weight and hence Z :=
⊕∞

n=0Zn.

Note that this ambitious conjecture would imply the transcendence of every multi-
zeta value, since the minimal polynomial of an algebraic multizeta value would yield a
linear relation in different weights.

Of particular interest to us are the depth 1 generators of Z , ζ(n). The depth 1 gen-
erators in even weight are well understood and have long been known to be transcen-
dental.

Theorem 2.1 (Euler).

ζ(2) =
π2

6

ζ(2n) =
22n−1|Bn|π2n

(2n)!
,
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where Br is the Bernoulli number that is obtained by expanding the series,

y

ey − 1
=
∞∑

r=0

Br
yr

r!
.

However, the depth 1 generators in odd weight are less well understood. They
are conjectured to be transcendental numbers. R. Apéry [Ap] proved that ζ(3) was
irrational and T. Rivoal [BR] recently proved that there are infinitely many irrational
ζ(2n + 1).

This chapter is not an attempt to tackle the question of irrationality of depth 1 zeta
values, which seems very difficult because of the analytic nature of the problem. Yet, by
working in the Lie algebra, we obtain results relating to the conjecture that the double
shuffle Lie algebra is isomorphic to the free Lie algebra with one generator in each odd
weight,

f = L[x2n+1 : n ≥ 1].

2.1 The double shuffle Lie algebra, ds

In this chapter, we work in the two noncommutative power series algebras, Q〈〈x, y〉〉
andQ〈〈yi; 1 ≤ i <∞〉〉. For f a polynomial in one of these algebras, we denote by (f |w)
the coefficient of the monomial w in f .

2.1.1 Shuffle on L[x, y]

The power series algebra, Q〈〈x, y〉〉, may be graded in two ways, by weight and by
depth according to the following definition.

Definition 2.2. The algebra Q〈〈x, y〉〉 possesses a grading by the length of its monomials, ω,
which we call the weight and we denote the weight of ω by w(ω). Similarly, we can define a
grading onQ〈〈x, y〉〉 by the depth of the monomial, which is the number of times y appears and
we denote the depth of ω by d(ω). The notation, Vn, where V is any vector space of polynomials,
refers to its weight n graded part.

The algebra, Q〈〈x, y〉〉, may be equipped with the following coproduct to form a
Hopf algebra,

∆x : Q〈〈x, y〉〉 → Q〈〈x, y〉〉 ⊗Q Q〈〈x, y〉〉 (2.1.1)
x 7→ x⊗ 1 + 1⊗ x (2.1.2)
y 7→ y ⊗ 1 + 1⊗ y. (2.1.3)

Definition 2.3. A element f ∈ Q〈〈x, y〉〉 is primitive for the coproduct ∆x, if ∆x(f) =
1⊗ f + f ⊗ 1.

Definition 2.4. The Lie algebra, L[x, y] ⊂ Q〈〈x, y〉〉, is the subspace of polynomials generated
by successive bracketings of x, y for the Lie bracket, [f, g] = fg − gf .

The Lie algebra, L[x, y], possesses the grading by weight and depth inherited from
Q〈〈x, y〉〉. We denote by Ln[x, y] the weight n graded part and by Li

n[x, y] the depth i,
weight n graded part, so that

L[x, y] = ⊕nLn[x, y]

Ln[x, y] = ⊕1≤i<nLi
n[x, y].
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The vector space, Ln[x, y], is of finite dimension for each n (we will recall the dimension
formula in section 2.2).

Here we recall the definition of the shuffle product on monomials.

Definition 2.5. Let α = (α1, . . . , αk) and β = (β1, . . . , βl) be two sequences. The shuffle
product of α and β, denoted by sh(α, β), or αxβ, is the formal sum obtained by the recursive
procedure:

1. sh(α, ∅) = sh(∅, α) = α,

2. sh(a0 · α, b0 · β) = a0 · sh(α, b0 · β) + b0 · sh(a0 · α, β).

The shuffle product on sequences α and β is the sum over all of the permutations
of α · β that preserve the orders of both sequences. For ease of notation, we write
γ ∈ sh(α, β) to mean that γ is a term in the sum sh(α, β).

Proposition 2.6. [Se][Re] For f ∈ Q〈〈x, y〉〉 the following conditions are equivalent:

1. f ∈ L[x, y],

2. ∆x(f) = f ⊗ 1 + 1⊗ f ,

3. For any ω1, ω2, non-empty sequences in x and y,
∑

ω∈sh(ω1,ω2)

(f |ω) = 0.

Let U(L[x, y]) be the universal enveloping algebra of L[x, y] and we denote by · its
product.

U(L[x, y]) =
∞⊕

n=o

T⊗n/ < f ⊗ g − g ⊗ f − [f, g] | f, g ∈ L[x, y] >, (2.1.4)

where T⊗n =
⊗n L[x, y] is the nth tensor power of L[x, y]. The universal enveloping

algebra naturally possesses a Hopf algebra structure with coproduct, ∆L[x,y], which is
the unique algebra morphism which is primitive for the elements in L[x, y]. So we have
the following corollary:

Corollary 2.7. [Se] We have the isomorphism of Hopf algebras,

(Q〈〈x, y〉〉,∆x, ·) ' (U(L[x, y]), ∆L[x,y], ·)
x 7→ x

y 7→ y.

Proof. The universal enveloping algebra on the free Lie algebra on n generators is iso-
morphic to the free polynomial algebra on n variables. By taking n = 2 we have
(Q〈〈x, y〉〉, ·) ' (U(L[x, y]), ·). By the theorem 2.6, the primitive elements for the co-
product, ∆x are exactly those in the Lie algebra, L[x, y].

The weight grading that we give to Q〈〈x, y〉〉 is the same as one gives to the grading
in the universal enveloping algebra defined by the theorem of Poincaré-Birkhoff-Witt.
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2.1.2 Stuffle on L[yi]

Here, we make analogous definitions and statements for the algebra Q〈〈yi〉〉.
The power series algebra, Q〈〈yi〉〉, possesses a grading given by the sum of the in-

dices of the monomial which we call the weight of the monomial, i.e. w(yi1 · · · yir) =∑r
j=1 ij . Similarly, we can define a grading on Q〈〈yi〉〉 by the depth of the monomial,

which is the length of the monomial, i.e. d(yi1 · · · yir) = r.
The algebra,Q〈〈yi〉〉, may be equipped with the following coproduct to form a Hopf

algebra,

∆∗ : Q〈〈yi〉〉 → Q〈〈yi〉〉 ⊗Q Q〈〈yi〉〉 (2.1.5)

yi 7→
∑

n+m=i

yn ⊗ ym. (2.1.6)

If ∆∗(f) = 1⊗ f + f ⊗ 1, then f is primitive for ∆∗ as in definition 2.3.

Definition 2.8. The Lie algebra, L[yi] ⊂ Q〈〈yi〉〉, is the subspace of polynomials generated by
successive bracketings of yi for the Lie bracket, [f, g] = fg − gf .

The Lie algebra, L[yi], possesses the grading by weight and depth inherited from
Q〈〈yi〉〉.

We define here the stuffle product of monomials in Q〈〈yi〉〉, which is analogous to
the stuffle product on sequences of positive integers given in the introduction.

Definition 2.9. For any monomials in Q〈〈yi〉〉, a, b the stuffle product of a and b, denoted
st(a, b) or a ∗ b, is the formal sum obtained by the recursion:

1. st(a, ∅) = st(∅, a) = a,

2. st(yi · a, yj · b) = yi · st(a, yj · b) + yj · st(yi · a, b) + (yi+j) · st(a, b).

The following proposition due to J. Ecalle, gives us an easy method of determining
whether f ∈ Q〈〈yi〉〉 is in L[yi] and also gives the link between the stuffle relation and
the coproduct, ∆∗.

Proposition 2.10. [Ec] For f ∈ Q〈〈yi〉〉 the following conditions are equivalent:

1. f ∈ L[yi].

2. ∆∗(f) = f ⊗ 1 + 1⊗ f .

3. For all ω1, ω2, non-empty sequences in {yi},
∑

ω∈st(ω1,ω2)

(f |ω) = 0.

We associate an element in Q〈〈x, y〉〉 to Q〈〈yi〉〉 via the linear map, πY , the corrected
projection onto Q〈〈yi〉〉. It is closely linked to the alternative notation for a multizeta in
the association,

xk1−1y · · ·xkd−1y ∼ k1k2 · · · kd

ζ(xk1−1y · · ·xkd−1y) = ζ(k1k2 · · · kd).
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Definition 2.11. Let πY be the Q linear map defined by:

πY : Q〈〈x, y〉〉 → Q〈〈yi〉〉 (2.1.7)

π̃Y(xk1−1yxk2−1y · · ·xkn−1yxkn+1) =

{
0 kn+1 6= 0
yk1yk2 · · · ykn kn+1 = 0

(2.1.8)

πY(f) = π̃Y(f) +
∑

n=2

(f |xn−1y)
(−1)n−1

n
yn
1 . (2.1.9)

Example 2.12. Let f = 2x2y + x3y + 4xy2 − 8yxy + 4y2x. Then,

π̃Y(f) = 2y3 + y4 + 4y2y1 − 8y1y2,

πY(f) = 2y3 + y4 + 4y2y1 − 8y1y2 +
2
3
y3
1 −

1
4
y4
1.

Note that π̃Y preserves the depth and the weight, but πY only preserves the weight.

2.1.3 The double shuffle Lie algebra, ds

Definition 2.13. The vector subspace, ds ⊂ L[x, y], is generated by polynomials, f , that satisfy
the following sets of relations,

1. The weight of any term in f is greater than or equal to 3,

2. f is primitive for ∆x: ∆x(f) = f ⊗ 1 + 1⊗ f ,

3. πY(f) is primitive for ∆∗: ∆∗(πY(f)) = πY(f)⊗ 1 + 1⊗ πY(f).

Definition 2.14. The Poisson bracket on elements of L[x, y] is the Lie bracket given by

{f, g} = [f, g] + Df (g)−Dg(f)

where [f, g] = fg− gf and the Df are derivations defined recursively by Df (x) = 0, Df (y) =
[y, f ].

Theorem 2.15. [Ra] The double shuffle elements, ds, form a Lie algebra for the Poisson bracket.

The double shuffle Lie algebra is graded by weight because the double shuffle rela-
tions preserve the weight, and we denote each weight n graded part by dsn. However,
ds is not graded by depth because the stuffle forces relations between words of different
depth, such as the classical relation, ζ(2)∗ζ(2) = 2ζ(2, 2)+ζ(4). In the proof of the main
theorem 2.30, the relations between depth one and depth two elements given by stuffle
are fully explained.

A useful way to calculate the action of the derivation, Df (g), is given in [Sc].

Proposition 2.16. [Sc] Let f, g ∈ L[x, y], such that the depth of g is d. Then Df (g) is given by
the sum over the Lie elements,

∑d
i=1 gi(x, y, [y, f ]) where each gi is gotten by substituting one

y in g by [y, f ].

Example 2.17. Let g = [[[x, y], [x, [x, y]]], [y, x]], so we have

Df (g) = [[[x, [y, f ]], [x, [x, y]]], [y, x]] + [[[x, y], [x, [x, [y, f ]]]], [y, x]]+
[[[x, y], [x, [x, y]]], [[y, f ], x]].
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2.2 Lyndon-Lie words

Definition 2.18. A Lyndon word is a monomial, ω ∈ Q〈〈x, y〉〉, such that all of the right factors
of ω are greater than ω for the lexicographic ordering. In other words, if ω = a1 · · · an, ai ∈
{x, y}, then a1 · · · an < ai · · · an ∀i > 1.

The simplest example of a Lyndon word is given in depth 1, where the only Lyndon
word is xny.

Given a Lyndon word, ω, we can construct an element of L[x, y], denoted [ω], by
recursively bracketing in the following manner. Let ω be written as ω = u · v such that
v is the smallest, non-trivial right factor. Then we bracket [u, v]. We can repeat this
procedure recursively on u and v, since u and v are Lyndon words. If v is the smallest
right factor, it is smaller than all of its right factors. Furthermore, u is smaller than all
of its right factors since if u = u1 · u2 where u2 < u, then u2 · v < u · v = ω which is
impossible since we supposed that ω < u2 ·v. So we can recursively bracket in the same
way as the base step until we obtain an element of L[x, y].

Definition 2.19. A Lyndon-Lie word (or Lyndon-Lie monomial) is an element of L[x, y] ob-
tained by a bracketing a Lyndon word in the above recursive procedure.

Theorem 2.20. [Re] Lyndon-Lie words form a basis for the Q vector space L[x, y]. We call this
basis the Lyndon-Lie basis.

Theorem 2.21 (Witt dimension formula). [Se] Let L[x1, ..., xr] be the free Lie algebra on r
generators. The dimension of the nth graded piece is given by

dim(Ln[x1, ..., xr]) =
1
n

∑

d|n
µ(d)rn/d,

where the Möbius function, µ, is defined by

µ(d)





1 d = 1
(−1)k d = p1 . . . pk (pi distinct primes)
0 d has a square factor.

In particular,

dim(Ln[x, y]) =
1
n

∑

d|n
µ(d)2n/d.

Lemma 2.22. [Re] Let f ∈ L[x, y] and let←−ω be the word ω written backwards. Then, (f |ω) =
(−1)n−1(f |←−ω ).

From theorem 2.20, we obtain the following corollary.

Corollary 2.23. For any n, L1
n[x, y] has dimension 1 and its Lyndon-Lie basis is {[xn−1y]}.

This corollary is immediate, since xn−1y is the only Lyndon word in depth 1.
In this thesis, we use the notation Cb

a to denote the binomial coefficient,
(
a
b

)
.

Lemma 2.24. We have the following expression for the depth one basis element as a polynomial
in Q〈〈x, y〉〉,

[xn−1y] =
n−1∑

i=0

(−1)iCi
n−1x

n−1−iyxi.
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Proof. We reason by induction. The smallest right factor of xn−1y is xn−2y. By applying
the recursive procedure, [xn−1y] = [x, [x, . . . , [x, y]]] = ad(x)n−1(y). The lemma is true
for n = 1 and we suppose it’s true for n. Then,

ad(x)n(y) = ad(x)(
n−1∑

i=0

(−1)iCi
n−1x

n−1−iyxi)

=
n−1∑

i=0

(−1)iCi
n−1x

n−iyxi −
n−1∑

i=0

(−1)iCi
n−1x

n−1−iyxi+1

=
n−1∑

i=0

(−1)iCi
n−1x

n−iyxi +
n∑

i=1

(−1)iCi−1
n−1x

n−iyxi

= C0
n−1x

ny +
n−1∑

i=1

(−1)i(Ci−1
n−1 + Ci

n−1)x
n−iyxi + (−1)nyxn

=
n∑

i=0

(−1)iCi
nxn−iyxi.

We obtain a similar corollary for the weight n, depth 2 graded parts.

Corollary 2.25. The Lyndon-Lie basis for L2
n[x, y] is given by {[xryxsy] | r > s, r+s = n−2}

and its dimension is bn−1
2 c.

Proof. A Lyndon word must end in a y, otherwise the right factor x would be smaller
than the word. Also if r ≤ s then the right factor xsy would be smaller than the word.
Then the dimension is just the number of ways to distibute y into the sequence xn−2

such that the number of x on the left is greater that the number of x on the right.

2.3 Coefficients on monomials in ds

Let f ∈ ds. By the shuffle relation, we know that f ∈ L[x, y]. To study the behavior in
depths 1 and 2, we write f in two ways, one in terms of the Lyndon-Lie basis and one
in terms of the basis of monomials in Q〈〈x, y〉〉. Since being in L[x, y] is equivalent to
satisfying the shuffle relation, we only need to study how the stuffle relation behaves in
L[x, y]. The stuffle relation is seen by projecting onto terms ending in y. For this reason,
we only label coefficients on monomials that end in y and to study depths 1 and 2, we
only label coefficients in those depths.

f = A[xn−1y] +
bn−3

2
c∑

s=0

as[xryxsy] + . . .

= Axn−1y + b0x
n−2y2 + b1x

n−3yxy + · · ·+ bn−2yxn−2y + . . . ,

(2.3.1)

where the subscript on the bi coefficients equals the number of x between the two y,
xn−2−iyxiy.
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Lemma 2.26. The coefficients of f satisfy the following relation:

bi =
i∑

j=0

(−1)i−jaj

(
Ci−j

j+1 + Ci−j−1
j

)
,

following the convention that Cd
c = 0 whenever c < d or d < 0 and taking aj = 0 whenever

j > n−3
2 .

Proof. For each j < bn−1
2 c let Ln

j = [xn−2−jyxjy] be the basis element from corollary
2.25. So we have by the recursive procedure for bracketing Lyndon words,

Ln
j = [x, · · · [[xj+1y], [xjy]] · · · ] (2.3.2)

= [x, · · · [
j+1∑

k=0

(−1)kCk
j+1x

j+1−kyxk,

j∑

l=0

(−1)lC l
jx

j−lyxl] · · · ]. (2.3.3)

To isolate the coefficients on xn−2−iyxiy, thus determining their contribution to bi,
we only need to consider those terms coming from the inner most bracket product.
(This follows from the fact that in the Lie word [xn−1y], there is only one term not
ending in an x and its coefficient is 1.) There are two terms, x2j+1−iyxiy in this product,
one coming from l = 0, k = i− j, the other one coming from k = 0, l = i− j− 1. These
two contributions give a coefficient of

(−1)i−jCi−j
j+1 − (−1)i−j−1Ci−j−1

j = (−1)i−j(Ci−j
j+1 + Ci−j−1

j ).

Claim 2.27. These are the only terms in Ln
j that contribute to bi.

Since the terms we are looking for must end in a y, either l = 0 or k = 0. If l = 0,
then k = i − j because xkxj−l = xkxj = xi and if k = 0, then l = i − j − 1 because
xlxj+1−k = xlxj+1 = xi.

To find the complete contribution to bi from all of the Ln
j , we only need to sum from

j = 0 to i. This is seen by reapplying the argument from the above claim. Namely, if
l = 0 then there are at least j x’s in front of the final y, so we won’t find any terms,
x2j+1−iyxiy when j > i. Similarly, if k = 0, then we have at least j + 1 x’s in front of the
final y, so the coefficients on these terms do not contribute to bi when j > i− 1.

In light of the above analysis, the complete expression for bi in terms of the coeffi-
cients on the Lyndon Lie basis polynomials is

bi =
i∑

j=0

(−1)i−jaj(C
i−j
j+1 + Ci−j−1

j ).

Corollary 2.28. The coefficient b0 is given by

b0 =
n− 1

2
(f |[xn−1y]) =

n− 1
2

A.

27



Proof. We use the convention that Cb
a = 0 whenever a < b so that by lemma 2.26, we

may write

n−2∑

i=0

bi =
n−2∑

i=0

n−2∑

j=0

aj(−1)i−j(Ci−j
j+1 + Ci−j−1

j )

=
n−2∑

j=0

aj

(n−2∑

i=0

(−1)i−jCi−j
j+1 +

n−2∑

i=0

(−1)i−jCi−j−1
j bigr)

= −a0,

where the last equality is gotten from the identity,
∑j

k=0(−1)kCk
j = 0, which leaves a

coefficient 0 on all terms except a0.
For n odd, we have the n−1

2 stuffle relations, bi−1 + bn−i−1 = −A. By summing over
all such relations, we have

∑n−2
i=0 bi = −n−1

2 A. To finish, note that b0 = a0 by lemma
2.26. So we have,

b0 = a0 =
n− 1

2
A.

For n even, we have the n
2 stuffle relations, bi−1 + bn−i−1 = −A. The last of the

stuffle relations gives 2bn/2−1 = −A, bn/2−1 = −1
2A. By summing over all of the stuffle

relations we obtain,
∑n−2

i=0 bi = −n
2 A− bn/2−1 = −n−1

2 A. So we also have that

b0 = a0 =
n− 1

2
A.

2.4 Statement of main theorem and generating polynomials

The purpose of this section is to shed some light, and give some evidence toward the
conjecture that grt ' ds. In subsequent sections, we use combinatorial methods based
on Lyndon-Lie theory from [Re] to prove a result parallel to work by Ihara on grt [Ih2]:

Theorem 2.29. The dimensions of the ith depth-graded parts of grt for i = 0, 1 are

dim(F 1
ngrt/F 2

ngrt) =

{
1 n odd
0 n even

dim(F 2
ngrt/F 3

ngrt) =

{
0 n odd
bn−2

6 c n even.

(2.4.1)

First, we establish some key properties about the structure of the double shuffle Lie
algebra.

We have a depth filtration of ds, as a vector subspace of L[x, y],

ds = F 1ds ⊇ F 2ds ⊇ F 3ds ⊇ . . . ,

where each depth-filtered part is defined as

F ids = {f(x, y) ∈ ds | (f |t) = 0, ∀ terms t of depth < i}
= ⊕∞n=1F

i
nds ⊂ ⊕∞n=1F

i
nL[x, y].

(2.4.2)

28



In each weight n piece F i
nL[x, y] is finite dimensional so that F i

nds is finite dimen-
sional.

We are interested in the depth grading given by F i
nds/F i+1

n ds = gri
n(ds), which is of

course also finite dimensional.

Theorem 2.30. The dimensions of the depth-graded parts for depths 1 and 2 of ds are:

(i) dim(F 1
nds/F 2

nds) =

{
1 n ≥ 3, odd
0 n = 1 or n even,

in other words, there exists at least one element fn ∈ dsn for all odd n ≥ 3 such that (fn|xn−1y) =
1.

Furthermore,

(ii) dim(F 2
nds/F 3

nds) =

{
0 n odd
bn−2

6 c n even,

and this space is generated by the images of {fi, fj} with i + j = n, i, j ≥ 3 are odd, and where
the fi are the unique depth 1 elements from case (i).

The proof of theorem 2.30 is done in the sections 2.5 and 2.6. Before proceeding to
the proof, we give some preliminary combinatorial lemmas necessary in the proof.

Lemma 2.31. Let P be the rational function in the ring of power series on three commutative
variables, Q[[X, Y, T ]], given by

P =
1 + Y T 2

(1− (XT + Y T 2))(1− (X + Y ))
. (2.4.3)

The coefficients of the monomials, Xn−iY iT j , for the n, i, j listed below, in the series expan-
sion of P are given by

(P |Xn−iY iT j) =





Ci
n i + 1 ≤ j ≤ n or j = 0

Ci
n − 1 j = n + 1, i even

Ci
n + 1 j = n + 1, i odd

Ci
n + 1 j = i, i > 0 even

Ci
n − 1 j = i, i odd

0 i = n, j odd and j ≤ n

2 i = n, j even and 0 < j ≤ n.

(2.4.4)

Proof. Let R denote the ring Q〈〈x, y〉〉[[T ]] of power series in which x and y do not com-
mute with each other, but T commutes with both x and y. We define the power series
in R:

F (x, y, T ) :=
1

1− (xT + yT 2)
=
∞∑

r=0

(xT + yT 2)r,

G(x, y) :=
1

1− (x + y)
=
∞∑

s=0

(x + y)s.

Set H = FG. For any J ∈ R, let Jab be its image in the commutative power series
ring, Q[[X, Y, T ]] by the map which sends x to X and y to Y . In particular, the power
series expansion of P is equal to (H + yT 2H)ab.
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Case 1, i=0: For 0 ≤ j ≤ n, we have (P |XnT j) = Ci
n = 1 because (F ab|XjT j) = 1

and (Gab|Xn−j) = 1. For j = n + 1, XnTn+1 has coefficient 0 = Ci
n − 1 in P because the

factor of T must come from F ab, and in this expansion, since the number of T in a term
in F ab is equal to the sum of the powers of X and twice the powers of Y .

Case 2, j=0: The coefficients, Xn−iY i, come uniquely from Gab, and by the binomial
expansion, this coefficient is Ci

n.
Case 3, i < n, i ≤ j ≤ n + 1:
We say that a monomial in R is of “type (n − i, i)” if it is of degree n − i in x and

degree i in y. Let

ε =





−1 j = i, i odd or j = n + 1, i even
+1 j = i, i even or j = n + 1, i odd
0 i + 1 ≤ j ≤ n.

(2.4.5)

We say that a monomial in R is “divisible at j” if it can be written V ·WT j where if α
is the degree in y in V and β the degree in x in V , then j = 2α + β. We say in this case
that V is of weight j in T . A monomial, V ·WT j , is divisible at j if and only if V T j is a
monomial appearing in F .

The coefficient of every monomial in H is 1, hence the coefficient (P |Xn−iY iT j) is
equal to the number of monomials of type (n − i, i) in H which are divisible at j plus
the number of monomials of type (n− i, i− 1) in H which are divisible at j− 2. We will
partition the entire contribution to (P |Xn−iY iT j) of monomials from H + yT 2H into
the three following sets:

#{type (n− i, i), beginning with x and divisible at j}+
#{type (n− i, i), beginning with y and divisible at j}+
#{type (n− i, i− 1) and divisible at j − 2}.

But multiplying the elements of the third set on the left by yT 2 yields a bijection
between the second and third sets so that

(P |Xn−iY iT j) = #{xV divisible at j}+ 2#{yV divisible at j}.

Note that the total number of monomials of type (n − i, i), with 0 < i < n and i ≤ j ≤
n + 1 is just Ci

n, so we have,

Ci
n = #{xV divisible at j}+ #{yV divisible at j}+ #{V not divisible at j}.

Thus to show that (P |Xn−iY iT j) = Ci
n + ε, we only need to show that the cardinali-

ties of the two following sets of words of type (n− i, i) with 0 < i < n and i ≤ j ≤ n+1
satisfy:

#{yV divisible at j} = #{V not divisible at j}+ ε. (2.4.6)

Base case, n = 2, (i, j) = (1, 1), (1, 2), (1, 3): The words can be counted by hand. In
the first case, there are no words starting with y, divisible at 1, and one word, yx, not
divisible at 1. In the second case, #{y|x} = 1 = #{xy}. And in the third case, there is
one word, yx, starting with y and divisible at 3 and no words which are not divisible at
3.

Induction Case: Now we assume the induction hypothesis that #{yV |W, type(n −
i, i− 1), divisible at j − 1}+ ε = #{V |yW, type(n− i, i− 1), divisible at j − 2} (where
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the ε is on left hand side since the parity of the number y is different in this induction
hypothesis).

We now partition the left hand set of (2.4.6) into the two subsets of monomials of
the form:

{yV divisible at j} = {yV |xW} t {yV |yW}, (2.4.7)

Furthermore, the set of words that is not divisible at j is equal to the set of words
divisible at j − 1 of type (n− i, i) of the form:

{V not divisible at j} = {V |yW, divisible at j − 1}
= {V x|yW} t {V y|yW}. (2.4.8)

The first set of (2.4.7) is in bijection with the first set of (2.4.8) by permutation of the
terms:

{yV |xW, divisible at j} ↔ {V x|yW, divisible at j − 1}.
Furthermore, we have the following equalities relating the second sets of (2.4.7) and

(2.4.8):

#{yV |yW} = #{V |yW, type (n− i, i− 1), divisible at j − 2} (removal of leading y)
= #{yV |W, type (n− i, i− 1), divisible at j − 1}+ ε (induction)
= #{V y|yW}+ ε (by permutation of the terms and removal of y).

This proves the lemma for i < n, i ≤ j ≤ n + 1.
Case 4, i = n, 0 < j ≤ n: If j odd, there is no way to cut a word, yα|yβT j in such

a way that 2α = j. So, (P |Y iT j) = 0. Likewise, if j is even, all words are divisible,
therefore P has a coefficient of 1 coming from Hab and a coefficient of 1 coming from
(yT 2H)ab.

Remark. I would like to thank the reporter D. Zagier, for suggesting an alternative proof of this
lemma, which is shorter and provides all of the coefficients of P .

Corollary 2.32. The coefficient of Xn−iY iT j in the rational function,

Q(X, Y, T ) =
(1 + Y T 2)(1 + X)

(1−XT − Y T 2)(1−X − Y )
(2.4.9)

is equal to 



Ci
n + Ci

n−1 i + 1 ≤ j ≤ n− 1
Ci

n + Ci
n−1 − 1 j = n, i even, i < n

Ci
n + Ci

n−1 + 1 j = n, i odd, i < n

2 i = n, j even and ≤ n

0 i = n, j odd and ≤ n

(2.4.10)

Proof. The rational function, Q(X, Y, T ) = P (X,Y, T ) + XP (X, Y, T ) where P is the
same as in lemma 2.31. The coefficient, (Q|Xn−iY iT j) is equal to (P |Xn−iY iT i+1) +
(P |Xn−i−1Y iT i+1).

Definition 2.33. Let Λ be the Pascal triangle obtained by the recurrence relation, Λ0
0 = 1,

Λ0
1 = 2, Λ1

1 = 1, Λk
n = 0 for i < 0 or k < 0, and Λk

n = Λk−1
n−1 + Λk

n−1.
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We note here that Λ is the sum of two Pascal triangles with binomial coefficients
interposed on top of one another, one with its tip on the first column of the second row
of the other. We have then that Λk

n = Ck
n + Ck

n−1, 0 ≤ k ≤ n. In this expression, Λk
n is

kth column of the nth row of Λ:

1
2 1

2 3 1
2 5 4 1

2 7 9 5 1.

Now we associate commutative monomials to terms of Λ in two different ways. Let
(ΛD)k

n = Λk
nXkY n−kT k+2(n−k) and (ΛA)k

n = T k
nXn−kY k:

1

2Y T 2 1XT

((RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

((RRRRRRRRRRRRRRRRRRRRRRRRRRR

ΛD = 2Y 2T 4 3XY T 3 1X2T 2

2Y 3T 6 5XY 2T 5 4X2Y T 4 1X3T 3

D3

2Y 4T 8 7XY 3T 7 9X2Y 2T 6 5X3Y T 5 1X4T 4

D4

The descending arrows, Di represent the vectors of monomials with T i formed from
the corresponding descending diagonal of ΛA.

1

2X 1Y A3

A4

ΛD = 2X2 3XY 1Y 2

2X3 5X2Y 4XY 2 1Y 3

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

2X4 7X3Y 9X2Y 2 5XY 3 1Y 4

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

The ascending arrows represent vectors, Ai, such that the power on X plus twice the
power on Y equals the constant i.

We define the two rational functions, Q1 and Q2 such that Q = Q1Q2:

Q1 =
1 + Y T 2

1− (XT + Y T 2)
=

∑

i=0

(XT + Y T 2)i + Y T 2
∑

i=0

(XT + Y T 2)i (2.4.11)

Q2 =
1 + X

1− (X + Y )
=

∑

i=0

(X + Y )i + X
∑

i=0

(X + Y )i. (2.4.12)

The expansion of Q1 gives us (Q1|Xn−iY iTn+i) = Cn−i
n + Cn−i

n−1 = Λn−i
n , and so Q1

is the infinite sum of all of the terms of ΛD. Likewise, Q2 is the infinite sum of all terms
in ΛA.
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The arrows in the triangles ΛD and ΛA represent descending and ascending vectors,
Dj and Ak, such that their scalar product is a monomial in Q1Q2, by adding the extra
condition that we must add some zeroes at the beginning of the vectors, Dj , according
to the following rule.

Definition 2.34. Let Dj,z be the vector of z zeroes concatenated by the descending diagonal
vector Dj in ΛD as in the above diagram. A closed formula for Dj,z is given by the formula:

Dj,z = T j
( z︷ ︸︸ ︷
0, 0, · · · , 0,Λj mod 2

b j+1
2
c Y b

j
2
cXj mod 2, · · · , Λj−4

j−2Y
2Xj−4,Λj−2

j−1Y Xj−2, Λj
jX

j
)

= T j
(
0z ·

(
Λ

j−2b j
2
c+2l

b j+1
2
c+l

Y b
j
2
c−lXj−2b j

2
c+2l

)b j
2
c

l=0

)
,

(2.4.13)

where T j is distributed to all of the terms in the vector.

Definition 2.35. We define the vectors, Ak associated to ΛA similarly:

Ak =
(
Λ0

kX
k, Λ1

k−1X
k−2Y, · · · , Λb

k
2
c

k−b k
2
cX

k−2b k
2
cY b

k
2
c)

=
(
Λm

k−mY mXk−2m
)b k

2
c

m=0

(2.4.14)

Definition 2.36. The scalar product, Ak ·Dj,z , is defined as

b k
2
c∑

m=z

Λm
k−mY mXk−2m · Λj−2b j

2
c+2(m−z)

b j+1
2
c+(m−z)

Y b
j
2
c−(m−z)Xj−2b j

2
c+2(m−z)T j =

( b k
2
c∑

m=z

Λm
k−m · Λ

j−2b j
2
c+2(m−z)

b j+1
2
c+(m−z)

)
Xk+j−2b j

2
c−2zY b

j
2
c+zT j . (2.4.15)

Lemma 2.37. The term an−i,i,jX
n−iY iT j (i+1 ≤ j ≤ n) in Q(X,Y, T ) is equal to the scalar

product An+i−j ·Dj,i−b j
2
c, where an−i,i,j is given by corollary 2.32.

Proof. By the expression (2.4.15), we know that An+i−j · Dj,i−b j
2
c is a monomial of the

right form. Now, An+i−j · Dj,i−b j
2
c is exactly the term, an−i,iX

n−iY iT j in the product
Q1Q2. But Q = Q1Q2, by (2.4.9) and this proves the lemma.

2.5 grt ' ds in depth 1

The goal of this section is to prove that F 1
nds is non-empty for odd n and that F 1

nds = 0
for even n. The proof of this part, for odd n, relies on sophisticated machinery due to
Racinet, Furusho and their inspirations which include, among others, Drinfel’d, Ihara,
Le and Murakami. The style of this proof is very different from the combinatorial na-
ture of the rest of this chapter. One reason for this is that this result follows almost
immediately from theirs, therefore a long combinatorial construction was unnecessary.
We prove the existence, without explicit construction, of depth 1 elements of ds which
are conjectured to be the generators of ds as a Lie algebra, and are therefore important
objects in furthering the study of multizeta values.
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Proof of theorem 2.30 (i). Let f ∈ ds ⊂ L[x, y] and we write f in a Lyndon-Lie basis as in
expression (2.3.1). Since F 1

nds ⊂ L[x, y] and since L[x, y] has only one depth 1 element in
each weight n, namely [xn−1y], any two elements in F 1

nds are equivalent modulo F 2
nds.

Therefore, we may assume that dim F 1
nds/F 2

nds = 0 or 1. Without loss of generality, we
may assume that (f |[xn−1y]) = 0 or 1.

Case 1, n is even: The stuffle relation, (n− 1) ∗ (1) = (n− 1, 1) + (1, n− 1) + (n), gives

0 = (f |xn−2y2) + (f |yxn−2y) + (f |xn−1y).

From lemma 2.22, (f |yxn−2y) = 0. We have then that

(f |xn−2y2) = −(f |xn−1y).

Let’s assume that (f |xn−1y) 6= 0. But by 2.28,

(f |xn−2y2) =
n− 1

2
(f |xn−1y),

which is a contradiction since n 6= −1. Therefore, (f |xn−1y) = 0, and so F 1
nds/F 2

nds = 0.
Case 2, n is odd:
In order to treat this case, we introduce Drinfel’d’s associator.

Definition 2.38. The Drinfel’d associator, ΦKZ , is defined as

ΦKZ(x, y) =
∑

(−1)d(w)ζsh(w)w ∈ C〈〈x, y〉〉, (2.5.1)

where the sum is a power series over all of the monomials, w, in x and y. The coefficients,
ζsh(w), are real numbers, called regularized zeta values, which have the following properties:

1. If w is a convergent word, then ζsh(w) = ζ(w),

2. For all non-convergent words, w, the ζsh(w) are linear combinations of convergent mul-
tizeta values that satisfy the property that ζsh(w1)ζsh(w2) = ζsh(w1xw2).

An explicit expression for ζsh(w) was calculated by Furusho [Fu] and is based on work of Le
and Murakami [LM]. We set Φx to be ΦKZ(x,−y).

The group, DM , or “double mélange”, which was defined by Racinet and is related
to ds, plays a key role in this proof. The group, DM ⊂ C〈〈x, y〉〉, is graded by weight
and its weight n graded piece is denoted DMn. The group law on DM is denoted by
~. For an explicit description of generators and relations on DM , see [Ra].

Definition 2.39. Let DMλ be set of power series, f ∈ DM , such that (f |xy) = λ.

The series, Φx(x, y) and Φx(−x,−y), are both elements of DMζ(2). Racinet proved
that for all F ∈ DM0, the weight n part of the power series, (lnF )n, satisfies the double
shuffle relations given in 2.13.

Theorem 2.40. [Ra] The set, DM0, is a group that acts transitively on DMζ(2).

As a consequence, there exists an element, F ∈ DM0 such that

Φx(x, y) ~ F = Φx(−x,−y). (2.5.2)

This F provides us with a depth 1 double shuffle element according to the following
construction.
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To see what happens in the Lie algebra, (lnDM0), we take ln of both sides of the
equation to obtain,

lnΦx(x, y) ?
C−H

ln F = lnΦx(−x,−y), (2.5.3)

where ?
C−H

is the multiplication law by the Campbell-Baker-Hausdorff formula. The goal

is to show that (lnF |xn−1y) cannot be 0 for odd n, in order to give a non-zero element
in F 1

nds over Q. To do this, we write the expansion of lnΦx and lnF as a power series
in a Lyndon-Lie basis of LC[x, y]. To lighten the notation, we will write lnF = f .

It is known that for any element in F ∈ DM0 and for any i, (F |xi) = (F |yi) = 0 and
that for any i, (Φx|xi) = (Φx|yi) = 0 [Ra] [Dr]. Let Φx(x, y) = 1 + Φ0(x, y). By writing

lnΦx = ln(1 + Φ0) = Φ0 − 1
2
Φ2

0 + · · ·

we see that the contribution to the monomials, xn−1y, in the Lie algebra comes uniquely
from the first term, Φ0. And we have by a formula of Furusho [Fu],

lnΦx(x, y) = ζ(2)[x, y] + ζ(3)[x, [x, y]] + ζ(4)[x, [x, [x, y]]] + · · ·
ln Φx(−x,−y) = ζ(2)[x, y]− ζ(3)[x, [x, y]] + ζ(4)[x, [x, [x, y]]] + · · ·

By the formula of Campbell-Baker-Hausdorff, (2.5.3) becomes

(ζ(2)[x, y] + ζ(3)[x, [x, y]] + ζ(4)[x, [x, [x, y]]] + · · · ) + f +
1
2
{lnΦx, f}+ · · · =

ζ(2)[x, y]− ζ(3)[x, [x, y]] + ζ(4)[x, [x, [x, y]]] + · · · . (2.5.4)

We have the following important properties: (f |x) = (f |y) = 0 = (lnΦx|x) =
(lnΦx|y). Hence, both lnΦx and f are in [LC[x, y],LC[x, y]]. Because of this, the terms of
bracketings of f and lnΦx do not contribute to the coefficient of [xn−1y] since [xn−1y] /∈
[[LC[x, y],LC[x, y]], [LC[x, y],LC[x, y]]].

By studying both sides of equation (2.5.4), we see that for even n, (f |xn−1y) = 0 and
for odd n, (f |xn−1y) = −2ζ(n). Let fn be the homogeneous degree n graded part of f .
In order to find a non-zero element in ds, we write

fn =
∑

ajL
j
n, ai ∈ C

where {Lj
n} is a Lyndon basis of L[x, y]. Let V be the Q-vector space generated by the

complex numbers, 〈ai〉, so we may choose the basis for V overQ, {ζ1 = ζ(n), ζ2, . . . , ζr}.
We then write,

fn =
r∑

i=1

pi(x, y)ζi

where the pi(x, y) are homogeneous polynomials of degree n with coefficients in Q.
Since fn satisfies double shuffle, for any couple of words, u, v, we have

0 =
∑

w∈ sh/st(u,v)

(fn|w)

=
∑

w∈ sh/st(u,v)

(
r∑

i=1

pi(x, y)ζi|w)

=
r∑

i=1

( ∑

w∈ sh/st(u,v)

(pi(x, y)|w)
)
ζi.
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The ζi are linearly independent by hypothesis, so we see that each pi(x, y) satisfies dou-
ble shuffle. Therefore we have, (p1|xn−1y) = −2 and p1 furnishes us with a nonzero
element in F 1

nds.

Remark. It is tempting to take the log of the element, Φx, in order to obtain a non-zero
element of F 1

nds, because the coefficients of Φx are multizeta values, and multizeta
values satisfy the double shuffle relations. There is still some work to do in this con-
struction, but I will not outline it, since the proof fails at a certain point which I will
explain here. In fact, lnΦx ∈

⊕̂
n≥2(nzn ⊗Q dsn), where nz is the new zeta space from

definition 1.14. This proof then fails in the last step of the correct proof above, because
nz is modded out by Q, and since we do not know whether ζ(n) is irrational, it might
be identically 0 in nz, and therefore we may not take it as a basis element in nz over Q.

2.6 grt ' ds in depth 2

In this section, we study F 2
nds/F 3

nds by looking at the coefficients of polynomials in
ds considered as a subspace of L[x, y]. In section 2.4, we showed some combinorial
properties of depth 2 words. Now, we use these properties for, first of all, showing that
for n odd, all of the coefficients on depth 2 monomials only depend on the coefficient
of [xn−1y] and deduce from that that for n odd, F 2

nds/F 3
nds = 0. Analogously, we prove

that the dimension of F 2
nds/F 3

nds for n even is bn−2
6 c, thereby making an important

connection between the Lie algebras, grt and ds.

Proof of 2.30 (ii). Recall that we may write f ∈ ds as in equation (2.3.1),

f = A[xn−1y] +
bn−3

2
c∑

s=0

as[xryxsy] + . . .

= Axn−1y + b0x
n−2y2 + b1x

n−3yxy + · · ·+ bn−2yxn−2y + . . .

Case 1, n is odd: We have the following n−1
2 relations on the coefficients given by stuffle:

bi−1 + bn−1−i + A = 0, 1 ≤ i ≤ n− 1
2

. (2.6.1)

By substituting the relation from lemma 2.26 between the bi and the ai into (2.6.1), we
have the following system of relations on the coefficients, ai, for each i, 0 ≤ i ≤ n−3

2 :

i∑

j=0

(−1)i−jaj

(
Ci−j

j+1 + Ci−j−1
j

)
+

n−2−i∑

k=0

(−1)n−2−i−kak

(
Cn−2−i−k

k+1 + Cn−3−i−k
k

)
= −A. (2.6.2)

The system given in (2.6.2) may be solved by finding a solution to the matrix equa-
tion, M · (a0, a1, . . . , an−3

2
) = −A(1, 1, . . . , 1), where the matrix M is given by

M(i, j) = (−1)i−j
(
Ci−j

j + Ci−j−1
j−1

)
+

(−1)n−i−j
(
Cn−i−j

j + Cn−1−i−j
j−1

)
, 1 ≤ i, j ≤ n− 1

2
, (2.6.3)
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where a row i of M corresponds to the equation bi−1 + bn−1−i = −A, so the jth entry in
that row is equal to the coefficient of aj−1 in bi−1 + bn−i−1.

Remark. Let M ′ be the block matrix in the upper left-hand corner of M for i, j ≤ n−1
3 .

We have in this block that M ′(i, j) = (−1)i−jΛ2j−i
j and the ith row of M ′ is equal, up to

sign, to the vector of coefficients of Di, such that the right-most term in the vector is on
the diagonal, and where the sign is given by (−1)i−j . For i ≤ n−1

3 , j > n−1
3 we have

M(i, j) = (−1)n−i−jΛ2j−n+i
j . The other terms of M are the sum of these two types. This

structure permits us to associate certain rows of M to vectors Di,z and certain columns
to rows of Λ.

Example 2.41. For n = 11, the matrix, M , is given by



1 0 0 0 −2
−2 1 0 0 9

0 −3 1 2 −16
0 2 −4 −6 14
0 0 3 4 −5




.

Let N be the n−1
2 square invertible matrix such that the top of the

(
n−1

2 −k
)
th column

is equal to (
2k︷ ︸︸ ︷

0, ..., 0) · An−3
2
−3k, 0 ≤ k ≤ bn−5

6 c up to sign, and let the sign be given by

sgn(N(i, j)) = (−1)i+j . Let the other coefficients of N be those of the identity matrix.
Now we show that MN is a lower triangular matrix. From the corollary 2.37, above

the diagonal, in the kth row and the ith column, i < n−1
2 − k, we have

MN(i,
n− 1

2
− k) = (−1)i+n−1

2
−kDi,b i−1

2
c−2k ·An−3

2
−3k + M(i,

n− 1
2
− k)

= (−1)i+n−1
2
−k

(
Q|X n+1

2
+k−iY i−1−2kT i

)

+ (−1)
n+1

2
−i+k

(
Ci−1−2k

n−1
2
−k

+ Ci−1−2k
n−3

2
−k

)

= (−1)
n−1

2
−k+i

(
Ci−1−2k

n−1
2
−k

+ Ci−1−2k
n−3

2
−k

)

+ (−1)
n+1

2
−i+k

(
Ci−1−2k

n−1
2
−k

+ Ci−1−2k
n−3

2
−k

)

= 0.

Therefore, we have that MN is lower triangular. We now need to show that the terms
on the diagonal of MN are non-zero to show that M is invertible.

If k > bn−5
6 c, then the

(
n−1

2 − k
)
th diagonal term of MN is that of M , since N is the

identity in this upper, right block. These terms are -1 or 1.
If 0 ≤ k ≤ bn−5

6 c and n−3
2 −3k is odd, the term on the diagonal, MN(n−1

2 −k, n−1
2 −k),

for n−1
2 − k ≥ bn

3 c, is equal to

MN(
n− 1

2
− k,

n− 1
2
− k) = Dn−1

2
−k,bn−3−2k

4
c−2k ·An−3

2
−2k + M(

n− 1
2
− k,

n− 1
2
− k)

= (Q|X2k+1Y
n−3

2
−3kT

n−1
2
−k) + C0

n−1
2
−k
− C2k+1

n−1
2
−k
− C2k

n−3
2
−k

= C
n−3

2
−3k

n−1
2
−k

+ C
n−3

2
−3k

n−3
2
−k

+ 1 + 1− C
n−3

2
−3k

n−1
2
−k
− C

n−3
2
−3k

n−3
2
−k

= 2.
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When n−3
2 − 3k is even, the length of the

(
n−1

2 − k
)
th column of N (02kAn−3

2
−3k) is

n+1+2k
4 . The

(
n−1

2 − k
)
th row of M is equal to Dn−1

2
−k, n−3−2k

4
−Dn−1

2
+k+1, n+1+2k

4
. So the

only term of Dn−1
2

+k+1, n+1+2k
4

that plays a role in the scalar product is the first and it

is equal to -2 when n−3
2 − 3k is even. Furthermore, this term contributes to the scalar

product by multiplication of the last term of A· which is 1 in this case.
So we have,

MN(
n− 1

2
− k,

n− 1
2
− k)

= Dn−1
2
−k,bn−3−2k

4
c−2k ·An−3

2
−2k + M(

n− 1
2
− k,

n− 1
2
− k)− 2

= (Q|X2k+1Y
n−3

2
−3kT

n−1
2
−k) + C0

n−1
2
−k
− C2k+1

n−1
2
−k
− C2k

n−3
2
−k
− 2

= C
n−3

2
−3k

n−1
2
−k

+ C
n−3

2
−3k

n−3
2
−k
− 1 + 1− C

n−3
2
−3k

n−1
2
−k
− C

n−3
2
−3k

n−3
2
−k
− 2.

= −2.

So for n odd, we have that the matrix M is invertible, so that there exists a unique
solution to the matrix equation, namely M−1 · (−A,−A, . . . ,−A) = (a0, a1, . . . an−3

2
),

and the Lyndon-Lie basis elements are Q linear combinations of A, showing that

F 2
nds/F 3

nds = 0.

Case 2, n is even: We have the following n−2
2 relations on the coefficients given by

stuffle:
bi−1 + bn−1−i + A = 0, 1 ≤ i ≤ n− 2

2
, (2.6.4)

where we have now from part (i) that A = 0. By substituting the relation from lemma
2.26 between the bi and the ai into (2.6.4), we have the following system of relations on
the coefficients, ai, for each i, 0 ≤ i ≤ n−4

2 :

i∑

j=0

(−1)i−jaj

(
Ci−j

j+1 + Ci−j−1
j

)
+

n−2−i∑

k=0

(−1)n−2−i−kak

(
Cn−2−i−k

k+1 + Cn−3−i−k
k

)
= 0. (2.6.5)

The system given in (2.6.5) may be solved by finding solutions to the matrix equa-
tion, M · (a0, a1, . . . , an−4

2
) = (0, 0, ..., 0), in other words by finding the kernel of M . We

will only find its dimension, the nullity of M .
In the even case, the matrix M is given by the same formula as in the odd case,

M(i, j) = (−1)i−j
(
Ci−j

j + Ci−j−1
j−1

)
+

(−1)n−i−j
(
Cn−i−j

j + Cn−1−i−j
j−1

)
, 1 ≤ i, j ≤ n− 2

2
. (2.6.6)

In the same way as the odd case, we construct a matrix N such that MN is lower

triangular. The top of the
(

n−2
2 −k

)
th column of N is (

2k+1︷ ︸︸ ︷
0, ..., 0)·An−6

2
−3k for 0 ≤ k ≤ bn−8

6 c
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and equal to the identity matrix elsewhere up to sign, where sgn(N(i, j)) = (−1)i+j−1,
except on the diagonal, where the sign is positive. A similar calculation shows that MN
is a lower triangular matrix.

To find the rank of this matrix, we calculate the terms on the diagonal. If n−6
2 − 3k

is odd, for n−2
2 − k > bn3 c, MN(n−2

2 − k, n−2
2 − k) is equal to

−Dn−2
2
−k,bn−4−2k

4
c−2k−1·An−6

2
−3k + M(

n− 2
2
− k,

n− 2
2
− k)

= −(Q|X2+2kY
n−6

2
−3kT

n−2
2
−k) + 1 + C

n−6
2
−3k

n−2
2
−k

+ C
n−6

2
−3k

n−4
2
−k

= −C
n−6

2
−3k

n−2
2
−k
− C

n−6
2
−3k

n−4
2
−k
− 1 + 1 + C

n−6
2
−3k

n−2
2
−k

+ C
n−6

2
−3k

n−4
2
−k

= 0.

Finally, for identical reasons as in the odd n case, if n−6
2 −3k is even MN(n−2

2 −k, n−2
2 −k)

is equal to

−Dn−2
2
−k,bn−4−2k

4
c−2k−1·An−6

2
−3k − 2 + M(

n− 2
2
− k,

n− 2
2
− k)

= −(Q|X2+2kY
n−6

2
−3kT

n−2
2
−k)− 2 + 1 + C

n−6
2
−3k

n−2
2
−k

+ C
n−6

2
−3k

n−4
2
−k

= −C
n−6

2
−3k

n−2
2
−k
− C

n−6
2
−3k

n−4
2
−k

+ 1− 2 + 1 + C
n−6

2
−3k

n−2
2
−k

+ C
n−6

2
−3k

n−4
2
−k

= 0.

Now, because 0 ≤ k ≤ n−8
6 the nullity of M is equal to bn−2

6 c. In other words,
F 2

nds/F 3
nds ≤ bn−2

6 c, since there may be relations between the generators that come
from other systems of equations besides the equations 2.6.1. In fact there are not any
other relations, and we use the combinatorial properties of the Poisson bracket to justify
this.

We will now verify that bn−2
6 c is a lower bound for the dimension. From theorem

2.30 (i), let S = {{f2i+1, fn−2i−1}, 1 ≤ i ≤ bn−4
4 c}, be the set of Poisson brackets of

weight n generators of F 2i+1
1 ds. Let D be the vector space generated by S.

We consider the image of D, D in Fn
2 ds/Fn

3 ds. By work of Zagier, Ihara and Takao
(unpublished, see [Sc]), we know that the nullity of this system of equations is equal to a
number which turns out to be exactly the dimension of the space of period polynomials,
which is itself equal to the dimension of the space of cusp forms of weight n on SL2(Z)
(denoted Sn(SL2(Z))) [Sc]. Therefore, we have that

dim(D) = |S| − dim(Sn(SL2(Z)))

= bn− 4
4
c −

{
bn/12c − 1 n ≡ 2 mod 12
bn/12c otherwise

= bn− 2
6
c.

Since D ⊂ Fn
2 ds/Fn

3 ds,

bn− 2
6
c ≤ dim(Fn

2 ds/Fn
3 ds) ≤ bn− 2

6
c,

and hence the theorem is proved.
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Recall the definition 1.14 of the new zeta value algebra, nz, which is the quotient of
the algebra of multizeta values by products. We showed in chapter 1 that ds∨ surjects
onto nz. The proof of theorem 1.21 yields the following corollary which gives the ex-
pression of depth 2 multizeta value as a rational multiple of a depth 1 multizeta modulo
products, thus recovering a (weaker version of a) result well-known to Euler.

Corollary 2.42. Let ζ(i, j) be a new zeta value of depth 2, and odd weight n (i + j = n is odd).
We have the following expression for ζ(i, j) in terms of ζ(i + j):

ζ(xi−1yxj−1y) =
(−1)j−1Cj

n − 1
2

ζ(xn−1y)

ζ(i, j) =
(−1)j−1Cj

n − 1
2

ζ(n).

Proof. For n odd, since the matrix M is invertible, there exists a unique solution to the
equation, M · (a0, ..., an−3

2
) = −A(1, . . . , 1). We propose ai = A (−1)i

2 Ci+1
n−i−1 and show

that this is the solution. In this case we have,

M · (a0, ..., an−3
2

) =

(
A

i∑

j=b i+1
2
c

(−1)n−j

2
Cj

n−j(−1)i−j

(
Ci−j

j + Ci−j−1
j−1

)
+ (2.6.7)

A

n−1
2∑

k=n−1
2
−b i−1

2
c

(−1)n−k

2
Ck

n−k(−1)n−i−k

(
Cn−i−k

k + Cn−i−k−1
k−1

))n−1
2

i=1

.

The power series, P , from lemma 2.31, has the expression,

P = Y T 2
(∑

j=0

(XT + Y T 2)j
)(∑

k=0

(X + Y )k
)

+
(∑

j=0

(XT + Y T 2)j
)(∑

k=0

(X + Y )k
)
.

Hence, the first term in equation (2.6.7) gives exactly A (−1)i−1

2 times the coefficient of

Xn−iY iT i in the expansion of P . By lemma 2.31, this term is equal to A−Ci
n−1
2 for even

i and equal to ACi
n−1
2 for odd i. Furthermore, this term is exactly the expression of bi−1,

by the constructions (2.6.2) and (2.6.3) of M . The second term gives A (−1)i

2 times the

coefficient of XiY n−iTn−i in the expansion of P and is equal to A−Ci
n−1
2 for odd i and

equal to ACi
n−1
2 for even i. This second term is equal to bn−i−1. In both even and odd i

cases, this sum is equal to−A, so the expression ai = A (−1)i

2 Ci+1
n−i−1 is indeed the unique

solution to the system.
Since the first term in equation (2.6.7) is equal to bi−1, we have

bi−1 = (f |xn−i−1yxi−1y) = A
(−1)i−1Ci

n − 1
2

=
(−1)i−1Ci

n − 1
2

(f |xn−1y).

By the definition 1.26 of the dual space, ds∨ = ñfz, this equation is zx(xn−i−1yxi−1y) =
(−1)i−1Ci

n−1
2 zx(xn−1y). But ñfz surjects onto nz, by the map zx(w) 7→ ζ(w), so this rela-

tion is true also in the new zeta space and we have the desired expression.
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Remark. Note that the preceding corollary does not work when i+ j = n is even; a double zeta
is not equal to a rational multiple of a single zeta in even weight in ñfz ' ds∨. This follows from
the fact that F 1

nds/F 2
nds = 0 for even n (theorem 2.30). In [IKZ], the authors prove in complete

generality that F d
nds/F d+1

n ds = 0 whenever d and n have opposite parities.
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Chapter 3

The algebra of cell zeta values

This chapter is an intact article entitled The algebra of cell-zeta values, [BCS], which is joint
work with Francis Brown and Leila Schneps awaiting publication. In [BCS], we give an
explicit basis of polygons for the de Rham cohomology space, Hn−3(Mδ

0,n), and use this
to present a new structure for the Q algebra of multizeta values, Z , by considering the
algebra generated by all periods on M0,n. Here, a period on M0,n is considered to be the
integral of a rational function over a simplex in M0,n(R), the real part of moduli space.
In chapter 2, we presented Kontsevich’s construction of multizeta values as integrals of
rational functions over simplices, δ := 0 < t1 < · · · < tn−3 < 1, which are simplices in
M0,n(R), thus showing that multizetas are indeed periods.

This work was inspired by the recent theorem of F. Brown [Br] in which he proves
that every period on M0,n is a Q-linear combination of multizeta values. Here, I give a
brief and intuitive introduction to the development of the special periods that we take
as generators of the period algebra, which are called cell-zeta values. The definitions,
structure of the paper and background are given in the introduction of [BCS].

In [Br], product maps on moduli space are introduced,

f : M0,n →M0,s ×M0,r, r + s = n + 3,

which are simply the products of two forgetful maps (see [BCS] section 3.2.3). He de-
fines two particular product maps, the simplicial product map, which gives the shuffle
relation on multizetas, and the cubical product map, which gives the stuffle relation
on multizetas. At the end of section of 7.5 [Br], Brown comments that these two prod-
uct maps are extreme cases of a range of intermediate product formulae. This paper
is a study of the intermediate product formulae. These new product formulae yield
relations on cell-zeta values, analogous to, but more general than, the double shuffle
relations on multizeta values, and have the advantage that they reflect the geometry
and symmetry of the M0,n.

Recall the definition of M0,n(R). The connected components of M0,n(R) are cells
and are denoted by the real ordering of the marked points inside them. To any such
cell in M0,n(R) we may associate a differential form, called a cell form, which is the form
that has a simple pole along each irreducible boundary divisor which contains a face of
the boundary of the associahedron δ.

The cells generate the top dimensional homology group and, by duality between the
homology and the cohomology, the cell forms generate the top dimensional de Rham
cohomology, Hn−3(M0,n). Based on a theorem of Arnol’d [Ar], we found that a basis
for Hn−3(M0,n) is given by 01-forms (proposition 3.47).
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Our paper answers the following three questions that arose naturally from studying
multizetas as periods.

Question. What subspace of the cohomology is the space of differential forms that give periods,
i.e. that converge on a cell?

It is not useful to look at the whole cohomology group since the integral of any
01-form converges over some cell, but diverges on others, while certain linear combi-
nations of divergent cell forms will actually converge on a cell. The periods on M0,n

are by definition convergent integrals of the forms, ω ∈ Hn−3(M0,n), over some cell γ.
By a variable change, any period can be written as an integral over the standard cell, δ.
Therefore, to study of periods on M0,n it is sufficient to study the forms in the cohomol-
ogy that are convergent on M0,n and on its set of boundary components δ which bound
the standard cell. In chapter 4, we prove that this subspace of convergent differential
forms is isomorphic to Hn−3(Mδ

0,n), the cohomology of the partially compactified mod-
uli space. In section 3.4.3 of chapter 3, we give an explicit basis for Hn−3(Mδ

0,n) thereby
answering this first question.

Question. How does one use periods to study multizeta values?

With the explicit basis given above, we now have a way to formally represent peri-
ods as linear combinations pairs of polygons of the form (γ, ω), where γ is a cell and ω
a cell form. The product of periods which are integrals of a cell form over a cell is given
by the pullback formula of a product map, (proposition 3.21)

∫

δ1

ω1

∫

δ2

ω2 =
∫

δ1xδ2

ω1xω2.

Therefore any period can be represented as a linear combination of pairs of polygons
and these polygons form an algebra for the shuffle product,

(δ1, ω1)(δ2, ω2) = (δ1xδ2, ω1xω2).

We denote the algebra of periods or cell numbers by C. By [Br], all the periods on M0,n

areQ linear combinations of multizeta values. Therefore, we have answered the second
question, C ' Z , on the level of real numbers. However, on the combinatorial level of
formal multizetas and formal periods, there is still much work to be done.

We know how to explicitly express all of the multizetas as polygon sums by Kontse-
vich’s identity, but we cannot as of yet explicitly express all of the periods as multizetas
(even though by [Br], we know such an expression exists).

This leads us to the question of finding a set of generating relations overQ for C. We
conjecture that the answer to this question is that the algebra of cell numbers has only
the relations coming from variable changes on periods, algebraic identities on differen-
tial forms and product maps. As usual, because conjectures of this analytic type seem
very difficult to prove, as they would imply important results, such as the transcen-
dence conjecture on multizeta values, we concentrate our study on the formal situation
in which the only relations are decreed to be the known relations. This is the same
principle as in chapter 1 where we defined the formal zeta value algebra which satisfies
only shuffle, stuffle and regularization relations, and leads to the final main question
addressed in [BCS].

Question. How can we use the three known sets of relations on periods to study relations
between multiple zeta values?
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In order to study this, in section 3.2.4, we define the formal cell number algebra, FC,
which satisfies exactly the three sets of period relations outlined above. Since FC sur-
jects onto C, any identities that we can find on formal cell numbers are also true for
multizeta values, hence the structure of FC provides a new method for studying multi-
zeta values. If the formal cell numbers provide an adequate structure for multiple zeta
values, then we should have the following commutative diagram:

FC oo ? //

²²²²

FZ

²²²²
C oo ∼ // Z

In the section 3.4 of [BCS], we discuss the implications of this hypothesis, and give
examples of how and why it should be true.
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THE ALGEBRA OF CELL-ZETA VALUES

FRANCIS BROWN, SARAH CARR, LEILA SCHNEPS

Abstract. Traditionally, multiple zeta values are viewed as convergent nested se-
ries which can also be expressed as iterated integrals on the projective line minus
three points P1\{0, 1,∞}. They are known to satisfy two sets of quadratic rela-
tions known as the double shuffle relations, which are conjectured to generate all
algebraic relations between them. They were subsequently interpreted as the peri-
ods of the (motivic) fundamental group of P1\{0, 1,∞}. Recently, Goncharov and
Manin introduced a new version of motivic multiple zeta values, in which they are
interpreted as periods of mixed Tate motives attached to the moduli spaces M0,n

of genus zero curves with n marked points.
In this paper, we introduce cell-forms on M0,`+3, which are differential `-forms

diverging along the boundary of exactly one connected component (cell) of the real
moduli space M0,`+3(R). We give a basis for the space of all forms convergent on a
given cell X in terms of cell-forms and define cell-zeta values to be the real numbers
obtained by integrating these forms over X . The cell-zeta values satisfy algebraic
relations generalizing the double shuffle relations, coming from simple geometric
operations on the moduli spaces, and the algebra of cell-zeta values is in fact equal
to the algebra of multiple zeta values. We conjecture that this new combinatorial
system of generators and relations gives a complete description of the algebra of
multiple zeta values.

3.1 Introduction

Let n1, . . . , nr ∈ N and suppose that nr ≥ 2. The multiple zeta values (MZV’s)

ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1
kn1

1 . . . knr
r
∈ R , (3.1.1)

were first defined by Euler, and have recently acquired much importance in their rela-
tion to mixed Tate motives. It is conjectured that the periods of all mixed Tate motives
over Z are expressible in terms of such numbers. By a remark due to Kontsevich, every
multiple zeta value can be written as an iterated integral:

∫

0≤t1≤...≤t`≤1

dt1 . . . dt`
(ε1 − t1) . . . (ε` − t`)

, (3.1.2)

where εi ∈ {0, 1}, and ε1 = 1 and ε` = 0 to ensure convergence, and ` = n1 + · · · + nr.
The iterated integral (3.1.2) is a period of the motivic fundamental group of M0,4 =
P1\{0, 1,∞}, whose de Rham cohomology H1(M0,4) is spanned by the forms dt

t and
dt

1−t [De1, DG]. One proves that the multiple zeta values satisfy two sets of quadratic
relations [Ch1, Ho], known as the regularised double shuffle relations, and it has been
conjectured that these generate all algebraic relations between MZV’s [Ca2, Wa]. This
is the traditional point of view on multiple zeta values.

On the other hand, by a general construction due to Beilinson, one can view the
iterated integral (3.1.2) as a period integral in the ordinary sense, but this time of the
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`-dimensional affine scheme

M0,n ' (M0,4)`\{diagonals} = {(t1, . . . , t`) : ti 6= 0, 1 , ti 6= tj} ,

where n = ` + 3. This is the moduli space of curves of genus 0 with n ordered marked
points. Indeed, the open domain of integration X = {0 < t1 < . . . < t` < 1} is one
of the connected components of the set of real points M0,n(R), and the integrand of
(3.1.2) is a regular algebraic form in H`(M0,n) which converges on X . Thus, the study
of multiple zeta values leads naturally to the study of all periods on M0,n, which was
initiated by Goncharov and Manin [Br, GM]. These periods can be written

∫

X
ω , where ω ∈ H`(M0,n) has no poles along X . (3.1.3)

The general philosophy of motives and their periods [KZ] indicates that one should
study relations between all such integrals. This leads to the following problems:

1. Construct a good basis of all regular (logarithmic) `-forms ω in H`(M0,n) whose
integral over the cell X converges.

2. Find all relations between the integrals
∫
X ω which arise from natural geometric

considerations on the moduli spaces M0,n.

In this paper, we give an explicit solution to (1), and a family of relations which conjec-
turally answers (2). Firstly, we give a complete description of the convergent part of the
cohomology H`(M0,n) in terms of the combinatorics of polygons. The corresponding
integrals are much more general than (3.1.2), and the numbers one obtains are called
cell-zeta values. For (2), it turns out that there are essentially two types of relations. The
first arises from the dihedral subgroup of automorphisms of M0,n which stabilise X ,
and the other is a quadratic relation, which we call the modular shuffle product, arising
from a product of forgetful maps between moduli spaces. We conjecture that these two
simple families of relations generate the complete set of relations for the periods of the
moduli spaces M0,n.

3.1.1 Main results

We give a brief presentation of the main objects introduced in this paper, and the results
obtained using them.

There is a stable compactification M0,n of M0,n, such that M0,n \M0,n is a smooth
normal crossing divisor whose irreducible components correspond bijectively to parti-
tions of the set of n marked points into two subsets of cardinal ≥ 2 [DM, Kn]. The real
part M0,n(R) of M0,n is not connected, but has n!/2n connected components (open cells)
corresponding to the different cyclic orders of the real points 0, t1, . . . , t`, 1,∞ ∈ P1(R),
up to dihedral permutation [Dev1]. Thus, we can identify cells with n-sided polygons
with edges labeled by {0, t1, . . . , t`, 1,∞}. In the compactification M0,n(R), the closed
cells have the structure of associahedra or Stasheff polytopes; the boundary of a given
cell is a union of irreducible divisors corresponding to partitions given by the chords
in the associated polygon. The standard cell is the cell corresponding to the standard
order we denote δ, given by 0 < t1 < . . . < t` < 1. We write Mδ

0,n for the union of
M0,n with the boundary divisors of the standard cell. This is a smooth affine scheme
introduced in [Br].
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Cell-forms.

A cell-form is a holomorphic differential `-form on M0,n with logarithmic singularities
along the boundary components of the stable compactification, having the property that
its singular locus forms the boundary of a single cell in the real moduli space M0,n(R).

Polygons.

Since a cell of M0,n(R) is given by an ordering of {0, t1, . . . , t`, 1,∞} up to dihedral
permutation, we can identify it as above with an unoriented n-sided polygon with edges
indexed by the set {0, t1, . . . , t`, 1,∞}. Up to sign, the cell-form diverging on a given cell
is obtained by taking the successive differences of the edges of the polygon (ignoring
∞) as factors in the denominator:

←→ ± dt1dt2dt3
(t1 − 1)(t3 − t1)(−t2)

1

t
1

0

t
2

t
3

8

LetP denote theQ-vector space of oriented n-gons indexed by {0, 1, t1, . . . , t`, 1,∞}. The
orientation fixes the sign of the corresponding cell form, and this gives a map

ρ : P → H`(M0,n). (3.1.4)

In section 3.4.1 we prove that this map is surjective and identify its kernel.

01-cell-forms.

These are the cell-forms corresponding to polygons in which 0 appears adjacent to 1. In
theorem 3.16, we show that they form a basis of the cohomology H`(M0,n). In particu-
lar, the subspace of P of polygons having 0 adjacent to 1 is isomorphic to H`(M0,n) via
(3.1.4).

Insertion forms.

These very particular linear combinations of 01 cell-forms are constructed in section
3.3.3. We prove in theorem 3.45 and proposition 3.54 that they form a basis for the
cohomology group H`(Mδ

0,n) of forms with no poles along the boundary of the standard
cell of M0,n(R). These are precisely the forms whose integral (3.1.3) converges.

Cell-zeta values.

These are real numbers obtained by integrating insertion forms over the standard cell
as in (3.1.3). They are a generalization of multiple zeta values to a larger set of periods
on M0,n, such as ∫

0<t1<t2<t3<1

dt1dt2dt3
(1− t1)(t3 − t1)t2

.

Note that unlike the multiple zeta values, this is not an iterated integral as in (3.1.2).
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Product maps.

Via the pullback, the maps f : M0,n → M0,r ×M0,s obtained by forgetting disjoint
complementary subsets of the marked points t1, . . . , t` yield expressions for products of
cell-zeta values on M0,r and M0,s as linear combinations of cell-zeta values on M0,n:

∫

X1

ω1

∫

X2

ω2 =
∫

f−1(X1×X2)
f∗(ω1 ∧ ω2). (3.1.5)

There is a simple combinatorial algorithm to compute the multiplication law in terms
of cell-forms. This generalizes the double shuffle multiplication laws for multiple zeta
values, and is explained in section 3.2.3.

Dihedral relations

These relations between cell-zeta values are given by
∫

X
ω =

∫

X
σ∗(ω) , (3.1.6)

where σ is an automorphism of M0,n which maps the standard cell to itself: σ(X) = X ,
and thus σ is a dihedral permutation of the marked points {0, 1, t1, . . . , t`,∞}.

The cell-zeta value algebra C.

The multiplication laws associated to product maps (3.1.5) make the space of all cell-
zeta values on M0,n, n ≥ 5, into aQ-algebra which we denote by C. By Brown’s theorem
[Br], which states essentially that all periods on M0,n are linear combinations of multiple
zeta values, together with Kontsevitch’s expression (3.1.2) of multiple zeta values, we
see that C is equal to the algebra of multiple zeta values Z .

The formal cell-zeta value algebra FC.

By lifting the previous constructions to the level of polygons along the map (3.1.4), we
define in section 3.2.4 an algebra of formal cell-zeta values which we denote byFC. It is
generated by the insertion words, which are formal sums of polygons corresponding to
the insertion forms introduced above, subject to combinatorial versions of the product
map relations (3.1.5) and the dihedral relations (3.1.6). This is analogous to the formal
MZV algebra given by the double shuffle and Hoffmann relations.

The paper is organised as follows. In §2, we introduce cell forms, polygons and
define the modular shuffle and dihedral relations. In §3, we define insertion words of
polygons which are constructed out of Lyndon words, which may be of independent
combinatorial interest. These are used to construct the insertion basis of convergent
forms in §4. In §3.4.4, we give complete computations of this basis and the correspond-
ing modular shuffle relations for M0,n, where n = 5, 6, 7.

In the remainder of this introduction we sketch the connections between the formal
cell-zeta value algebra and standard results and conjectures in the theory of multiple
zeta values and mixed Tate motives.
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3.1.2 Relation to mixed Tate motives and conjectures

Let MT (Z) denote the category of mixed Tate motives which are unramified over Z
[DG]. Let δ denote the standard cyclic structure on S = {1, . . . , n}, and let Bδ denote
the divisor which bounds the standard cell Xδ. Let Aδ denote the set of all remaining
divisors on M0,S\M0,S , so that Mδ

0,S = M0,S ∪ Bδ ([Br]), and Aδ = M0,S\Mδ
0,S . We

write:
Mδ = H`(M0,n\Aδ, Bδ\(Bδ ∩Aδ)) . (3.1.7)

By a result due to Goncharov and Manin [GM], Mδ defines an element inMT (Z), and
therefore is equipped with an increasing weight filtration W . They show that grW

` Mδ

is isomorphic to the de Rham cohomology H`(Mδ
0,n), and that grW

0 Mδ is isomorphic to
the dual of the relative Betti homology H`(M0,n, Bδ).

Let M be any element in MT (Z). A framing for M consists of an integer n and
non-zero maps

v0 ∈ Hom(Q(0), grW
0 M) and fn ∈ Hom(grW

−2nM,Q(n)) . (3.1.8)

Two framed motives (M,v0, fn) and (M ′, v′0, f
′
n) are said to be equivalent if there is a

morphism φ : M → M ′ such that φ ◦ v0 = v′0 and fn ◦ φ = f ′n. This generates an equiv-
alence relation whose equivalence classes are denoted [M,v0, fn]. LetM(Z) denote the
set of equivalence classes of framed mixed Tate motives which are unramified over Z,
as defined in [Go1]. It is a commutative, graded Hopf algebra.

To every convergent cohomology class ω ∈ H`(Mδ
0,n), we associate the following

framed mixed Tate motive:
m(ω) =

[
Mδ, [Xδ], ω

]
, (3.1.9)

where [Xδ] denotes the relative homology class of the standard cell. This defines a map
FC →M(Z). The maximal period of m(ω) is exactly the cell-zeta value

∫

Xδ

ω .

Proposition 3.1. The dihedral symmetry relation and modular shuffle relations are motivic. In
other words,

m(σ∗(ω)) = m(ω) ,

m(ω1 · ω2) = m(ω1)⊗m(ω2) ,

for every dihedral symmetry σ of Xδ, and for every modular shuffle product ω1 ·ω2 of convergent
forms ω1, ω2 on M0,r, M0,s respectively.

The motivic nature of our constructions will be clear from the definitions. We there-
fore obtain a well-defined map m from the algebra of formal cell-zeta numbers FC to
M(Z).

Conjecture 3.2. The map m : FC −→M(Z) is an isomorphism.

Since the structure ofM(Z) is known, we are led to more precise conjectures on the
structure of the formal cell-zeta algebra. To motivate this, let L = Q[e3, e5, . . . , ] denote
the free Lie algebra generated by one element e2n+1 in each odd degree. Set

F = Q[e2]⊕ L.

49



The underlying graded vector space is generated by, in increasing weight:

e2 ; e3 ; e5 ; e7 ; [e3, e5] ; e9 ; [e3, e7] ; [e3, [e5, e3]] , e11 ; [e3, e9] , [e5, e7] ; . . . .

Let UF denote the universal enveloping algebra of the Lie algebra F. Then it is known
thatM(Z) is dual to UF. From the explicit description of F given above, one can deduce
that the graded dimensions dk = dimQ grW

k M(Z) satisfy Zagier’s recurrence relation

dk = dk−2 + dk−3 , (3.1.10)

with the initial conditions d0 = 1, d1 = 0, d2 = 1.

Conjecture 3.3. The dimension of theQ-vector space of formal cell-zeta values on M0,n, modulo
all linear relations obtained from the dihedral and modular shuffle relations, is equal to d`, where
n = ` + 3. Equivalently, the dual Lie algebra to the co-Lie algebra obtained by quotienting FC
by products is isomorphic to F.

We verified this conjecture for M0,n for n ≤ 9 by direct calculation (see §3.4.4). When
n = 9, the dimension of the convergent cohomology H6(Mδ

0,9) is 1089, and after taking
into account all linear relations coming from dihedral and modular shuffle products,
this reduces to a vector space of dimension d6 = 2.

To compare this picture with the classical picture of multiple zeta values, let FZ de-
note the formal multi-zeta algebra. This is the quotient of the free Q-algebra generated
by formal symbols (3.1.2) modulo the regularised double shuffle relations. It has been
conjectured that FZ is isomorphic toM(Z), which leads to the second main conjecture.

Conjecture 3.4. The formal algebras FC and FZ are isomorphic.

Put more prosaically, this states that the formal ring of periods of M0,n modulo
dihedral and modular shuffle relations, is isomorphic to the formal ring of periods of
the motivic fundamental group of M0,4 modulo the regularised double shuffle relations.

By (3.1.2), we have a natural linear map FZ → FC. However, at present we cannot
show that it is an algebra homomorphism. Indeed, although it is easy to deduce the
regularised shuffle relation for the image of FZ in FC from the dihedral and modular
shuffle relations, we are unable to deduce the regularised stuffle relations.

Remark 3.5. The motivic nature of the regularised double shuffle relations proved to be some-
what difficult to establish [Go1, Go2, T]. It is interesting that the motivic nature of the dihedral
and modular shuffle relations we define here is immediate.

3.2 The cell-zeta value algebra associated to moduli spaces of
curves

Let M0,n, n ≥ 4 denote the moduli space of genus zero curves (Riemann spheres) with
n ordered marked points (z1, . . . , zn). This space is described by the set of n-tuples
of distinct points (z1, . . . , zn) modulo the equivalence relation given by the action of
PSL2. Because this action is triply transitive, there is a unique representative of each
equivalence class such that z1 = 0, zn−1 = 1, zn = ∞. We define simplicial coordinates
t1, . . . , t` on M0,n by setting

t1 = z2 , t2 = z3 , . . . , t` = zn−2, (3.2.1)
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where ` = n− 3 is the dimension of M0,n(C). This gives the familiar identification

M0,n
∼= {(t1, . . . , t`) ∈ (P1 − {0, 1,∞})` | ti 6= tj for all i 6= j} . (3.2.2)

3.2.1 Cell forms

Definition 3.6. Let S = {1, . . . , n}. A cyclic structure γ on S is a cyclic ordering of the
elements of S or equivalently, an identification of the elements of S with the edges of an oriented
n-gon modulo rotations. A dihedral structure δ on S is an identification with the edges of an
unoriented n-gon modulo dihedral symmetries.

We can write a cyclic structure as an ordered n-tuple γ = (γ(1), γ(2), ..., γ(n)) con-
sidered up to cyclic rotations.

Definition 3.7. Let (z1, . . . , zn) = (0, t1, . . . , t`, 1,∞) be a representative of a point on M0,n as
above. Let γ be a cyclic structure on S, and let σ be the unique ordering of z1, . . . , zn compatible
with γ such that σ(n) = n. The cell-form corresponding to γ is defined to be the differential
`-form

ωγ = [zσ(1), zσ(2), . . . , zσ(n)] =
dt1 · · · dt`

(zσ(2) − zσ(1))(zσ(3) − zσ(2)) · · · (zσ(n−1) − zσ(n−2))
.

(3.2.3)
In other words, by writing the terms of ωγ = [zσ(1), ..., zσ(n)] clockwise around a polygon, the
denominator of a cell form is just the product of successive differences (zσ(i) − zσ(i−1)) with the
two factors containing∞ simply left out.

Remark 3.8. To every dihedral structure there correspond two opposite cyclic structures. If
these are given by γ and τ , then we have

ωγ = (−1)nωτ . (3.2.4)

Example 3.9. Let n = 7, and S = {1, . . . , 7}. Consider the cyclic structure γ on S given by
the order 1635724. The unique ordering σ of S compatible with γ and having σ(n) = n, is the
ordering 2416357, which can be depicted by writing the elements zσ(1), . . . , zσ(7), or 0, 1, t2, t4,
∞, t1, t3 clockwise around a circle:

γ = (zσ(1), . . . , zσ(7)) = (t1, t3, 0, 1, t2, t4,∞).

The corresponding cell-form on M0,7 is

ωγ = [t1, t3, 0, 1, t2, t4,∞] =
dt1dt2dt3dt4

(t3 − t1)(−t3)(t2 − 1)(t4 − t2)
.

The symmetric group S(S) acts on M0,n by permutation of the marked points. It
therefore acts both on the set of cyclic structures γ, and also on the ring of differential
forms on M0,n. These actions coincide for cell forms.

Lemma 3.10. For every cyclic structure γ on S, we have the formula:

σ∗(ωγ) = ωσ(γ) for all σ ∈ S(S) . (3.2.5)
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Proof. Consider the regular n-form on (P1)S∗ defined by the formula:

ω̃γ =
dz1 ∧ . . . ∧ dzn

(zγ(1) − zγ(2)) . . . (zγ(n) − zγ(1))
. (3.2.6)

It is clearly satisfies σ∗(ω̃γ) = ω̃σ(γ) for all σ ∈ Dγ . A simple calculation shows that ω̃γ

is invariant under the action of PSL2 by Möbius transformations. Let π : (P1)S∗ →M0,S

denote the projection map with fibres isomorphic to PSL2. There is a unique (up to
scalar multiple inQ×) non-zero invariant regular 3-form v on PSL2(C) which is defined
over Q. Then, by renormalising v if necessary, we have ωγ ∧ v = ω̃γ . In fact, ωγ is the
unique `-form on M0,S satisfying this equation. We deduce that σ∗(ωγ) = ωσ(γ) for all
σ ∈ Dγ .

Each dihedral structure η on S corresponds to a unique connected component of
the real locus M0,n(R), namely the component associated to the set of Riemann spheres
with real marked points (z1, . . . , zn) whose real ordering is given by η. We denote this
component by XS,η or Xn,η. It is an algebraic manifold with corners with the com-
binatorial structure of a Stasheff polytope, so we often refer to it as a cell. A cyclic
structure compatible with η corresponds to a choice of orientation of this cell. Let δ
once and for all denote the cyclic order corresponding to the ordering (1, 2, . . . , n). We
call XS,δ = Xn,δ the standard cell. It is the set of points on M0,n given by real marked
points (0, t1, . . . , t`, 1,∞) in that cyclic order; in simplicial coordinates it is given by the
standard real simplex 0 < t1 < . . . < t` < 1.

The distinguishing feature of cell-forms, from which they derive their name, is given
in the following proposition.

Proposition 3.11. Let η be a dihedral structure on S, and let γ be either of the two cyclic
substructures of η. Then the cell form ωγ has simple poles along the boundary of the cell XS,η

and no poles anywhere else.

Proof. Let D ⊂ M0,S\M0,S be a divisor given by a stable partition S = S1
∐

S2 (i.e.,
such that |Si| 6= 1 for i = 1, 2). In [Br], the following notation was introduced:

ID(i, j) = I({i, j} ⊂ S1) + I({i, j} ⊂ S2) ,

where I(A ⊂ B) is the indicator function which takes the value 1 if A is contained in B
and 0 otherwise. Therefore ID(i, j) ∈ {0, 1}. Then we have

2 ordD(ωγ) = (`− 1)− ID(γ(1), γ(2))− ID(γ(2), γ(3))− . . .− ID(γ(n), γ(1)) . (3.2.7)

To prove this, observe that ωγ = fγω0, where

fγ =
∏

i∈Z/nZ

(zi − zi+2)
(zγ(i) − zγ(i+1))

,

and
ω0 =

dt1 . . . dt`
t2(t3 − t1)(t4 − t2) . . . (t` − t`−2)(1− t`)

is the canonical volume form with no zeros or poles along the standard cell defined in
[Br]. The proof of (3.2.7) follows on applying proposition 7.5 from [Br].
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Now, (3.2.7) shows that ωγ has the worst singularities when the most possible
ID(γ(i), γ(i + 1)) are equal to 1. This happens when only two of them are equal to zero,
namely

S1 = {γ(1), γ(2), . . . , γ(k)} and S2 = {γ(k + 1), γ(k + 2), . . . , γ(n)}, 2 ≤ k ≤ n− 2.

In this case, (3.2.7) yields 2ordDωγ = (` − 1) − (n − 2) = −2, so ordDωγ = −1. In
all other cases we must therefore have ordDωγ ≥ 0. Thus the singular locus of ωγ is
precisely given by the set of divisors bounding the cell XS,η.

3.2.2 01 cell-forms and a basis of the cohomology of M0,n

We first derive some useful identities between certain rational functions. Let S =
{1, . . . , n} and let v1, . . . , vn denote coordinates on An. For every cyclic structure γ on
S, let 〈γ〉 = 〈vγ(1), . . . , vγ(n)〉 denote the rational function

1
(vγ(2) − vγ(1)) · · · (vγ(n) − vγ(n−1))(vγ(1) − vγ(n))

∈ Z
[
vi,

1
vi − vj

]
. (3.2.8)

We refer to such a function as a cell-function. We can extend its definition linearly to
Q-linear combinations of cyclic structures. Let X = {x1, . . . , xn} denote any alphabet
on n symbols. Recall that the shuffle product [Re] is defined on linear combinations of
words on X by the inductive formula

wxe = exw and awxa′w′ = a(wxa′w′) + a′(awxw′) , (3.2.9)

where w,w′ are any words in X and e denotes the empty or trivial word.

Definition 3.12. Let A,B ⊂ S and let A ∩ B = C = {c1, . . . , cr}. Let γA be a cyclic order
on A such that the elements c1, . . . , cr appear in their standard cyclic order, and let γB be a
cyclic order on B with the same property. We write γA = (c1, A1,2, c2, A2,3, . . . , cr, Ar,1) and
γB = (c1, B1,2, c2, B2,3, . . . , cr, Br,1), where the Ai,i+1, (resp. the Bi,i+1) together with C,
form a partition of A (resp. B). We denote the shuffle product of the two cell-functions 〈γA〉 and
〈γB〉 with respect to c1, . . . , cr by

〈γA〉xc1,...,cr〈γB〉
which is defined to be the sum of cell functions

〈c1, A1,2xB1,2, c2, A2,3xB2,3, . . . , cr, Ar,1xBr,1〉 . (3.2.10)

The shuffle product of two cell-functions is related to their actual product by the
following lemma.

Proposition 3.13. Let A,B ⊂ S, such that |A ∩ B| ≥ 2. Let γA, γB be cyclic structures on
A,B such that the cyclic structures on A ∩B induced by γA and γB coincide. If γA∩B denotes
the induced cyclic structure on A ∩B, we have:

〈γA〉 · 〈γB〉
〈γA∩B〉 = 〈γA〉xγA∩B 〈γB〉 . (3.2.11)
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Proof. Write the cell functions 〈γA〉 and 〈γB〉 as 〈ai1 , P1, ai2 , P2, . . . , air , Pr〉 and
〈ai1 , R1, ai2 , R2, . . . , air , Rr〉, where Pi, Ri for 1 ≤ i ≤ r are tuples of elements in S.
Let ∆ab = (b− a). We will first prove the result for r = 2 and P2, R2 = ∅:

∆ab∆ba〈a, p1, . . . , pk1 , b〉〈a, r1, . . . , rk2 , b〉 = 〈a, (p1, . . . , pk1)x(r1, . . . , rk2), b〉. (3.2.12)

We prove this case by induction on k1 + k2.
Trivially, for k1 + k2 = 0 we have

∆ab∆ba〈a, b〉〈a, b〉 = 〈a, b〉.

Now assume the induction hypothesis that

∆ab∆ba〈a, p2, . . . , pk1 , b〉〈a, r1, . . . , rk2 , b〉 = 〈a,
(
(p2, . . . , pk1)x(r1, . . . , rk2)

)
, b〉 and

∆ab∆ba〈a, p1, . . . , pk1 , b〉〈a, r2, . . . , rk2 , b〉 = 〈a,
(
(p1, . . . , pk1)x(r2, . . . , rk2)

)
, b〉.

To lighten the notation, let p2, . . . , pk1 = p and r2, . . . , rk2 = r. By the shuffle recurrence
formula (3.2.9) and the induction hypothesis:

〈a,
(
(p1, p)x(r1, r)

)
, b〉 = 〈a, p1,

(
(p)x(r1, r)

)
, b〉+ 〈a, r1,

(
(p1, p)x(r)

)
, b〉

=
∆p1b〈p1,

(
(p)x(r1, r)

)
, b〉

∆ab∆ap1

+
∆r1b〈r1,

(
(p1, p)xr)

)
, b〉

∆ab∆ar1

=
∆p1b∆bp1∆p1b〈p1, p, b〉〈p1, r1, r, b〉

∆ab∆ap1

+
∆r1b∆br1∆r1b〈r1, p1, p, b〉〈r1, r, b〉

∆ab∆ar1

Using identities such as 〈p1, p, b〉 = ∆ap1∆ba

∆bp1
〈a, p1, p, b〉, this is

[∆2
p1b∆bp1

∆ab∆ap1

∆ap1∆ba

∆bp1

∆ba∆ar1

∆bp1∆p1r1

+
∆2

r1b∆br1

∆ab∆ar1

∆ap1∆ba

∆r1p1∆br1

∆ba∆ar1

∆br1

]
〈a, p1, p, b〉〈a, r1, r, b〉

= ∆ab

[∆ar1∆bp1

∆p1r1

+
∆br1∆ap1

∆r1p1

]
〈a, p1, p, b〉〈a, r1, r, b〉 = ∆ab∆ba〈a, p1, p, b〉〈a, r1, r, b〉.

The last equality is the Plücker relation ∆ar1∆bp1 −∆br1∆ap1 = ∆p1r1∆ba. This proves
the identity (3.2.12). Now, using the identity

〈ai1P1ai2P2 . . . airPr〉 = ∆ai2
ai1
〈ai1P1ai2〉 ×∆ai3

ai2
〈ai2P2ai3〉 × · · · ×∆air ai1

〈airPrai1〉,

the general case follows from (3.2.12).

Corollary 3.14. Let X and Y be disjoint sequences of indeterminates and let e be an indeter-
minate not appearing in either X or Y . We have the following identity on cell functions:

〈(X, e)xe(Y, e)〉 = 〈XxY, e〉 = 0. (3.2.13)
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Proof. Write X = x1, x2, ..., xn and Y = y1, y2, ..., ym. By the recurrence formula for the
shuffle product and proposition 3.13, we have

〈XxY, e〉 = 〈x1, (x2, ..., xnxy1, ..., ym), e〉+ 〈y1, (x1, ..., xnxy2, ..., ym), e〉
= 〈X, e〉〈x1, Y, e〉(e− x1)(x1 − e) + 〈y1, X, e〉〈Y, e〉(y1 − e)(e− y1)

=
(e− x1)(x1 − e)

(x2 − x1) · · · (e− xn)(x1 − e) (y1 − x1)(y2 − y1) · · · (e− ym)(x1 − e)

+
(y1 − e)(e− y1)

(x1 − y1)(x2 − x1) · · · (e− xn)(y1 − e) (y2 − y1) · · · (e− ym)(y1 − e)

=
(−1) + (−1)2

(x2 − x1) · · · (e− xn) (y1 − x1)(y2 − y1) · · · (e− ym)
= 0 .

By specialization, we can formally extend the definition of a cell function to the case
where some of the terms vi are constant, or one of the vi is infinite, by setting

〈v1, . . . , vi−1,∞, vi+1, . . . , vn〉 = lim
x→∞x2〈v1, . . . , vi−1, x, vi+1, . . . , vn〉

=
1

(v2 − v1) . . . (vi−1 − vi−2)(vi+2 − vi+1) . . . (vn − vn−1)(v1 − vn)
.

This is the rational function obtained by omitting all terms containing∞. By taking the
appropriate limit, it is clear that (3.2.11) and (3.2.13) are valid in this case too. In the
case where {v1, . . . , vn} = {0, 1, t1, . . . , t`,∞}we have the formula

[v1, . . . , vn] = 〈v1, . . . , vn〉 dt1dt2 . . . dt` . (3.2.14)

Definition 3.15. A 01 cyclic (or dihedral) structure is a cyclic (or dihedral) structure on S in
which the numbers 1 and n − 1 are consecutive. Since z1 = 0 and zn−1 = 1, a 01 cyclic (or
dihedral) structure is a set of orderings of the set {z1, . . . , zn} = {0, t1, . . . , t`, 1,∞}, in which
the elements 0 and 1 are consecutive. In these terms, each dihedral structure can be written
as an ordering (0, 1, π) where π is some ordering of {t1, . . . , t`,∞}. To each such ordering we
associate a cell-function 〈0, 1, π〉, which is called a 01 cell-function.

Since 01 cell-functions corresponding to different π are clearly different, it follows
that there exist exactly (n − 2)! distinct 01 cell-functions 〈0, 1, π〉. To these correspond
(n− 2)! distinct 01 cell-forms ω(0,1,π) = 〈0, 1, π〉 dt1 . . . dt`.

Theorem 3.16. The set of 01 cell-forms ω(0,1,π), where π denotes any ordering of {t1, . . . , t`,∞},
has cardinal (n− 2)! and forms a basis of H`(M0,n,Q).

Proof. The proof is based on the following well-known result due to Arnol’d [Ar].

Theorem 3.17. A basis of H`(M0,n,Q) is given by the classes of the forms

Ω(ε) :=
dt1 . . . dt`

(t1 − ε1) . . . (t` − ε`)
, εi ∈ Ei , (3.2.15)

where E1 = {0, 1} and Ei = {0, 1, t1, . . . , ti−1} for 2 ≤ i ≤ `.
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It suffices to prove that each element Ω(ε) in (3.2.15) can be written as a linear combi-
nation of 01 cell-forms. We begin by expressing a given rational function 1

(t1−ε1)···(t`−ε`)

as a product of cell-functions and then apply proposition 3.13. To every ti, we associate
its type τ(ti) ∈ {0, 1} (which depends on ε1, . . . , ε`) as follows. If εi = 0 then τ(ti) = 0;
if εi = 1, then τ(ti) = 1, but if εi 6= 0, 1 then εi = tj for some j < i, and the type of ti is
defined to be equal to the type of tj . Since the indices decrease, the type is well-defined.

We associate a cell-function Fi to each factor (ti − εi) in the denominator of Ω(ε) as
follows:

Fi =





〈0, 1, ti,∞〉 if εi = 1
−〈0, 1,∞, ti〉 if εi = 0
〈0, 1, εi, ti,∞〉 if εi 6= 1 and the type τ(ti) = 1
−〈0, 1,∞, ti, εi〉 if εi 6= 0 and the type τ(ti) = 0 .

(3.2.16)

We have

Ω(ε) = ∆
∏̀

i=1

Fi ,

where
∆ =

∏

j|εj 6=0,1

(−1)τ(εj)−1(εj − τ(εj))

is exactly the factor occurring when multiplying cell-functions as in proposition 3.13.
This product can be expressed as a shuffle product, which is a sum of cell-functions.
Furthermore each one corresponds to a cell beginning 0, 1, . . . since this is the case for
all of the Fi. The 01-cell forms thus span H`(M0,n,Q). Since there are exactly (n− 2)! of
them, and since dimH`(M0,n,Q) = (n− 2)!, they must form a basis.

3.2.3 Pairs of polygons and multiplication

Let S = {1, . . . , n}, and let PS denote the Q-vector space generated by the set of cyclic
structures γ on S, modulo the relation γ = (−1)n←−γ , where←−γ denotes the cyclic struc-
ture with the opposite orientation to γ.

Shuffles of polygons

Let T1, T2 denote two subsets of Z = {z1, . . . , zn} satisfying:

T1 ∪ T2 = Z (3.2.17)
|T1 ∩ T2| = 3 . (3.2.18)

Let E = {zi1 , zi2 , zi3} denote the set of three points common to T1 and T2. Given two
cyclic structures γ1, γ2 on T1, T2 respectively, the restriction γ1|E gives a cyclic order on
E. Let ε = 1 if this order is compatible with the standard order on {1, . . . , n}, ε =
−1 otherwise. We define the shuffle γ1xγ2 of γ1 and γ2 relative to the three points of
intersection of T1 and T2 by the formula

ε(γ1xγ2) =





∑

γ
∣∣
T1

=γ1, γ
∣∣
T2

=γ2

γ if γ1

∣∣
E

= γ2

∣∣
E

∑

γ
∣∣
T1

=γ1, γ
∣∣
T2

=←−γ2

(−1)|T2|γ if γ1

∣∣
E

=←−γ2

∣∣
E
.

(3.2.19)
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The formal sum of polygons γ1xγ2 is well-defined and non-zero.
Assume {z1, . . . , zn} = {0, 1,∞, t1, . . . , t`} with E = {0, 1,∞}. Assume also that

γ1 = (0, A1,2, 1, A2,3,∞, A3,1) where T1 is the disjoint union of A1,2, A2,3, A3,1, and 0, 1,∞,
and γ2 = (0, B1,2, 1, B2,3,∞, B3,1), where T2 is the disjoint union of B1,2, B2,3, B3,1, and
0, 1,∞. Then γ1xγ2 is the sum of cyclic structures

γ = (0, C1,2, 1, C2,3,∞, C3,1) ,

where each Ci,j is a shuffle of the ordered disjoint sets Ai,j and Bi,j .

Example 3.18. Let T1 = {0, 1,∞, t1, t3} and T2 = {0, 1,∞, t2, t4}. If γ1 and γ2 denote the
cyclic orders (0, t1, 1, t3,∞) and (0, 1, t2,∞, t4), then we have

γ1xγ2 = (0, t1, 1, t2, t3,∞, t4) + (0, t1, 1, t3, t2,∞, t4) .

We will often write, for example, (0, t1, 1, t2xt3,∞, t4) for the right-hand side.

Multiplying pairs of polygons: the modular shuffle relation

We will now consider pairs of polygons (γ, η) ∈ PS ×PS . We can associate a geometric
meaning to a pair of polygons as follows. The left-hand polygon γ, which we will write
using round parentheses, for example (0, t1, . . . , t`, 1,∞), is associated to the real cell
Xγ of the moduli space M0,n associated to the cyclic structure. The right-hand polygon
η, which we will write using square parentheses, for example [0, t1, . . . , t`, 1,∞], is asso-
ciated to the cell-form ωη associated to the cyclic structure. The pair of polygons will be
associated to the (possibly divergent) integral

∫
Xγ

ωη. In the following section we will
investigate in detail the map from pairs of polygons to integrals.

Definition 3.19. Given sets T1, T2 as above, the modular shuffle relation on the vector space
PS ×PS is defined by

(γ1, η1)x(γ2, η2) = (γ1xγ2, η1xη2), (3.2.20)

for pairs of polygons (γ1, η1)x(γ2, η2), where γi and ηi are cyclic structures on Ti for i = 1, 2.

Example 3.20. The following product of two polygon pairs is given by
(
(0, t1, 1,∞, t4), [0,∞, t1, t4, 1]

)(
(0, t2, 1, t3,∞), [0, t3, t2,∞, 1]

)

= −(
(0, t1xt2, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]

)
.

Let us now give a geometric interpretation of (3.2.20) in terms of integrals of forms
on moduli space. Recall that a product map between moduli spaces was defined in[Br]
as follows. Let T1, T2 denote two subsets of Z = {z1, . . . , zn} satisfying:

T1 ∪ T2 = Z (3.2.21)
|T1 ∩ T2| = 3 . (3.2.22)

Then we can consider the product of forgetful maps:

f = fT1 × fT2 : M0,n −→M0,T1 ×M0,T2 . (3.2.23)
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The map f is a birational embedding because

dimM0,S = |S| − 3 = |T1| − 3 + |T2| − 3 = dimM0,T1 ×M0,T2 .

If f is a product map as above and zi, zj , zk are the three common points of T1 and
T2, use an element α ∈ PSL2 to map zi to 0, zj to 1 and zk to ∞. Let t1, . . . , t` denote
the images of z1, . . . , zn (excluding zi, zj , zk) under α. Given the indices i, j and k, the
product map is then determined by specifying a partition of {t1, . . . , t`} into S1 and S2.
We use the notation Ti = {0, 1,∞} ∪ Si for i = 1, 2.

The multiplication formula (3.2.20) on pairs of polygons translates to a multiplica-
tion formula for integrals of cell-forms.

Proposition 3.21. Let S = {1, . . . , n}, and let T1 and T2 be subsets of S as above, of orders
r + 3 and s + 3 respectively. Let ω1 (resp. ω2) be a cell-form on M0,r (resp. on M0,s), and let γ1

and γ2 denote cyclic orderings on T1 and T2. Then the product rule for integrals is given by
∫

Xγ1

ω1

∫

Xγ2

ω2 =
∫

Xγ1xγ2

ω1xω2, (3.2.24)

where ω1xω2 converges on the cell Xγ for each term γ in γ1xγ2.

Proof. The subsets T1 and T2 correspond to a product map

f : M0,n →M0,r ×M0,s.

The pullback formula gives a multiplication law on the pair of integrals:
∫

Xγ1

ω1

∫

Xγ2

ω2 =
∫

Xγ1×Xγ2

ω1 ∧ ω2 =
∫

f−1(Xγ1×Xγ2 )
f∗(ω1 ∧ ω2). (3.2.25)

The preimage f−1(Xγ1 ×Xγ2) decomposes into a disjoint union of cells of M0,n, which
are precisely the cells given by cyclic orders of γ1xγ2. In other words,

f−1(Xγ1 ×Xγ2) =
∑

γ∈γ1xγ2

Xγ ,

where the sum denotes a disjoint union. Now we can assume without loss of generality
that T1 = {0, 1,∞, t1, . . . , tk}, T2 = {0, 1,∞, tk+1, . . . , t`} and that δ1, δ2 are the cyclic
structures on T1, T2 corresponding to ω1, ω2, respectively, where δ1, δ2 restrict to the
standard cyclic order on 0, 1,∞. Then, in cell function notation,

f∗(ω1 ∧ ω2) = 〈δ1〉〈δ2〉 dt1 . . . dt` =
〈δ1x{0,1,∞}δ2〉
〈0, 1,∞〉 dt1 . . . dt` = ω1xω2 ,

by proposition 3.13. Since ω1 and ω2 converge on the closed cells Xγ1 and Xγ2 respec-
tively, ω1 ∧ ω2 has no poles on the contractible set Xγ1 × Xγ2 , and therefore ω1xω2 =
f∗(ω1∧ω2) has no poles on the closure of f−1(Xγ1×Xγ2). But

∑
γ∈γ1xγ2

Xγ is a cellular
decomposition of f−1(Xγ1 ×Xγ2), so, in particular, ω1xω2 can have no poles along the
closure of each cell Xγ , where γ ∈ γ1xγ2.
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S(n) action on pairs of polygons

The symmetric group S(n) acts on a pair of polygons by permuting their labels in the
obvious way, and this extends to the vector space PS × PS by linearity. If τ : M0,n →
M0,n is an element of S(n), then the corresponding action on integrals is given by the
pullback formula: ∫

Xγ

ωη =
∫

τ(Xγ)
τ∗(ωη) =

∫

Xτ(γ)

ωτ(η) . (3.2.26)

Note that, unlike for formal pairs of polygons, this formula only holds for linear com-
binations of cell-forms which are convergent, even if each individual cell-form is not
convergent over the integration domain.

Suppose that τ belongs to the dihedral group which preserves the dihedral structure
underlying a cyclic structure γ. Let ε = 1 if τ preserves γ, and ε = −1 if τ reverses its
orientation. We have the following dihedral relation between convergent integrals:

∫

Xγ

ωη = (−1)ε

∫

Xγ

τ∗(ωη) = (−1)ε

∫

Xγ

ωτ(η). (3.2.27)

As above, this formula extends to linear combinations of integrals of cell-forms as
long as the linear combination converges over the integration domain.

Example 3.22. The form corresponding to ζ(2, 1) on M0,6 is

dt1dt2dt3
(1− t1)(1− t2)t3

= [0, 1, t1, t2,∞, t3] + [0, 1, t2, t1,∞, t3],

which gives ζ(2, 1) after integrating over the standard cell. By applying the rotation (1,2,3,4,5,6),
a dihedral rotation of the standard cell, to this form, one obtains

[t1,∞, t2, t3, 0, 1] + [t1,∞, t3, t2, 0, 1] = [0, 1, t1,∞, t2, t3] + [0, 1, t1,∞, t3, t2]

=
dt1dt2dt3

(1− t1)t2t3
,

which gives ζ(3) after integrating over the standard cell. Therefore, we have the following
relation on linear combinations of pairs of polygons:

(
(0, t1, t2, t3, 1,∞), [0, 1, t1, t2,∞, t3] + [0, 1, t2, t1,∞, t3]

)

=
(
(0, t1, t2, t3, 1,∞), [0, 1, t1,∞, t2, t3] + [0, 1, t1,∞, t3, t2]

) (3.2.28)

or

ζ(2, 1) =
∫

X3,δ

dt1dt2dt3
t3(1− t2)(1− t1)

=
∫

X3,δ

dt1dt2dt3
t3t2(1− t1)

= ζ(3).

Standard pairs and the product map relations

A standard pair of polygons is a pair (δ, η) where the left-hand polygon is the standard
cyclic structure. Let S = {1, . . . , n}, and T1 ∪ T2 = S with T1 ∩ T2 = {0, 1,∞} be as
above, and let γ1 and γ2 be cyclic orders on T1 and T2. In the present section we show
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how for each such γ1, γ2, we can modify the modular shuffle relation to construct a
multiplication law on standard pairs.

Let δ1 and δ2 denote the standard orders on T1 and T2. Then there is a unique
permutation τi mapping δi to γi such that τi(0) = 0, for i = 1, 2. The multiplication law,
denoted by the symbol ×, and called the product map relation, is defined by

(δ1, ω1)× (δ2, ω2) = (γ1, τ1(ω1))x(γ2, τ2(ω2))
= (γ1xγ2, τ1(ω1)xτ2(ω2))

=
∑

γ∈γ1xγ2

(δ, τ−1
γ (τ1(ω1)xτ2(ω2))),

(3.2.29)

where for each γ ∈ γ1xγ2, τγ is the unique permutation such that τγ(δ) = γ and τγ(0) =
0.

Example 3.23. Let S = {0, 1,∞, t1, t2, t3, t4}, T1 = {0, 1,∞, t1, t4} and T2 = {0, 1,∞, t2, t3}.
Let the cyclic orders on T1 and T2 be given by γ1 = (0, t1, 1,∞, t4) and γ2 = (0, t2, 1, t3,∞).
Applying the product map relation to the pairs of polygons below yields

(
(0, t1, t4, 1,∞),[0, 1, t1,∞, t4]

)× (
(0, t2, t3, 1,∞), [0, 1, t2,∞, t3]

)

=
(
(0, t1, 1,∞, t4), [0,∞, t1, t4, 1]

)
x

(
(0, t2, 1, t3,∞), [0, t3, t2,∞, 1]

)

= −(
(0, t1, t2, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]

)

− (
(0, t2, t1, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]

)

=
(
(0, t1, t2, t3, t4, 1,∞), [0, t3,∞, t1, 1, t2, t4] + [0, t3,∞, t2, 1, t1, t4].

(3.2.30)

In terms of integrals, this corresponds to the relation

ζ(2)2 =
∫

X5,δ

dt1dt4
(1− t1)t4

∫

X5,δ

dt2dt3
(1− t2)t3

=
∫

X7,δ

dt1dt2dt3dt4
t4(t4 − t2)(1− t2)(1− t1)t3

+
dt1dt2dt3dt4

t4(t4 − t1)(1− t1)(1− t2)t3

(3.2.31)

We will show in §3.4.4 that the last two integrals evaluate to 7
10ζ(2)2 and 3

10ζ(2)2 respec-
tively.

3.2.4 The algebra of cell-zeta values

Definition 3.24. Let C denote the Q-vector space generated by the integrals
∫
Xn,δ

ω, where
Xn,δ denotes the standard cell of M0,n for n ≥ 5 and ω is a holomorphic `-form on M0,n with
logarithmic singularities at infinity (thus a linear combination of 01 cell-forms) which converges
on Xn,δ. We call these numbers cell-zeta values. The existence of product map multiplication
laws in proposition 3.21 imply that C is in fact a Q-algebra.

Theorem 3.25. TheQ-algebra C of cell-zeta values is isomorphic to theQ-algebraZ of multizeta
values.

Proof. Multizeta values are real numbers which can all be expressed as integrals
∫
Xn,δ

ω

where ω is an `-form of the form

ω = (−1)d
∏̀

i=1

dt

ti − εi
, (3.2.32)
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where ε1 = 0, εi ∈ {0, 1} for 2 ≤ i ≤ `−1, ε` = 1, and d denotes the number of i such that
εi = 1. Since each such form converges on Xn,δ, the multizeta algebra Z is a subalgebra
of C. The converse is a consequence of the following theorem due to F. Brown [Br].

Theorem 3.26. If ω is a holomorphic `-form on M0,n with logarithmic singularities at infinity
and convergent on Xn,δ, then

∫
Xn,δ

ω is Q-linear combination of multizeta values.

Thus, C is also a subalgebra of Z , proving the equality.

The structure of the multizeta algebra, or rather, of the formal version of it given by
quotienting the algebra of symbols formally representing integrals of the form (3.2.32)
by the main known relations between these forms (shuffle and stuffle), has been much
studied of late. The present article provides a different approach to the study of this
algebra, by turning instead to the study of a formal version of C.

Definition 3.27. Let |S| ≥ 5. The formal algebra of cell-zeta values FC is defined as follows.
LetA be the vector space of formal linear combinations of standard pairs of polygons in PS×PS

∑

i

ai(δ, ωi)

such that the associated `-form
∑

i aiωi converges on the standard cell Xn,δ. Let FC denote the
quotient of A by the following three families of relations.

• Product map relations. These relations were defined in section 3.2.3. For every choice
of subsets T1, T2 of S = {1, . . . , n} such that T1 ∪ T2 = S and |T1 ∩ T2| = 3, and
every choice of cyclic orders γ1, γ2 on T1, T2, formula (3.2.29) gives a multiplication law
expressing the product of any two standard pairs of polygons of sizes |T1| and |T2| as a
linear combination of standard pairs of polygons of size n.

• Dihedral relations. For σ in the dihedral group associated to δ, i.e. σ(δ) = ±δ, there is a
dihedral relation (δ, ω) = (σ(δ), σ(ω)).

• Shuffles with respect to one element. The linear combinations of pairs of polygons

(δ, (A, e)x(B, e))

where A and B are disjoint of length n− 1 are zero, as in (3.2.13).

With the goal of approaching the combinatorial conjectures given in the introduc-
tion, the purpose of the next chapters is to give an explicit combinatorial description of
a set of generators for FC. We do this in two steps. First we define the notion of a linear
combination of polygons convergent with respect to a chord of the standard polygon
δ, and thence, the notion of a linear combination of polygon convergent with respect to
the standard polygon. We exhibit an explicit basis, the basis of Lyndon insertion words
and shuffles for the subspace of such linear combinations. In the subsequent chapter, we
deduce from this a set of generators for the formal cell-zeta value algebra FC and also,
as a corollary, a basis for the cohomology H`(Mδ

0,n), where Mδ
0,n denotes the union of

M0,n with the boundary components containing the boundary of the standard cell.
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3.3 Polygons and convergence

In the present chapter, we define the notions of bad chord of a polygon (a generalization
of the notion of a divisor on the boundary of the standard cell of M0,n along which the
differential form diverges), residue of a polygon along a bad chord, convergence of
linear combinations of polygons along bad chords, and finally, convergence of linear
combinations of polygons with respect to the standard polygon δ. The main theorem
exhibits an explicit basis for the space of linear combinations of polygons convergent
with respect to the standard polygon, consisting of linear combinations called Lyndon
insertion words and shuffles.

3.3.1 Bad chords and polygon convergence

For any finite set R, let PR denote the Q vector space of polygons on R, i.e. cyclic struc-
tures on R, identified with planar polygons with edges indexed by R.

Let V denote the free polynomial shuffle algebra on the alphabet of positive integers,
and let V be the quotient of V by the relations w = 0 if w is a word in which any letter
appears more than once (these relations imply that wxw′ = 0 if w and w′ are not dis-
joint). The Lyndon basis for V is given by Lyndon words and shuffles of Lyndon words.
The elements of this basis which do not map to zero remain linearly independent in V ,
whose basis consists of Lyndon words with distinct letters – such a word is Lyndon if
and only if the smallest character appears on the left – and shuffles of disjoint Lyndon
words with distinct letters. Throughout this chapter, we work in V , so that when we
refer to a ‘word’, we automatically mean a word with distinct letters, and shuffles of
such words are zero unless the words are disjoint. Let VS be the subspace of V spanned
by the n! words of length n with distinct letters in the characters of S = {1, . . . , n}. Then
the Lyndon basis for VS is given by Lyndon words of degree n and shuffles of disjoint
Lyndon words the union of whose letters is equal to S.

The vector space PS is generated by n-polygons with edges indexed by S. If we con-
sider (n + 1)-polygons with edges indexed by S ∪ {d}, we have a natural isomorphism

VS
∼→ PS∪{d} (3.3.1)

given by writing each cyclic structure on S∪{d} as a word on the letters of S followed by
the letter d. Let IS ⊂ PS∪{d} be the set of shuffles of polygons (AxB, d) where A∪B = S
and A ∩ B = ∅. Then under the isomorphism above, IS is identified with the subspace
of VS generated by the part of the Lyndon basis consisting of shuffles. By a slight abuse
of notation, we use the same notation IS for both the subspace of PS∪{d} and that of VS .

Definition 3.28. Let D = S1 ∪ S2 denote a stable partition of S (partition into two disjoint
subsets of cardinal ≥ 2). Let γ be a polygon on S. We say that the partition D corresponds to a
chord of γ if the polygon γ admits a chord which cuts γ into two pieces indexed by S1 and S2.
Let a block of γ be a subsequence of consecutive elements of γ for the cyclic order, of length at
least two and at most n− 2. Thus, a chord divides γ into two blocks, and χ(γ) indexes the set of
stable partitions which are compatible with γ, in the sense that they can be realized as chords of
γ, i.e. in the sense that the subsets S1 and S2 are blocks of γ.
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Definition 3.29. Let γ, η denote two polygons on S. We say that η is convergent relative to
γ if there are no stable partitions of S compatible with both γ and η:

χ(γ) ∩ χ(η) = ∅ . (3.3.2)

In other words, there exists no block of γ having the same underlying set as a block of η. If η is a
polygon on S, then a block of η is said to be a consecutive block if its underlying set corresponds
to a block of the polygon with the standard cyclic order δ. The polygon η is said to be convergent
if it has no consecutive blocks at all, i.e., if it is convergent relative to δ. Similarly, a polygon
η ∈ PS∪{d} is said to be convergent if it has no chords partitioning S ∪{d} into disjoint subsets
S1 ∪ S2 such that S1 is a consecutive subset of S = {1, . . . , n}.

Definition 3.30. We now adapt the definition of convergence for polygons in PS∪{d} to the
corresponding words in VS . A convergent word in the alphabet S is a word having no subword
which forms a consecutive block. In other words, if w = ai1ai2 · · · air , then w is convergent if
it has no subword aijaij+1 · · · aik such that the underlying set {aij , aij+1 , . . . , aik} = {i, i +
1, . . . , i + r} ⊂ {1, . . . , n}. A convergent word is in fact the image in VS of a convergent
polygon in PS∪{d} under the isomorphism (3.3.1).

Example 3.31. When 1 ≤ n ≤ 4 there are no convergent polygons in PS . For n = 5, there
is only one convergent polygon up to sign, given by γ = (13524). The other convergent cyclic
structure (14253) is just the cyclic structure (13524) written backwards. When n = 6, there
are three convergent polygons up to sign:

(135264) , (152463) , (142635) .

There are 23 convergent polygons for n = 7. Note that when n = 8, the dihedral structure
η = (24136857) is not convergent even though no neighbouring numbers are adjacent, because
{1, 2, 3, 4} forms a consecutive block for both η and δ.

Remark 3.32. The enumeration of permutations satisfying the single condition that no two
adjacent elements in γ should be consecutive (the case k = 2) is known as the dinner table
problem and is a classic problem in enumerative combinatorics. The more general problem of
convergent words (arbitrary k) seems not to have been studied previously. The problems coincide
for n ≤ 7, but the counterexample for n = 8 above shows that the problems are not equivalent
for n ≥ 8.

3.3.2 Residues of polygons along chords

For every stable partition D of S given by S = S1 ∪ S2, we define a residue map on
polygons

Resp
D : PS −→ PS1∪{d} ⊗Q PS2∪{d}

as follows. Let η be a polygon in PS . If the partition D corresponds to a chord of η, then
it cuts η into two subpolygons ηi (i = 1, 2) whose edges are indexed by the set Si and
an edge labelled d corresponding to the chord D. We set

Resp
D(η) =

{
η1 ⊗ η2 if D is a chord of η

0 if D is not a chord of η.
(3.3.3)
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More generally, we can define the residue for several disjoint chords simultaneously.
Let S = S1 ∪ · · · ∪ Sr+1 be a partition of S into r + 1 disjoint subsets with r ≥ 2. For
1 ≤ i ≤ r, let Di be the partition of S into the two subsets (S1∪· · ·Si)∪(Si+1∪· · ·∪Sr+1).
For any polygon η ∈ PS , we say that η admits the chords D1, . . . , Dr if there exist r
chords of η, disjoint except possibly for endpoints, partitioning the edges of η into the
sets S1, . . . , Sr+1. If η admits the chords D1, . . . , Dr, then these chords cut η into r + 1
subpolygons η1, . . . , ηr+1. Let Ti denote the set indexing the edges of ηi, so that each
Ti is a union of Si and elements of the set {d1, . . . , dr} of indices of the chords. The
composed residue map

Resp
D1,...,Dr

: PS → PT1 ⊗ · · · ⊗ PTr

is defined as follows:

Resp
D1,...,Dr

(η) =

{
η1 ⊗ · · · ⊗ ηr+1 if η admits D1, . . . , Dr as chords
0 if η does not admit D1, . . . , Dr

(3.3.4)

Example 3.33. In this example, n = 12 and the partition of S given by D1, D2, D3 and D4 is
S1 = {1, 2, 3}, S2 = {4, 10, 11, 12}, S3 = {5, 9}, S4 = {6}, S5 = {7, 8}.
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We have T1 = S1 ∪ {d1}, T2 = S2 ∪ {d1, d2}, T3 = S3 ∪ {d2, d3}, T4 = S4 ∪ {d3, d4},
T5 = S5 ∪ {d4}. The composed residue map Resp

D1,D2,D3,D4
maps the standard polygon

δ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) to the tensor product of the five subpolygons shown in
the figure.

The definition of the residue allows us to extend the definition of convergence of a
polygon to linear combinations of polygons.

Definition 3.34. Let E be a partition of S ∪ {d} into two subsets, one of which, T , is a consec-
utive subset of S. Let η =

∑
i aiηi be a linear combination of polygons. We say that E is a bad

chord for η if it is a bad chord for any of the ηi. The linear combination η converges along E (or
along T ) if the residue

Resp
E(η) ∈ IT ⊗ PS\T∪{d}∪{e}, (3.3.5)

where we recall that IT ⊂ PT∪{e} is the subspace spanned by shuffles (AxB, e) where A and B
are disjoint words the union of whose letters is equal to T . A linear combination η is convergent
if it converges along all of its bad chords.

The goal of the following section is to define a set of particular linear combinations
of polygons, the Lyndon insertion words and shuffles, which are convergent, and show
that they are linearly independent. In the section after that, we will prove that this set
forms a basis for the convergent subspace of PS∪{d}.
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3.3.3 The Lyndon insertion subspace

Let a 1n-word be a word of length n in the distinct letters of S = {1, . . . , n} in which
the letter 1 appears just to the left of the letter n, and let WS ⊂ VS ' PS∪{d} denote
the subspace generated by these words. The space WS is of dimension (n − 1)!. The
following lemma will show that VS = WS ⊕ IS , where IS is the subspace of shuffles as
before.

Lemma 3.35. Fix two elements a1 and a2 of S = {1, . . . , n}. Let

τ =
∑

i

ciηi,

where the ηi run over the words of length n in VS such that a1 appears just to the left of a2.
Then τ ∈ IS if and only if ci = 0 for all i.

Proof. The assumption τ ∈ IS means that we can write τ =
∑

i ciuixvi. Considering this
in the space PS∪{d} isomorphic to VS , it is a sum of cyclic structures

∑
i ci(ui, d)x(vi, d)

shuffled with respect to the point d. Choose any bijection

ρ : {1, . . . , n, d} → {0, 1,∞, t1, . . . , tn−2}

that maps a1 to 0 and a2 to 1. Define a linear map from PS∪{d} to Hn−2(M0,n+1) by first
renumbering the indices (1, . . . , n, d) of each polygon η ∈ PS∪{d} as (0, 1,∞, t1, . . . , tn−2)
via ρ, then mapping the renumbered polygon to the corresponding cell-form (same
cyclic order). By hypothesis, τ =

∑
i ciηi maps to a sum ωτ =

∑
i ciωηi of 01 cell forms.

Since τ is a shuffle with respect to one point, we know by (3.2.13) that ωτ = 0. But the
01 cell-forms ωηi are linearly independent by theorem 3.16. Therefore each ci = 0.

Recall that the shuffles of disjoint Lyndon words form a basis for IS ; we call them
Lyndon shuffles. A convergent Lyndon shuffle is a shuffle of convergent Lyndon words.

Definition 3.36. We will recursively define the setLS of Lyndon insertion shufflesin IS . If S =
{1}, then LS = 0. If S = {1, 2} then LS = {1x2}. In general, if D is any (lexicographically
ordered) alphabet on m letters and S = {1, . . . , m}, we define LD to be the image of LS under
the bijection S → D corresponding to the ordering of D.

Assume now that S = {1, . . . , n} with n > 2, and that we have constructed all of the sets
L{1,...,i} with i < n. Let us construct LS . The elements of these set are constructed by taking
convergent Lyndon shuffles on a smaller alphabet, and making insertions into every letter except
for the leftmost letter of each Lyndon word in the shuffle, according to the following explicit
procedure. Let T = {a1, . . . , ak} be an alphabet with 3 ≤ k ≤ n, with the lexicographical
ordering a1 < · · · < ak, and choose a convergent Lyndon shuffle γ of length k in the letters of
T . Write γ as a shuffle of s > 1 convergent Lyndon words:

γ = (ai1 · · · aik1
)x(aik1+1

· · · aik2
)x · · ·x(aiks−1+1

· · · aiks
)

where k1 + · · · + ks = k. Choose integers v1, . . . , vk ≥ 1 such that
∑

i vi = n and such that
for each of the indices l = 1, ik1+1, . . . , iks−1+1 of the leftmost characters of the s convergent
Lyndon words in γ, we have vl = 1. For 1 ≤ i ≤ k, let Di denote an alphabet {bi

1, . . . , b
i
vi
}.

When vi = 1, insert bi
1 into the place of the letter ai in γ; when vi > 1, choose any element Vi

from LDi , and insert this Vi into the place of the letter ai.
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The result is a sum of words in the alphabet ∪Di. Note that this alphabet is of cardinal n
and equipped with a natural lexicographical ordering given by the ordering D1, . . . , Dk and the
orderings within each alphabet Di. We can therefore renumber this alphabet as 1, . . . , n. Since it
is a sum of shuffles, the renumbered element lies in IS , and we call it a Lyndon insertion shuffle
on S. The original convergent Lyndon shuffle γ on T is called the framing; together with the
integers vi, we call this the fixed structure of the insertion shuffle. We define LS to be the set of
all Lyndon insertion shuffles on S. Note in particular that when k = n, so vi = 1 for 1 ≤ i ≤ k,
there are no non-trivial insertions, and the corresponding elements of LS are the convergent
Lyndon shuffles.

Example 3.37. We have
L{1,2} = {1x2}

L{1,2,3} = {1x2x3, 2x13}
L{1,2,3,4} = {1x2x3x4, 13x2x4, 14x2x3, 24x1x3,

3x142, 13x24, 1(3x4)x2}
The last element of L{1,2,3,4} is obtained by taking T = {1, 2, 3} and γ = 13x2. We can only
insert in the place of the character 3 since 1 and 2 are leftmost letters of the Lyndon words in
13x2. As for what can be inserted in the place of 3, the only possible choices are k = 1, v1 = 2,
D1 = {b1, b2}, and V1 = b1xb2, the unique element of LD1 . The natural ordering on the
alphabet {T \ 3} ∪ D1 is given by (1, 2, b1, b2) since b1xb2 is inserted in the place of 3, so we
renumber b1 as 3 and b2 as 4, obtaining the new element 1(3x4)x2.

For n = 5, L{1,2,3,4,5} has 34 elements. Of these, 25 are convergent Lyndon shuffles which
we do not list. The remaining nine elements are obtained by insertions into the smaller conver-
gent Lyndon shuffles: they are given by





2x1(4x35), 2x1(3x4x5) insertions into 2x13
3x1(4x5)2, 4x15(2x3) insertions into 3x142
13x2(4x5), 1(3x4)x25 insertions into 13x24
1(3x4)x2x5 insertion into 13x2x4
1(4x5)x2x3 insertion into 14x2x3
2(4x5)x1x3 insertion into 24x1x3.

Definition 3.38. We now define a complementary set, the setWS of Lyndon insertion words.
Let a special convergent word w ∈ VS denote a convergent word of length n in S such that in the
lexicographical ordering (1, . . . , n, d), the polygon (cyclic structure) η = (w, d) satisfies χ(δ)∩
χ(η) = ∅; in other words, the polygon η has no chords in common with the standard polygon.
This condition is a little stronger than asking w to be a convergent word (for instance, 13524 is
a convergent word but not a special convergent word, since 13524d has a bad chord {2, 3, 4, 5}).
The first elements ofWS are given by the special convergent 1n-words. The remaining elements
of WS are the Lyndon insertion words constructed as follows. Take a special convergent word
w′ in a smaller alphabet T = {a1, . . . , ak} with k < n such that a1 appears just to the left of
ak−1, and choose positive integers v1, . . . , vk such that v1 = vk = 1 and

∑
i vi = n. As above,

we let Di = {bi
1, . . . , b

i
vi
} for 1 ≤ i ≤ k, and choose an element Di of LDi for each i such that

vi > 1. For i such that vi = 1, insert bi
1 in the place of ai in w′, and for i such that vi > 1

insert Di in the place of ai. We obtain a sum of words w′′ in the letters ∪Di. This alphabet has a
natural lexicographic ordering D1, . . . , Dk as above, so we can renumber its letters from 1 to n,
which transforms w′′ into a sum of words w ∈ VS called a Lyndon insertion word. Note that by
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construction, the result is still a sum of 1n-words. The setWS consists of the special convergent
words and the Lyndon insertion words.

Remark 3.39. It follows from lemma 3.35 that the intersection of the subspace 〈WS〉 in VS with
the subspace IS of shuffles is equal to zero.

Example 3.40. We have

W{1,2} = ∅, W{1,2,3} = ∅, W{1,2,3,4} = {3142},
W{1,2,3,4,5} = {24153, 31524, (3x4)152, (415(2x3)}

The last two elements ofW{1,2,3,4,5} are obtained by taking v1 = 1, v2 = 1, v3 = 2, v4 = 1 and
v1 = 1, v2 = 2, v3 = 1, v4 = 1 and creating the corresponding Lyndon insertion word with
respect to 3142.

Theorem 3.41. The setWS∪LS of Lyndon insertion words and shuffles is linearly independent.

Proof. We will prove the result by induction on n. Since LS ⊂ IS and we saw by lemma
3.35 that the space generated byWS has zero intersection with IS , we only have to show
that that bothWS and LS are linearly independent sets. We begin with LS . Since L{1,2}
contains a single element, we may assume that n > 2.

Let W = A1x · · ·xAr be a Lyndon shuffle, with r > 1. We define its fixed structure
as follows. Replace every maximal consecutive block (not contained in any larger con-
secutive block) in each Ai by a single letter. Then W becomes becomes a convergent
Lyndon shuffle W ′ in a smaller alphabet T ′ on k letters, which is equipped with an
inherited lexicographical ordering. If T = {1, . . . , k}, then under the order-respecting
bijection T ′ → T , W ′ is mapped to a convergent Lyndon shuffle V in T , called the fram-
ing of W . The fixed structure is given by the framing together with the set of integers
{vi | 1 ≤ i ≤ k} defined by vi = 1 if that letter in T does not correspond to a maximal
block, and vi is the length of the maximal block if it does. Thus we have v1+· · ·+vk = n.
We can extend this definition to the fixed structure of a Lyndon insertion shuffle, since
by definition this is a linear combination of Lyndon shuffles all having the same fixed
structure, and we recover the framing and fixed structure of the insertion shuffle given
in the definition.

Example 3.42. If W is the Lyndon shuffle 1546x237, we replace the consecutive blocks 23
and 546 by letters b1 and b2, obtaining the convergent shuffle W ′ = 1b2xb17 in the alphabet
T ′ = {1, b1, b2, 7}; renumbering this as 1, 2, 3, 4 we obtain V = 13x24 ∈ L{1,2,3,4}. The fixed
structure is given by 13x24 and integers v1 = 1, v2 = 2, v3 = 3, v4 = 1.

The Lyndon insertion shuffles (1, (3x4))x(2, 5) and (1, 3)x(2, (4x5)) have the same fram-
ing 13x24, but since (v1, v2, v3, v4) = (1, 1, 2, 1) for the first one and (1, 1, 1, 2) for the second,
they do not have the same fixed structure. The Lyndon insertion shuffles (1, (5)x(3, 4, 6))x(2, 7)
and (1, (3, 5)x(4, 6))x(2, 7) have the same associated framing 13x24 and the same integers
(v1, v2, v3, v4) = (1, 1, 4, 1). so they have the same fixed structure.

For any fixed structure, given by a convergent Lyndon shuffle γ on an alphabet T of
length k and associated integers v1, . . . , vk with v1 + · · · + vk = n, let L(γ, v1, ..., vk) be
the subspace of VS spanned by Lyndon shuffles with that fixed structure. Since Lyndon
shuffles are linearly independent, we have

VS =
⊕

L(γ, v1, ..., vk)
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Now, as we saw above, a Lyndon insertion shuffle is a linear combination of Lyndon
shuffles all having the same fixed structure, so every element ofWS ∪LS lies in exactly
one subspace L(γ, v1, . . . , vk). Thus, to prove that the elements of LS are linearly in-
dependent, it is only necessary to prove the linear independence of Lyndon insertion
shuffles with the same fixed structure. If all of the vi = 1, then the fixed structure is
just a single convergent Lyndon shuffle on S, and these are linearly independent. So let
(γ, v1, . . . , vk) be a fixed structure with not all of the vi equal to 1, and let ω =

∑
q cqωq

be a linear combination of Lyndon insertion shuffles of fixed structure γ, v1, . . . , vn.
Break up the tuple (1, . . . , n) into k successive tuples

B1 = (1, . . . , v1), B2 = (v1 + 1, . . . , v1 + v2), . . . , Bk = (v1 + · · ·+ vk−1 + 1, . . . , n).

Let i1, . . . , im be the indices such that Bi1 , . . . , Bim are the tuples of length greater
than 1. These tuples correspond to the insertions in the Lyndon insertion shuffles of
type (γ, v1, . . . , vk). For 1 ≤ j ≤ m, let Tj = {Bij} ∪ {dj}. This element dj is the index
of the chord Dj corresponding to the consecutive subset Bij , which is a chord of the
standard polygon and also of every term of ω. The chords D1, . . . , Dr are disjoint and
cut each term of ω into m + 1 subpolygons, m of which are indexed by Tj , and the last
one of which is indexed by T ′ = S \ {Bi1 ∪ · · · ∪Bim} ∪ {d1, . . . , dm}. Thus we can take
the composed residue map

Resp
D1,...,Dm

(ω) ∈ PT1 ⊗ · · · ⊗ PTm ⊗ PT ′ .

Let us compute this residue.
The alphabet T ′ is of length k and has a natural ordering corresponding to a bijection

{1, . . . , k} → T ′. Let γ′ be the image of γ under this bijection, i.e. the framing. Let
P q

1 , . . . , P q
m be the insertions corresponding to the m tuples Bi1 , . . . , Bim in each term of

ω =
∑

q cqωq. Each P q
j lies in LBij

. The image of the composed residue map is then

Resp
D1,...,Dm

(ω) =
∑

q

cq(P
q
1 , d1)⊗ · · · ⊗ (P q

m, dm)⊗ γ′. (3.3.6)

Now assume that ω =
∑

q cqωq = 0. Then

∑
q

cq(P
q
1 , d1)⊗ · · · ⊗ (P q

m, dm)⊗ γ′ = 0,

and since γ′ is fixed, we have
∑

q

cq(P
q
1 , d1)⊗ · · · ⊗ (P q

m, dm) = 0.

But for 1 ≤ j ≤ m, the P q
j lie in LBij

and thus, by the induction hypothesis, the distinct
P q

j for fixed j and varying q are linearly independent. Since di is the largest element in
the lexicographic alphabet Ti, the sums (P q

j , dj) are also linearly independent for fixed
j and varying q, because if

∑
q dq(P

q
j , dj) = 0 then

∑
q dqP

q
j = 0 simply by erasing dj .

The tensor products are therefore also linearly independent, so we must have cq = 0 for
all q. This proves that LS is a linearly independent set.

We now prove thatWS is a linearly independent set. For this, we construct the fram-
ing and fixed structure of a of length n in VS just as above, by replacing consecutive
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blocks with single letters, obtaining a word in a smaller alphabet T ′ and a set of inte-
gers corresponding to the lengths of the consecutive blocks. For instance, replacing the
consecutive blocks 12 and 354 in the word 12735486 by letters b1 and b2 gives a conver-
gent word b17b286 in the alphabet (b1, b2, 6, 7, 8); renumbering this as (1, 2, 3, 4, 5) gives
the framing as 14253 and the associated integers as v1 = 2, v2 = 3, v3 = 1, v4 = 1, v5 = 1.
For every fixed structure of this type, now given as a convergent word γ of length k < n
together with integers v1, . . . , vk, we let W (γ, v1, . . . , vk) denote the subspace of VS gen-
erated by words with the fixed structure (γ, v1, . . . , vk). Since the words of length n form
a basis for VS , we again have VS = ⊕W (γ, v1, . . . , vk). Therefore, to show thatWS is a
linearly independent set, we only need to show that the set of Lyndon insertion words
with a given fixed structure is a linearly independent set. So assume that we have some
linear combination

∑
q cqwq = 0, where the wq are all Lyndon insertion words of given

fixed structure (γ, v1, . . . , vk). If k = n, then these insertion words are just words, so
they are linearly independent and cq = 0 for all q. So assume that at least one vi > 1.
We proceed very much as above. Breaking up the tuple (1, . . . , n) into tuples B1, . . . , Bk

as above, and letting D1, . . . , Dm, Tj and T ′ denote the same things, we compute the
composed residue of

∑
q cqwq and obtain (3.3.6). Then because all of the insertions P q

i

lie in LBij
and we know that these sets are linearly independent, we find as above that

cq = 0 for all q.

3.3.4 Convergent linear combinations of polygons

Definition 3.43. Let S = {1, . . . , n}. Let JS be the subspace of PS∪{d} spanned by LS and let
KS be the subspace of PS∪{d} spanned byWS .

We prove the main convergence results in two separate theorems, concerning the
subspaces IS and WS of VS ' PS∪{d} respectively.

Theorem 3.44. If ω ∈ IS ⊂ PS∪{d} is convergent, then ω ∈ JS .

Proof. One direction of this theorem is easy. We only need to show that any Lyndon
insertion shuffle is convergent. If it is a shuffle of convergent Lyndon words, then there
are no consecutive blocks in any of the words. Therefore if the letters of any consecutive
subset T of S appear as a block in any term of ω, it must be because they appeared in
more than one of the convergent words which are shuffled together. So these letters
appear as a shuffle, so the residue lies in IT ⊗ PS\T∪{d}. Now, if we are dealing with
a Lyndon insertion shuffle with non-trivial insertions, then there are two kinds of bad
chords: those corresponding to these insertions, and those corresponding to consecu-
tive subsets of the insertion sets. By definition, the insertions themselves lie in LT ⊂ IT ,
and their expressions are equal to the IT factors of the residue, so ω converges along
all the bad chords corresponding to insertions. For the subchords of these, their letters
appear shuffled inside the insertions, so the previous argument holds.

Write ω =
∑

i ciωi where each ωi = (Ai
1x · · ·xAi

ri
, d) is a Lyndon shuffle, ri > 1.

Assume that ω converges along all of its bad chords. As above, a consecutive block
appearing in any Ai

j is maximal if the same block does not appear in any other factor
inside a bigger consecutive block. Factors may appear which contain more than one
consecutive block, but the maximal blocks are disjoint.
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We prove the result by induction on the length of the alphabet S = {1, . . . , n}. The
smallest case is n = 3, since for n = 2, the polygons are triangles and have no chords.
For n = 3, let

ω = a1(12x3, d) + a2(13x2, d) + a3(1x2x3, d) + a4(23x1, d).

The only non-trivial bad chords are D = {1, 2}, E = {2, 3}. We have

Resp
D(ω) = a1(1, 2, e)⊗ (ex3, d) + a2(1x2, e)⊗ (e, 3, d)

+a3(1x2, e)⊗ (ex3, d) + a4(1x2, e)⊗ (e, 3, d).

For this to converge means that the left-hand parts of the two right-hand tensor factors
(e, 3, d) and (ex3, d) must lie in I{1,2}. This implies that a1 = 0. For the other residue,
we have

Resp
E(ω) = a1(2x3, e)⊗ (1, e, d) + a2(2x3, e)⊗ (1, e, d)

+a3(2x3, e)⊗ (1xe, d) + a4(2, 3, e)⊗ (1xe, d).

This gives a4 = 0. Therefore convergent ω is a linear combination of 13x2 and 1x2x3,
which are the basis elements of L{1,2,3}.

The induction hypothesis is that for every alphabet S′ = {1, . . . , i} with i < n, if
ω ∈ VS′ is convergent, then ω ∈ KS′ .

Now let S = {1, . . . , n} and assume that ω ∈ VS is convergent. If no consecutive
block appears in any Ai

j , then ω is a linear combination of convergent Lyndon words,
so it is in JS . Assume some consecutive blocks do appear, and consider a maximal
consecutive block T , which corresponds to a bad chord E. Exactly as in the proof of
the lemma, we decompose ω = γ1 + γ2 where γk is the sum

∑
i∈Ik

ciωi, with I1 the set
of indices i for which T appears as a block in some Ai

j , which by reordering we may
assume to be Ai

1, and I2 is the set of indices for which T does not appear as a block in
any Ai

j . As in the lemma, we see immediately that Resp
E(γ2) ∈ IT ⊗ PS\T∪{e}∪{d}, so γ2

converges along E. Since we are assuming that ω is convergent, also γ1 must converge,
so we have

Resp
E(γ1) ∈ IT ⊗ PS\T∪{d}∪{e}.

For each i ∈ I1, write Ai
1 = Bi

1Y
iCi

1, where Y i consists of the letters of T in some order,
and Bi

1 is Lyndon and non-empty. Then

Resp
E(γ1) =

∑

i∈I1

ci(Y i, e)⊗ (BieCixAi
2x · · ·xAi

ri
, d). (3.3.7)

Putting an equivalence relation on I1 as in the proof of the lemma, so that i ∼ i′ if the
right-hand factors of (3.3.7) are equal, and letting [i] denote the equivalence classes for
this relation, we write the residue as

Resp
E(γ1) =

∑

[i]⊂I1

(∑

i∈[i]

ci(Y i, e)
)⊗ (B[i]eC [i]xA

[i]
2 x · · ·xA[i]

r[i]
, d). (3.3.8)

Since the right-hand factors in the sum over [i] are distinct Lyndon shuffles, they are
linearly independent and therefore we find that

(S[i], e) =
∑

i∈[i]⊂I1

ci(Y i, e) ∈ IT
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for each [i] ⊂ I1.
We now show that (S[i], e) is not merely in IT , but in JT . To see this, it is enough to

show that (S[i], e) converges on every subchord of T (consecutive subset inside the set
T ), and apply the induction hypothesis. So let E′ be a subchord of E, corresponding to
a consecutive block T ′ strictly contained in T .

We now decompose the set of indices I1 into two subsets I3 and I4, where I3 con-
tains the indices i ∈ I1 such that T ′ appears as a consecutive block inside the block T
appearing in Ai

1, and I4 contains the indices i ∈ I1 such that the letters of T ′ do not
appear consecutively inside the block T . Similarly, we partition I2, the set of indices in
the sum ω =

∑
i ciωi for which T does not appear as a block in Ai

1, into two sets I5 and
I6, where I5 contains the indices i ∈ I2 such that T ′ appears as a block in some Ai

j which
we may assume to be Ai

1, and I6 contains the indices i ∈ I2 of the terms in which T ′ does
not appear as a block in any Ai

j . We have corresponding decompositions γ1 = γ3 + γ4,
γ2 = γ5 + γ6. As before, T ′ must appear as a shuffle in γ6, so γ6 converges along E′. As
for γ4, since T ′ does not appear as a block or a shuffle, the residue along E′ is 0. Since
by assumption ω converges along E′, we know that γ3 + γ5 converges along E′. Let us
show that in fact both γ3 and γ5 converge along E′.

Write Ai
1 = RiZiSi for every i ∈ I3 ∪ I5, where Zi is a word in the letters of T ′. Note

that Ri is Lyndon, and non-empty because T ′ cannot appear as a block to the left of any
Ai

j by the lemma. Then for k = 3, 5, we have

Resp
E′(γk) =

∑

i∈Ik

ci(Zi, e′)⊗ (Rie′SixAi
2x · · ·xAi

ri
). (3.3.9)

For k = 3, 5, put the equivalence relation on Ik for which i ∼ i′ if the right-hand factors
of (3.3.8) are equal, and let 〈i〉 denote the equivalence classes for this relation. Note that
because for i ∈ I3, T ′ appears as a block of T , we have Bi ⊂ Ri and Ci ⊂ Si, in the sense
that in fact Bi is the left-hand part of Ri and Ci is the right-hand part of Si. Therefore in
particular, the new equivalence relation is strictly finer than the old, i.e. the equivalence
class [i] breaks up into a finite union of equivalence classes 〈i〉. The residue can now be
written

Resp
E′(γk) =

∑

〈i〉⊂Ik

(∑

i∈〈i〉
ci(Zi, e′)

)⊗ (R〈i〉e′S〈i〉xA
〈i〉
2 x · · ·xA〈i〉r〈i〉). (3.3.10)

Then since the right-hand factors for each k are distinct Lyndon shuffles, they are lin-
early independent, and furthermore, none of these factors for γ3 can ever occur in γ5

for the following reason: the Lyndon words Rie′Si appearing for k = 3 all have the
letters of T \T ′ grouped around e′, whereas none of the Lyndon words Rie′Si have this
property. Therefore all the right-hand factors from the residues of γ3 and γ5 are linearly
independent, so we find that all the left-hand factors

∑

i∈〈i〉⊂Ik

(Zi, e′) ∈ IT ′ , (3.3.11)

so that both γ3 and γ5 converge along E′. In particular, this means that both γ1 and γ2

converge along E′.
Now, let us compute the composed residue map Resp

E,E′(γ1). First, for each i ∈ I3,
write Y i = U iZiV i where Zi is a word in the letters of T ′, so that Ri = BiU i, Si = U iCi,
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and Ai
1 = BiU iZiV iCi. Then by (3.3.9), we have

Resp
E(γ1) =

∑

[i]∈I3

(∑

i∈[i]

ci(U iZiV i, e)
)⊗ (

B
[i]
1 eC

[i]
1 xA

[i]
2 x · · ·xA[i]

r[i]
, d

)
+

∑

[i]∈I4

(∑

i∈[i]

ci(Y i, e)
)⊗ (

B
[i]
1 eC

[i]
1 xA

[i]
2 x · · ·xA[i]

r[i]
, d

)
.

The terms for i ∈ I4 converge along T ′, so they vanish when taking the composed
residue, and we find

Resp
E,E′(γ1) =

∑

[i]∈I3

(∑

i∈[i]

ci(Zi, e′)⊗ (U ie′V i, e)
)⊗ (

B
[i]
1 eC

[i]
1 xA

[i]
2 x · · ·xA[i]

r[i]
, d

)
.

Since for each [i] ⊂ I3, the right-hand factors are as usual distinct and linearly indepen-
dent, this means that for each [i] ⊂ I3,

Resp
E′(S[i], e) =

∑

i∈[i]
ci(Zi, e′)⊗ (U ie′V i, e) ∈ PT ′∪{e′} ⊗ PT\T ′∪{e′}∪{e}.

Now, breaking [i] up into separate equivalence classes 〈i〉, we have that U i and V i are
identical for all i in one subclass 〈i〉 since Bi and Ci are already identical for all i ∈ [i].
So for each [i] ⊂ I3, we can write

Resp
E′(S[i], e) =

∑

〈i〉⊂[i]

∑

i∈〈i〉
ci(Zi, e′)⊗ (U 〈i〉e′V 〈i〉, e),

where the right-hand factors are all distinct words. Then (3.3.11) shows that this sum
lies in IT ′ ⊗PT\T ′∪{e′}∪{e}, so in fact (S[i], e) converges along E′. For [i] ⊂ I4, we already
saw that Resp

E′(S[i], e) = 0, so (S[i], e) converges along E′ for all [i] ⊂ I1. Since this
holds for all chords E′ corresponding to consecutive subblocks T ′ of T , we see that each
(S[i], e) is convergent along all its bad chords, and thus, by the induction hypothesis,
(S[i], e) ∈ JT . Now we can write ω = γ1 + γ2 with

γ1 =
∑

[i]∈I1

c[i]B
[i](S[i])C

[i]xA
[i]
2 x · · ·xA[i]

ri

with S[i] ∈ JT . This means that the maximal block T , which appeared only in γ1, has
been replaced by an insertion in the sense of the definition of Lyndon insertion shuffles.

To conclude the proof of the theorem, we successively replace each of the maximal
blocks in ω by insertion terms in the same way. Insertions are by definition convergent
and contain no blocks, so as we proceed to substitute insertions for the maximal blocks
one by one, blocks which were previously not maximal may become maximal; however
the order in which the blocks are substituted by insertions is of no importance as long
as only maximal blocks are treated at each step. The final result displays ω as a linear
combination of convergent Lyndon shuffles and Lyndon insertion shuffles, so ω ∈ JS .

Theorem 3.45. Let η ∈WS ⊂ PS∪{d}. Then η is convergent if and only if η ∈ KS = 〈WS〉.
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Proof. The proof that ω ∈ KS is convergent is exactly as at the beginning of the proof of
the previous theorem. So let ω ∈WS , write

ω =
∑

i

aiηi

where each ηi is a 1n-polygon (a 1n-word concatenated with d), and assume ω is con-
vergent. The only possible bad chords for ω are the consecutive blocks appearing in the
ηi. Let T be a subset of S corresponding to a maximal consecutive block.

Lemma 3.46. No maximal consecutive block having non-trivial intersection with {1, n} can
appear in any of the 1n-words ηi of ω.

Proof. If T is a maximal block containing both 1 and n, then T = {1, . . . , n} which does
not correspond to a chord. Let T be a maximal consecutive block appearing in ω which
contains 1 but not n, say T = {1, . . . , m}. If T appears as a consecutive block in some ηi,
we may write ηi = (Ki, Zi, 1, n, H i, d) where Zi is an ordering of {2, . . . , m}. Then

Resp
E(

∑

i

aiηi) =
∑

i

ai(Zi, 1, e)⊗ (Ki, e, n, H i, d).

The assumption that ω converges along E means that this residue lies in IT ⊗PS\T∪{e,d}.
So for constant words K, H (i.e. constant right-hand tensor factor), we must have

∑

i|Ki=K,Hi=H

ai(Zi, 1, e) ∈ IT , (3.3.12)

in other words, a sum of words
∑

i ai(Zi1) must be a shuffle. But this is impossible by
a Lyndon basis argument. Using a backwards Lyndon basis in which all Lyndon words
are as usual but written right to left, the words ending in 1 generate the degree 1 part
of the algebra and are linearly independent from the shuffles, which generate the part
of degree ≥ 2. So we must have ai = 0 for all i.

Now let T = {m, . . . , n}. We write ηi = (Ki, 1, n, Zi,H i, d) where (n, Zi) is an
ordering of T , and we have

Resp
E(

∑

i

aiηi) =
∑

i

ai(n,Zi, e)⊗ (Ki, 1, e, H i, d).

Convergence implies that
∑

i|Ki=K,Hi=H

ai(n,Zi, e) ∈ IT , (3.3.13)

Using a Lyndon basis in which the lexicographical ordering is the backwards order
n < · · · < 1, the nZi are all Lyndon words, so as above, they cannot sum to a shuffle.

Now we can complete the proof of the theorem. It runs almost exactly as the proof
of the previous theorem. Let ω =

∑
i aiηi be a sum of 1n-words which converges and

consider a maximal consecutive block T ⊂ {2, . . . , n − 1}. Let I1 be the set of indices
i such that ηi contains the block T and I2 the other indices. For i ∈ I1, write ηi =
(Ki, Zi,H i, d) where Zi is an ordering of T . Then

Resp
T (ω) =

∑

i∈I1

ai(Zi, e)⊗ (Ki, e, H i, d).
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Let i ∼ i′ be the equivalence relation on I1 given by Ki = Ki′ and H i = H i′ . Then

Resp
T (ω) =

∑

[i]∈I1

(∑

i∈[i]

ai(Zi, e)
)⊗ (K [i], e,H [i], d),

so by the convergence assumption, we have

S[i] =
∑

i∈[i]
ai(Zi, e) ∈ IT

for each [i] ⊂ I1. Therefore we can write ω with the insertion S[i] as

ω =
∑

[i]⊂I1

ai(K [i], S[i],H
[i], d) +

∑

i∈I2

aiηi,

and the maximal block T no longer appears in ω. We prove that S[i] ∈ JT exactly as
in the proof of the previous theorem: considering a maximal consecutive block T ′ ⊂ T
occurring in a factor of S[i], one shows that S[i] converges along T ′ if and only if ω
converges along T ′. Since ω does converge by assumption, S[i] also converges, and
since this holds for all consecutive blocks T ′ ⊂ T , S[i] converges on all its subdivisors
and therefore S[i] ∈ JS = 〈LS〉. Finally, one deals with the disjoint maximal blocks
appearing in ω one at a time until no blocks at all remain.

3.4 Explicit generators for FC and H`(Mδ
0,n)

In this chapter, we show that the map from polygons to cell-forms is surjective, and
compute its kernel. From this and the previous chapter, we will conclude that the pairs
(δ, ω), where ω runs through the set WS of Lyndon insertion words for n ≥ 5 form a
generating set for the formal cell-zeta algebra FC. In the final section, we show that the
images of the elements of WS in the cohomology H`(M0,n) yield an explicit basis for
the convergent cohomology H`(Mδ

0,n), and discuss its dimension.

3.4.1 From polygons to cell-forms

Let S = {1, . . . , n}. The bijection ρ : S ∪ {d} → {0, t1, . . . , t`+1, 1,∞} given by associ-
ating the elements 1, . . . , n, d to 0, t1, . . . , t`+1, 1,∞ respectively, induces a map f from
polygons to cell-forms:

η = (σ(1), . . . , σ(n), d)
f→ ωη = [ρ(σ(1)), . . . , ρ(σ(n)),∞].

The map f extends by linearity to a map from PS∪{d} to the cohomology group
Hn−2(M0,n+1). The purpose of this section is to prove that f is a surjection, and to
determine its kernel.

Recall that IS ⊂ PS∪{d} denotes the subvector space of PS∪{d} spanned by the shuf-
fles with respect to the element d, namely by the linear combinations of polygons

(S1xS2, d)

for all partitions S1
∐

S2 of S.
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Proposition 3.47. Let S = {1, . . . , n}. Then the cell-form map

f : PS∪{d} −→ Hn−2(M0,n+1)

is surjective with kernel equal to the subspace IS .

Proof. The surjectivity is an immediate consequence of the fact that 01 cell-forms form
a basis of Hn−2(M0,n+1) (theorem 3.16), since all such cell-forms are the images under
f of polygons having the edge labelled 1 next to the one labelled n.

Now, IS lies in the kernel of f by the corollary to proposition 3.13. So it only remains
to show that the kernel of f is equal to IS . But this is a consequence of counting the di-
mensions of both sides. By theorem 3.16, we know that the dimension of Hn−2(M0,n+1)
is equal to (n − 1)!. As for the dimension of PS∪{d}/IS , recall from the beginning of
chapter 3 that PS∪{d} ' VS , which can be identified with the graded n part of the quo-
tient of the polynomial algebra on S by the relation w = 0 for all words w containing
repeated letters. Thus VS is the vector space spanned by words on n distinct letters, so
it is of dimension n!. But instead of taking a basis of words, we can take the Lyndon
basis of Lyndon words (words with distinct characters whose smallest character is on
the left) and shuffles of Lyndon words. The subspace IS is exactly generated by the
shuffles, so the dimension of the quotient is given by the number of Lyndon words on
S, namely (n− 1)!. Therefore PS∪{d}/IS ' Hn−2(M0,n+1).

Remark 3.48. The above proof has an interesting consequence. Since the map from polygons to
differential forms does not depend on the role of d, the kernel cannot depend on d, and any other
element of S∪{d} could play the same role. Therefore IS , which is defined as the space generated
by shuffles with respect to the element d, is equal to the space generated by shuffles of elements
of S ∪ {d} with respect to any element of S; it is simply the subspace generated by shuffles with
respect to one element of S ∪ {d}.
Corollary 3.49. Let WS ⊂ PS∪{d} be the subset of polygons corresponding to 1n-words (con-
catenated with d). Then

f : WS ' Hn−2(M0,n+1).

Proof. The proof follows from the fact that PS∪{d} = WS ⊕ IS .

3.4.2 Generators for FC

By definition,FC is generated by all linear combinations of pairs of polygons
∑

i ai(δ, ωi)
whose associated differential form converges on the standard cell, but modulo the re-
lation (among others) that shuffles are equal to zero. In other words, since PS∪{d} =
WS ⊕ IS , we can redefine FC to be generated by linear combinations

∑
i ai(δ, ωi) such

that
∑

i aiωi ∈WS and such that the associated differential form converges on the stan-
dard cell.

The following proposition states that the notion of the residue of a polygon and the
residue of the corresponding cell-form coincide. In order to state it, we must recall that
one can define the map

ρ : PS −→ Ω`(M0,S) ,

from polygons labelled by S to cell forms in a coordinate-free way (one can do this
directly from equation (3.2.6)). In §1, this map was defined in explicit coordinates by
fixing any three marked points at 0, 1 and ∞. This essence of lemma 3.10 is that ρ is
independent of the choice of three marked points, and is thus coordinate-free.
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Proposition 3.50. Let S = {1, . . . , n} and let D be a stable partition S1∪S2 of S corresponding
to a boundary divisor of M0,n, with |S1| = r and |S2| = s. Let ρ denote the usual map from
polygons to cell-forms. Then the following diagram is commutative:

PS
ρ //

Resp
D

²²

H`(M0,n)

ResD

²²
PS1∪{d} ⊗PS2∪{d}

ρ⊗ρ // Hr−2(M0,r+1)⊗Hs−2(M0,s+1).

In other words, the usual residue of differential forms corresponds to the combinatorial residue
of polygons.

Proof. Let η ∈ PS be a polygon, and let ωη be the associated cell-form. If D is not
compatible with ωη, then ωη has no pole on D by proposition 3.11, so ResD(ω) = 0.

We shall work in explicit coordinates, bearing in mind that this does not affect the
answer, by the remarks above. Therefore assume that η is the polygon numbered with
the standard cyclic order on {1, . . . , n}, and that D is compatible with η. The corre-
sponding cell-form is given in simplicial coordinates by [0, t1, . . . , t`, 1,∞]. By applying
a cyclic rotation, we can assume that D corresponds to the partition

S1 = {1, 2, 3, . . . , k + 1} and S2 = {k + 2, . . . , n− 1, n}
for some 1 ≤ k ≤ `. In simplicial coordinates, D corresponds to the blow-up of the
cycle 0 = t1 = · · · = tk. We compute the residue of ωη along D by applying the variable
change t1 = x1 . . . x`, . . . , t`−1 = x`−1x`, t` = x` to the form ωη = [0, t1, . . . , t`, 1,∞]. The
standard cell Xη is given by {0 < x1, . . . , x` < 1}. In these coordinates, the divisor D is
given by {xk = 0}, and the form ωη becomes

ωη =
dx1 . . . dx`

x1(1− x1) . . . x`(1− x`)
. (3.4.1)

The residue of ωη along xk = 0 is given by

dx1 . . . dxk−1

x1(1− x1) . . . xk−1(1− xk−1)
⊗ dxk+1 . . . dx`

xk+1(1− xk+1) . . . x`(1− x`)
. (3.4.2)

Changing back to simplicial coordinates via x1 = a1/a2, . . . , xk−2 = ak−2/ak−1, xk−1 =
ak−1, and x` = b`, x`−1 = b`−1/b`, . . . , xk+1 = bk/bk+1 defines simplicial coordinates
on D ∼= M0,r+1 ×M0,s+1. The standard cells induced by η are (0, a1, . . . , ak−1, 1,∞) on
M0,r+1 and (0, bk, . . . , b`, 1,∞) on M0,s+1. If we compute (3.4.2) in these new coordi-
nates, it gives precisely

[0, a1, . . . , ak−1, 1,∞]⊗ [0, bk, . . . , b`, 1,∞] ,

which is the tensor product of the cell forms corresponding to the standard cyclic orders
η1, η2 on S1 ∪ {d} and S2 ∪ {d} induced by η. Therefore ρ(Resp

Dη) = ResDωη.
To conclude the proof of the proposition, it is enough to notice that applying σ ∈

S(n) to the formula ResDωη = ωη1 ⊗ ωη2 yields

Resσ(D)σ
∗(ωη) = Resσ(D)ωσ(η) = σ∗(ωη1)⊗ σ∗(ωη2) = ωσ(η1) ⊗ ωσ(η2).

Here, σ(ηi) is the cyclic order induced by σ(η) on the set σ(S1) ∪ {σ(d)}, where σ(d)
corresponds to the partition S = σ(S1)∪σ(S2). Thus ρ(Resp

σ(D)σ(η)) = Resσ(D)ωσ(η) for
all σ ∈ S(n), which proves that ρ(Resp

Dγ) = ResDωγ for all cyclic structures γ ∈ PS ,
and all divisors D.
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Corollary 3.51. A linear combination η =
∑

i aiηi ∈ WS ⊂ PS∪{d} converges with respect to
the standard polygon if and only if its associated form ωη converges on the standard cell.

Proof. We first show that

Resp
D(η) ∈ IS1 ⊗ PS2∪{d} + PS1∪{d} ⊗ IS2 , (3.4.3)

if and only if ωη converges along the corresponding divisor D in the boundary of the
standard cell. If (3.4.3) holds, then by proposition 3.47 together with the previous
proposition, ResD(ωη) = 0. Conversely, if ResD(ωη) = 0 for a divisor D in the boundary
of the standard cell, then by the previous proposition, Resp

D(η) ∈ Ker(ρ ⊗ ρ), which is
exactly equal to IS1 ⊗ PS2∪{d} + PS1∪{d} ⊗ IS2 .

We now show that (3.4.3) is equivalent to the convergence of η. But since η ∈ WS ,
the argument of lemma 3.46 implies that (3.4.3) holds automatically for any D which
intersects {1, n} non-trivially. If D intersects {1, n} trivially, then we can assume that
{1, n} ⊂ S2. In that case, the fact that WS2 ∩ IS2 = 0 (lemma 3.35) implies that (3.4.3) is
equivalent to the apparently stronger condition

Resp
D(η) ∈ IS1 ⊗PS2∪{d} ,

and thus η converges along S1 in the sense of definition (3.3.5). This holds for all divi-
sors D and thus completes the proof of the corollary.

Corollary 3.52. The Lyndon insertion words ofWS form a generating set forFC. Furthermore,
FC is defined by subjecting this generating set to only two sets of relations:

• dihedral relations

• product map relations

3.4.3 The insertion basis for H`(Mδ
0,n)

Definition 3.53. Let an insertion form be the sum of 01-cell forms obtained by renumbering
the Lyndon insertion words ofWS via (1, . . . , n, d)→ (0, t1, . . . , t`+1, 1,∞).

Proposition 3.54. The insertion forms form a basis for Hn−2(Mδ
0,n+1).

This is an immediate corollary of all the preceding results.
It is interesting to attempt to determine the dimension of the spaces H`(Mδ

0,n). The
most important numbers needed to compute these are the numbers c0(n) of special
convergent words (convergent 01 cell-forms) on M0,n. We have c0(4) = 0, c0(5) = 1,
c0(6) = 2, c0(7) = 11, c0(8) = 64, c0(9) = 461.

Proposition 3.55. Set I1 = 1, and let Ir denote the cardinal of the set L{1,...,r} for r ≥ 2. The
dimensions dim H`(Mδ

0,n) are given by

dn =
n∑

r=5

∑

i1+···+ir−3=n−3

Ii1 . . . Iirc0(r) , (3.4.4)

where the inner sum is over all partitions of (n− 3) into (r − 3) strictly positive integers.
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We have I1 = I2 = 1, I3 = 2, I4 = 7. The formula gives




d5 = I2
1c0(5) = 1 ,

d6 = I1I2c0(5) + I2I1c0(5) + I3
1c0(6) = 1 + 1 + 2 = 4 ,

d7 = I1I3c0(5) + I2
2c0(5) + I3I1c0(5) + I2

1I2c0(6) + I1I2I1c0(6) + I2I
2
1c0(6) + c0(7)

= 5c0(5) + 3c0(6) + c0(7) = 5 + 6 + 11 = 22 .

These expressions give the dimensions as sums of positive terms. A very different
formula for dim H`(Mδ

0,n) is given in the appendix using point-counting methods.

3.4.4 The insertion basis for M0,n, 5 ≤ n ≤ 9

In this section we list the insertion bases in low weights. In the case M0,5, there is a
single convergent cell form:

ω = [0, 1, t1,∞, t2]. (3.4.5)

The corresponding period integral is the cell-zeta value:

ζ(ω) =
∫

(0,t1,t2,1,∞)
[0, 1, t1,∞, t2] =

∫

0≤t1≤t2≤1

dt1dt2
(1− t1)t2

= ζ(2) .

Here we use the notation of round brackets for cells in the moduli space M0,n intro-
duced in section 3.2.3: the cell (0, t1, t2, 1,∞) is the same as the cell X5,δ corresponding
to the standard dihedral order on the set {0, t1, t2, 1,∞}. Since C0(5) is 1-dimensional,
the space of periods in weight 2, namely the weight 2 graded part C2 of the alge-
bra of cell-zeta values C of section 3.2.4, is just the 1-dimensional space spanned by∫
X5,δ

ω = ζ(2).

The case M0,6

The space C(6) is four-dimensional, generated by two 01-convergent cell-forms (the
first row in the table below) and two forms (the second row in the table below) which
come from inserting L1,2 = {1x2} and L2,3 = {2x3} into the unique convergent 01 cell
form on M0,5 (3.4.5). The position of the point ∞ plays a special role. It gives rise to
another grading, corresponding to the two columns in the table below, since∞ can only
occur in two positions.

C0(6) ω1,1 = [0, 1, t2,∞, t1, t3] ω1,2 = [0, 1, t1, t3,∞, t2]
C1(6) ω2,1 = [0, 1, t1,∞, t2xt3] ω2,2 = [0, 1, t1xt2,∞, t3]

We therefore have four generators in weight 3. There are no product relations on M0,6,
so in order to compute the space of cell-zeta values, we need only compute the action
of the dihedral group on the four differential forms. In particular, the order 6 cyclic
generator 0 7→ t1 7→ t2 7→ t3 7→ 1 7→ ∞ 7→ 0 sends

ω1,1 7→ −ω2,1 − ω2,2, ω1,2 7→ ω1,1, ω2,1 7→ −ω1,2 − ω2,1, ω2,2 7→ ω2,1.

Thus, letting X denote the standard cell X6,δ = (0, t1, t2, t3, 1,∞), we have
∫
X ω1,1 =∫

X ω1,2,
∫
X ω2,1 =

∫
X ω2,2 and 2

∫
X ω2,2 =

∫
X ω1,2, so in fact the periods form a single
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orbit under the action of the cyclic group of order 6 on H`(Mδ
0,S). We deduce that the

space of periods of weight 3 is of dimension 1, generated for instance by
∫

ω2,1. Since
ω2,1 is the standard form for ζ(3), we have

ζ(0, 1, t2,∞, t1, t3) =
∫

X

dt1dt2dt3
(1− t2)(t1 − t3)t3

= 2 ζ(3) ,

ζ(0, 1, t1, t3,∞, t2) =
∫

X

dt1dt2dt3
(1− t1)(t1 − t3)t2

= 2 ζ(3) ,

ζ(0, 1, t1,∞, t2xt3) =
∫

X

dt1dt2dt3
(1− t1)t2t3

= ζ(3) ,

ζ(0, 1, t1xt2,∞, t3) =
∫

X

dt1dt2dt3
(1− t1)(1− t2)t3

= ζ(3) ,

Note that ω2,2 is the standard form usually associated to ζ(2, 1), so that we have recov-
ered the well-known identity ζ(2, 1) = ζ(3), which is normally obtained using stuffle,
shuffle and Hoffmann relations on multizetas.

The case M0,7

The insertion basis is listed in the following table. It consists of 22 forms, eleven of
which lie in C0(7), six of which come from making one insertion into a convergent 01
cell-form from C0(6) (using L1,2 = {1x2} and L2,3 = {2x3}), and five of which come
from making two insertions into the unique convergent 01 cell-form from C0(5) (which
also uses L1,2,3 = {1x2x3, 2x13} and L2,3,4 = {2x3x4, 3x24}).

C0(7) [0, 1, t2,∞, t3, t1, t4] [0, 1, t1, t3,∞, t2, t4] [0, 1, t1, t4, t2,∞, t3]
[0, 1, t2,∞, t4, t1, t3] [0, 1, t1, t3,∞, t4, t2] [0, 1, t2, t4, t1,∞, t3]
[0, 1, t3,∞, t1, t4, t2] [0, 1, t2, t4,∞, t1, t3] [0, 1, t3, t1, t4,∞, t2]

[0, 1, t3, t1,∞, t2, t4]
[0, 1, t3, t1,∞, t4, t2]

C1(7) [0, 1, t2,∞, t1, t3xt4] [0, 1, t1, t4,∞, t2xt3] [0, 1, t1xt2, t4,∞, t3]
[0, 1, t3,∞, t1xt2, t4] [0, 1, t2xt3,∞, t1, t4] [0, 1, t1, t3xt4,∞, t2]

C2(7) [0, 1, t1,∞, t3x(t2, t4)] [0, 1, t1xt2,∞, t3xt4] [0, 1, t2x(t1, t3),∞, t4]
[0, 1, t1,∞, t2xt3xt4] [0, 1, t1xt2xt3,∞, t4]

The standard multizeta forms can be decomposed into sums of insertion forms as
follows:

dt1dt2dt3dt4
(1− t1)t2t3t4

= [0, 1, t1,∞, t2xt3xt4]

dt1dt2dt3dt4
(1− t1)(1− t2)t3t4

= [0, 1, t1xt2,∞, t3xt4]

dt1dt2dt3dt4
(1− t1)t2(1− t3)t4

= [0, 1, t1, t3,∞, t2, t4] + [0, 1, t1, t3,∞, t4, t2]+

[0, 1, t3, t1,∞, t2, t4] + [0, 1, t3, t1,∞, t4, t2]
dt1dt2dt3dt4

(1− t1)(1− t2)(1− t3)t4
= [0, 1, t1xt2xt3,∞, t4]

(3.4.6)
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In general, the standard multizeta form having factors (1−ti1), . . . , (1−tir) (with i1 = 1)
and tj1 , . . . , tjs (with js = n) in the denominator is equal to the shuffle form:

[0, 1, ti1x · · ·xtir ,∞, tj1x · · ·xtjs ],

so to decompose it into insertion forms it is simply necessary to decompose the shuffles
ti1x · · ·xtir and tj1x · · ·xtjs into linear combinations of Lyndon insertion shuffles.

Computer computation confirms that the space of periods on M0,7 is of dimension
1 and is generated by ζ(2)2. Indeed, up to dihedral equivalence, there are six product
maps on M0,7, given by





(0, t1, t2, t3, t4, 1,∞) 7→ (0, t1, t2, 1,∞)× (0, t3, t4, 1,∞)
(0, t1, t2, 1, t3, t4,∞) 7→ (0, t1, t2, 1,∞)× (0, 1, t3, t4,∞)
(0, t1, t2, 1, t3,∞, t4) 7→ (0, t1, t2, 1,∞)× (0, 1, t3,∞, t4)
(0, t1, t2, 1, t3,∞, t4) 7→ (0, t1, 1, t3,∞)× (0, t2, 1,∞, t4)
(0, t1, t2, t3, 1, t4,∞) 7→ (0, t1, t2, 1,∞)× (0, t3, 1, t4,∞)
(0, t1, t2, 1, t3, t4,∞) 7→ (0, t1, 1, t3,∞)× (0, t2, 1, t4,∞)

(3.4.7)

Following the algorithm from section 3.2.3, we have six associated relations between
the integrals of the 22 cell-forms. Then, explicitly computing the dihedral action on the
forms yields a further set of linear equations, and it is a simple matter to solve the entire
system of equations to recover the 1-dimensional solution. It also provides the value of
each integral of an insertion form as a rational multiple of any given one; for instance
all the values can be computed as rational multiples of ζ(2)2. In particular, we easily
recover the usual identities

ζ(4) =
2
5
ζ(2)2, ζ(3, 1) =

1
10

ζ(2)2, ζ(2, 2) =
3
10

ζ(2)2, ζ(2, 1, 1) =
2
5
ζ(2)2.

The cases M0,8 and M0,9

There are 64 convergent 01 cell-forms in on M0,8, and the dimension of H5(Mδ
0,8) is 144.

The remaining 80 forms are obtained by Lyndon insertion shuffles as follows:

• 44 forms obtained by making the four insertions:

(t1xt2, t3, t4, t5), (t1, t2xt3, t4, t5), (t1, t2, t3xt4, t5), (t1, t2, t3, t4xt5)

into the eleven 01 cell-forms of M0,7

• 12 forms obtained by the six insertion possibilities:

(t1xt2xt3, t4, t5), (t2xt1t3, t4, t5), (t1, t2xt3xt4, t5), (t1, t3xt2t4, t5),
(t1, t2, t3xt4xt5), (t1, t2, t4xt3t5)

into the two 01 cell-forms of M0,6

• 6 forms obtained by the three insertion possibilities:

(t1xt2, t3xt4, t5), (t1xt2, t3, t4xt5), (t1, t2xt3, t4xt5)

into the two 01 cell-forms of M0,6
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• 4 forms obtained by the four insertions:

(t1xt2xt3, t4xt5), (t2xt1t3, t4xt5), (t1xt2, t3xt4xt5), (t1xt2, t4xt3t5)

into the single 01 cell-form of M0,5

• 14 forms obtained by the fourteen insertions:

(t1t3xt2t4, t5), (t3xt1t4t2, t5), (t1t3xt2xt4, t5), (t1t4xt2xt3, t5), (t2t4xt1xt3, t5),
(t2xt1(t3xt4), t5), (t1xt2xt3xt4, t5), (t1, t2t4xt3t5), (t1, t4xt2t5t3), (t1, t2t4xt3xt5),
(t1, t2t5xt3xt4), (t1, t3t5xt2xt4), (t1, t3xt2(t4xt5)), (t1, t2xt3xt4xt5)

into the single 01 cell-form of M0,5.

The case of M0,9 is too large to give explicitly. There are 461 convergent 01 cell-
forms, and dim H6(Mδ

0,9) = 1089. An interesting phenomenon occurs first in the case
M0,9; namely, this is the first value of n for which convergent (but not 01) cell-forms
do not generate the cohomology. The 1463 convergent cell-forms for M0,9 generate a
subspace of dimension 1088.

For 5 ≤ n ≤ 9, computer computations have confirmed the main conjecture, namely:
for n ≤ 9, the weight n−3 part FCn−3 of the formal cell-zeta algebraFC is of dimension dn−3,
where dn is given by the Zagier formula dn = dn−2 + dn−3 with d0 = 1, d1 = 0, d2 = 1.
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Chapter 4

Cohomology of (M
γ
0,n)

Definition 4.1. The kth de Rham cohomology group of a smooth manifold, X , is defined to be
the group of closed differential k forms on X (those whose exterior derivative is 0) modulo exact
ones (those which are the exterior derivative of a k − 1 form).

In the first section of this chapter, we use the theory of spectral sequences of a fibra-
tion to review the proof of the following well-known dimension result on cohomology
groups of genus 0 moduli space, a complete proof of which is difficult (or impossible)
to find in the literature.

Theorem 4.2. For n ≥ 3, the dimension of Hn−3(M0,n,Q) is (n − 2)! and the dimension of
Hk(M0,n,Q) is 0 whenever k > n− 3.

This result was used and reproved (though not as explicitly as we do in the fol-
lowing sections) in a well-known theorem by Arnol’d. For each cohomology group,
Hk(M0,n,Q), Arnol’d explicitly exhibits a set, Bk

n of differential forms whose classes
form a basis of Hk(M0,n,Q) and which has the astonishing property that the ring, A,
generated by B1

n contains Bk
n for all k and A is isomorphic to H∗(M0,n,Q). For the

remainder of the text, we will denote Hk(M0,n,Q) simply by Hk(M0,n).

Definition 4.3. We denote by ωti,tj the differential forms defined by :

ωti,tj =
dtj − dti
ti − tj

, 1 ≤ i < j ≤ n− 3 (4.0.1)

ω0,tj =
dtj
tj

(4.0.2)

ω1,tj =
dtj

1− tj
. (4.0.3)

We call the ring generated by these forms Arnol’d’s Ring, A.

Theorem 4.4 (Arnol’d). Let i1, ..., ik be distinct integers in the interval [1, n]. The elements
of Arnol’d’s ring of the form,

k∧

l=1

ωz,til
, z = tj , 0 or 1

(where j < il) form a basis of Hk(M0,n). In particular, a basis of Hn−3(M0,n) is given by
n−3∧

j=1

dtj
tj − z

: z = 0, 1 or ti, i < j.
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Because Arnol’d’s theorem is a key ingredient in our work, in section 4.1 of this
chapter, we recall a self-contained proof of the theorem 4.2. Here, we recall some defi-
nitions and properties of divisors on M0,n used throughout the rest of the text.

Definition 4.5. Let Z be the set denoting marked points on M0,n, Z = {z1, ..., zn} and let ρ
be the set of all partitions of Z, in which each set in the partition has cardinality greater than or
equal to 2.

Definition 4.6. Let {zi1 , ..., zik} = K ⊂ Z be a subset of the marked points. Then the divisor
which is obtained as the exceptional divisor by blowing up along zi1 = · · · = zik in Pn−3

1 is
denoted by dK .

Recall from page 13 that dA = dZ\A in M0,n.

Definition 4.7. We denote by D the disjoint union, ti∈ρ{di} where each {di} is a singleton
whose single element is the (irreducible) boundary divisor in M0,n\M0,n defined by the partition
i as in the definition 4.6. Likewise, if γ t γc is a partition of ρ, we denote by Dγc := ti∈γc{di}.
We denote by M

γ
0,n := M0,n \Dγc and call M

γ
0,n a partial compactification of M0,n.

So we have M0,n ⊂M
γ
0,n ⊂M0,n.

We remark here that the results outlined in this chapter are combinatorial ones ob-
tained by considering an irreducible boundary component as the set of its defining
marked points, therefore by a slight abuse of notation, and when no ambiguity can
arise, we will denote Dγ simply by γ.

In the second section of this chapter we show an analog of Arnol’d’s theorem for
partial compactifications. In particular, we show that the cohomology rings of the par-
tial compactifications are the subrings of Arnold’s ring converging on the partial com-
pactification.

In the third section, we will recall Brown’s proof that Mδ
0,n is an affine variety when

Dδ is the set of divisors each of which contains a face of the boundary of an associahe-
dron in M0,n(R) (as in chapter 3), and deduce that any subset, Dγ ⊆ Dδ of boundary
divisors also has the property that M

γ
0,n is affine (for example when |γ| = 1, 2).

In the fourth section, for some of the families Dγ of boundary divisors from sec-
tion 4.3, we display explicit bases of the top dimensional cohomology groups of M

γ
0,n.

For γ = δ, the union of the boundary divisors of the standard cell, this computation
was done in chapter 3 where we defined the basis of insertion forms. In chapter 4, we
generalize the method of insertion forms.

In the last section, we study a combinatorial presentation of the Picard group of
divisors on M0,n based on work of S. Keel and A. Gibney. We extend their techniques
of calculating a basis to calculating an explicit expression of any boundary divisor in
terms of these bases by using polygon techniques.

4.1 Spectral sequences of a fibration

The goal of this section is to recall the proof theorem 4.2 by induction, using only the
Leray theorem of the cohomology of a spectral sequence.

Proof (of theorem 4.2). We begin the proof by justifying the base case, n = 3, in which
case M0,3 is a point. The dimension of H0(M0,3) is thus 1! = 1 and Hk(M0,3) = 0 for all
k > 0.
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So we have two induction hypotheses, dim(Hn−4(M0,n−1)) = (n − 3)! and for k >
n− 4, Hk(M0,n−1) = 0.

Before detailing the proof, let us recall some notation and some results on spectral
sequences.

Let
∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xk = X (4.1.1)

be a filtration of the topological space X . And let

Cq(X−1) ⊂ · · · ⊂ Cq(Xk)

be the formal groups ofZ linear combinations of q dimensional oriented simplices in the
subspaces (Xi). Such filtrations exist for nice topological spaces, such as CW complexes.
There exist linear maps, ∂q : Cq(Xi) → Cq−1(Xi) which send a simplex to its boundary
in Xi. Since the simplices are oriented, ∂q−1 ◦ ∂q = 0.

Let
Ei,q−i

0 := Cq(Xi)/Cq(Xi−1).

Then ∂q induces an exact sequence, (Ei,q−i
0 , di,q−i

0 ).
Let Zi,q−i

r ⊂ Ei,q−i
0 be the subgroup of elements, α, such that the coset of α contains a

representative a such that ∂q(a) ∈ Cq−1(Xi−r). From this definition, we see that Zi,q−i
0 =

Ei,q−i
0 .

By the filtration, we have Zi,q−i
k ⊂ Zi,q−1

k−1 . If r is sufficiently large, we obtain a stable
group, Zi,q−i∞ whose elements α contain a coset a such that ∂q(a) = 0.

Let Bi,q−i
r ⊂ Ei,q−i

0 be the subset of elements α whose coset contains an element a
such that there exists an element b ∈ Cq+1(Xi+r−1) such that a = ∂q+1(b).

By the filtration, we have that Bi,q−i
k ⊂ Bi,q−i

k+1 . Furthermore, if r is large enough, we
obtain a stable group, Bi,q−i∞ which contains all of the elements α = a such that a is the
boundary of some simplex in Cq(X). Since ∂q−1 ◦ ∂q = 0, we have that Bi,q−i∞ ⊂ Zi,q−i∞ .

Let Ei,q−i
r := Zi,q−i

r /Bi,q−1
r . The differential di,q−i

0 induces a complex,

di,q−i
r : Ei,q−i

r → Ei−r,q−i+r−1
r .

Let
Er :=

⊕

i,q

Ei,q−i
r ,

which is a complex for the differential dr :=
⊕

di,q−i
r := Er → Er.

Definition 4.8. The complex (Er, dr) is a spectral sequence for the given filtration of X .

Theorem 4.9. Er+1 is the homology group of Er with respect to the differential dr, in particular,

Ep,q
r+1 ' ker(dp,q

r )/Im(dp−r,q+r−1
r ).

The proof of this theorem can be found in many textbooks, such as [FFG].
In our studies, we are concerned with the stabilizing groups,

Ei,q−i
∞ = Zi,q−i

∞ /Bi,q−i
∞ .

Now let us consider the fibration

M0,n →M0,n−1 (4.1.2)
(0, t1, ..., tn−3, 1,∞) 7→ (0, t1, ..., tn−4, 1,∞), (4.1.3)
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with fiber equal to P1(C) \ {0, t1, ..., tn−4, 1,∞} over (0, t1, ..., tn−4, 1,∞).
We write this fibration in the classical notation as

F ↪→ E → B (4.1.4)

where F is the fiber, the projective line minus n− 1 points, B the base, M0,n−1, and E is
M0,n.

Lemma 4.10. The homology groups of F as R vector spaces are given by

Hq(F,R) '





R q = 0
Rn−2 q = 1
0 q > 1

(4.1.5)

This simple lemma may be deduced by using a long-exact Mayer-Vietoris sequence.
Any differentiable manifold has the homotopy type of a CW complex [Mi]. In par-

ticular, M0,n is a CW complex and so there exists a filtration as in (4.1.1) on M0,n,

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xk = M0,n,

where Xi denotes the ith skeleton of M0,n.
We have a bundle of groups over M0,n−1 given by the family, {H1(Fb) : b ∈ B},

and the associated family of homomorphisms,

h[λ] : H1(Fb0)→ H1(Fb1),

for all paths λ from b0 to b1 on B. The homomorphism, h[λ] comes from lifting the
path λ to M0,n. The choice of a lift of b0 to Fb0 ⊂M0,n determines the lift of λ uniquely.
Therefore the endpoint of this lift, a lift of b1, is uniquely defined, giving a map from
Fb0 to Fb1 . This map induces a map on the fundamental groups and hence passes to the
H1. The h[λ] satisfy

h[Id] = Id (4.1.6)
h[λ] = h[λ′] whenever λ is homotopic to λ′ (4.1.7)
λ : b0 → b1, µ : b1 → b2, then h[µ ◦ λ] = h[µ] ◦ h[λ]. (4.1.8)

Definition 4.11. A fibration is simple if for all λ1, λ2 : b0 → b1, h[λ1] = h[λ2].

Claim 4.12. The fibration (4.1.2) is simple.

Proof. Given two points b0 6= b1 on B, we may fix a path λ0 from b0 to b1, and every
path on B from b0 to b1 is homotopic to a loop starting at b0 composed with λ0. Thus,
by definition 4.11 we only need to show simplicity for loops λ on B based at a point b,
in other words that (h[λ] : H1(Fb)→ H1(Fb)) = Id. We saw above that loops on B, and
in fact homotopy classes of loops on B, act on π1(F ); in other words there is a group
action of π1(B) on π1(F ). This action can be explicitly computed as follows.

Recall the definition of the Artin braid group, Bn−1, generated by the fundamental
braids σi, i = 1, ..., n− 2, subject to the relations σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi

for all |i− j| ≥ 2. The full mapping class group Γ0,[n−1] is defined to be the quotient of
Bn−1 by the two relations, (σ1 · · ·σn−2)n−1 = 1 and σ1 · · ·σn−2 · σn−2 · · ·σ1 = 1. There
is a surjection Bn−1 ³ Sn−1 given by mapping σi 7→ (i, i + 1), which factors through
Γ0,[n−1].
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Let the free group, π1(F ), be generated by the loops, x1, ..., xn−1 around the marked
points of F , whose product equals 1. The group Γ0,[n−1] acts on π1(F ) via

σi(xj) =





xj j < i, j > i + 1
xj+1 j = i

x−1
j xj−1xj j = i + 1.

(4.1.9)

The fundamental group of B = M0,n−1, known as the pure mapping class group,
Γ0,n−1, is the kernel of the surjection, Γ0,[n−1] ³ Sn−1. It is generated by the elements
xi,j = σj−1 · · ·σi+1σ

2
i σ
−1
i+1 · · ·σ−1

j−1. It acts on π1(F ) by restriction of the action (4.1.9),
and it is easy to see that each generator, xi,j maps each xk to a conjugate of xk. Thus,
π1(B) passes to the trivial action on π1(F )ab = H1(F ).

Theorem 4.13 (Leray). Given a simple fibration,

F ↪→ E → B,

there exists a cohomology spectral sequence, {Ep,q
r , dr} such that

Ep,q
2 ' Hp(B, Hq(F ))

and converging to H∗(E) in other words,
⊕

r+s=n

Er,s
∞ ' Hn(E).

An introductory proof of this famous theorem can be found for example in [FFG].
This theorem is the major ingredient in our proof of the dimension result.

Lemma 4.14. For the fibration (4.1.2) we have Ep,q
2 ' Hp(B) ⊗ Hq(F ), and if q > 1 then

Ep,q
2 = 0.

Proof. Hq(F ) is a finite dimensional real vector space, Rk, so its dual, Hq(F ) ' Rk. By
the Leray theorem,

Ep,q
2 ' Hp(B, Hq(F )) ' Hp(B,Rk) ' Hp(B)⊗ Rk ' Hp(B)⊗Hq(F ). (4.1.10)

This holds because the action of π1(B) on Rk ' Hq(F ) is trivial as we saw in the proof
of claim 4.12. If q > 1 then Ep,q

2 = 0 by lemma 4.10.

Lemma 4.15. If Ep,q
2 6= 0, then 0 ≤ p ≤ n − 4 and 0 ≤ q ≤ 1. Therefore, Ep,q

2 6= 0 implies
that p + q ≤ n− 3.

Proof. By 4.14, Ep,q
2 = Hp(B)⊗Hq(F ); the left hand factor is 0 whenever p > dim(B) =

n−4 by the induction hypothesis and the right hand one is 0 whenever q > 1 by lemma
4.10.

We can now conclude the induction proof of the vanishing statement of theorem 4.2.

Corollary 4.16. Hk(E) = 0 whenever k > n− 3.

Proof. If k > n − 3, then Ep,q
2 = 0 for p + q = k. Recall by theorem 4.9 that Ep,q

r+1

is the homology group of Ep,q
r . Therefore, if Ep,q

2 = 0, then Ep,q∞ = 0. So by Leray,⊕
p+q=k Ep,q∞ = Hk(E) = 0.
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Lemma 4.17. For the given fibration, M0,n →M0,n−1, we have En−4,1
2 = En−4,1∞ .

Proof. To prove this, we show that En−4,1
2 = En−4,1

3 , therefore by theorem 4.9, the se-
quence stabilizes at En−4,1

2 = En−4∞ .
We have

En−4,1
3 ' ker(dn−4,1

2 )/Im(dn−2,0
2 ).

The kernel of
dn−4,1

2 : En−4,1
2 → En−6,2

2

is all of En−4,1
2 since the image, En−6,2

2 = 0 by 4.15 for q = 2 > 1.
Likewise, the image of dn−2,0

2 : En−2,0
2 → En−4,1

2 is 0 since En−2,0
2 = 0 by 4.15 for

p = n− 2 > n− 3.
This proves the lemma.

The previous sequence of lemmas and claims allows us to deduce the following key
proposition of this section.

Proposition 4.18. The cohomology group,

Hn−3(E) ' Hn−4(B)⊗H1(F ).

Proof. By the Leray theorem, we have that

Hn−3(E) =
⊕

p+q=n−3

Ep,q
∞ (4.1.11)

= En−4,1
∞ ⊕ En−2,0

∞ (by lemma 4.15) (4.1.12)

= En−4,1
∞ (also by lemma 4.15) (4.1.13)

= Hn−4(B)⊗H1(F ). (4.1.14)

The last equality follows from the previous lemma 4.17 and lemma 4.14, since

En−4,1
2 = En−4,1

∞ = Hn−4(B)⊗H1(F ).

By the induction hypothesis, dim(Hn−4(M0,n−1)) = (n − 3)! and by lemma 4.10,
dim(H1(F )) = n − 2. Therefore as a corollary to proposition 4.18, we obtain the claim
made in the main theorem 4.2,

dim(Hn−3(M0,n)) = (n− 2)(n− 3)! = (n− 2)!.

4.2 Cohomology of partial compactifications, Mγ
0,n

In this section, we prove an analog of Arnol’d’s theorem for the cohomology of the
subspaces M

γ
0,n ⊂ M0,n, as defined in definition (4.7), in the case where M

γ
0,n is an

affine variety.
Firstly, it is shown that for certain sets of divisors, γ, those such that M

γ
0,n is an affine

variety, we have a natural injection

Hn−3(Mγ
0,n) ↪→ Hn−3(M0,n).

Then we give a theorem that shows how to explicitly calculate Hn−3(Mγ
0,n) as a sub-

space of Arnol’d’s ring of theorem 4.4 of differential n− 3 forms.
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Proposition 4.19. Let γ be such that M
γ
0,n is an affine variety. Then the top dimensional

cohomology Hn−3(Mγ
0,n) is isomorphic to a subspace of Hn−3(M0,n).

Proof. The heart of justifying this proposition is the following important result of Grothendieck.

Theorem 4.20. [Gr1] Let X be an affine algebraic scheme over C, assume that X is regular (i.e.
“non-singular”). Then the complex cohomology, H•(X,C) can be calculated as the cohomology
of the algebraic de Rham complex, (i.e. the complex of differential forms on X which are “rational
and everywhere defined”).

The Deligne-Mumford compactification, M0,n, is a smooth manifold and the set of
divisors we remove, D \ γ, is a closed subset of M0,n, so M

γ
0,n is a smooth manifold.

A k form, ω, on X = M
γ
0,n will be denoted algebraic if it is rational and everywhere

defined, in other words, it is global and holomorphic on X and there are rational func-
tions, fii,...,ik(t1, ..., tn−3) such that

ω =
∑

fi1,...,ik dti1 ∧ · · · ∧ dtik . (4.2.1)

Such a form must be meromorphic on M0,n because it will have poles of finite order on
the boundary of X which is given by blowing up at coalescing marked points.

What Grothendieck’s theorem says is that the cohomology group of classes of alge-
braic forms, in which two elements are in the same class if they differ by an exact form,
dα where α is algebraic, is isomorphic to the usual de Rham cohomology group. There-
fore, in the following arguments, we may assume that a cohomology class in Hn−3(X)
is an equivalence class of algebraic n− 3 forms.

Let
Φ : Ωk(Mγ

0,n)→ Ωk(M0,n)

denote the restriction map applied to an algebraic k form. Let dα denote an exact k form
on M

γ
0,n. Then in particular α is algebraic, and its restriction, Φ(α) is of Grothendieck

type on M0,n. Thus Φ(dα) = dΦ(α). Thus Φ descends to aQ-linear map on cohomology,

φ : Hn−3(Mγ
0,n)→ Hn−3(M0,n)

which sends a class in the cohomology, ω, to its restriction on M0,n.
We will now justify that this map is injective. Let ω be an n− 3 form such that ω 6= 0

is in the kernel of φ. Then the restriction of Φ(ω) is an exact form, dα, on M0,n, for α
a meromorphic n − 4 form on M0,n, holomorphic on M0,n. We claim α must also be
holomorphic on M

γ
0,n. For if it weren’t, we can suppose that α has a pole on M

γ
0,n (in

particular on some boundary divisor γi in γ) of order m > 0. Then since α has the form
(4.2.1), dα = Φ(ω) would have a pole of order greater than or equal to m on γ. But Φ(ω)
has the exact expression, (4.2.1), as ω, which by assumption is holomorphic on M

γ
0,n.

Thus α is holomorphic on M
γ
0,n and ω is exact. This proves injectivity.

Since φ is injective, we can consider the injection map as an inclusion

Hn−3(Mγ
0,n) ↪→ Hn−3(M0,n).

Proposition 4.21. Assume that M
γ
0,n is an affine variety. A basis for Hn−3(Mγ

0,n) is given by
the classes of the n− 3 forms in the basis of Arnol’d’s ring from theorem 4.4 which do not have
a pole on Dγ . We call such forms “convergent on γ” or “holomorphic on γ”.
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Proof. Let Ai be the sub-vector space of Arnol’d’s ring A generated by i forms. By
Arnol’d’s theorem, An−3 ' Hn−3(M0,n). Let Aγ be the subspace of An−3 of differential
forms convergent on γ.

We have a map
ρ : Aγ → Hn−3(Mγ

0,n),

given by associating a form to its cohomology class. This map is injective because as we
saw above, if ω1 − ω2 = dα, an exact form on M

γ
0,n, then dα is an exact form on M0,n.

This shows that ρ is injective.
By Grothendieck’s theorem, each cohomology class in Hn−3(Mγ

0,n) contains a rep-
resentative which is algebraic, holomorphic on γ and thus an element of Aγ . We can
therefore further conclude that ρ is surjective.

Hence, Hn−3(Mγ
0,n) ' Aγ as vector spaces, so a basis for Aγ yields a basis for

Hn−3(Mγ
0,n).

4.3 Some affine subvarietes of M0,n

In this section, we prove that certain partial compactifications of M0,n contained in
M0,n are affine varieties, that is, we justify that the addition of some subsets of divisors
to M0,n gives an affine space. The partial compactifications we refer to are according to
definition 4.7. We first recall some important definitions and properties of divisors.

Definition 4.22. A prime divisor on M0,n is an irreducible subvariety of M0,n of codimension
1.

Definition 4.23. A Weil divisor on M0,n is a formal finite linear combination over Q of prime
divisors.

In this thesis, we refer to irreducible boundary divisors in M0,n \M0,n simply as
divisors as in definition 4.7.

Every divisor, dK contains a face of the boundary of some associahedron (zi1 , ..., zin)
in M0,n(R) where the elements of K are in a consecutive block in any order. We can
picture the divisor as a chord along that associahedron as in chapter 3, page 64. For
example, we can picture the divisor dK ,K = {t1, t3} in M0,6 as the chord in the polygon
in figure 8.

Definition 4.24. Let dJ and dK be two divisors satisfying the following three conditions: firstly
dK and dJ each contain a face of the boundary of a single associahedron, secondly as chords of
the polygon representing that associahedron, dJ and dK cross inside the polygon, and finally
2 ≤ |J ∪K| ≤ n− 2. We call dJ∪K an intersection-divisor of dJ and dK .

An intersection-divisor corresponds to the chord adjoining adjacent endpoints as in
figure 8. An intersection-divisor is not the intersection of divisors, because the intersec-
tion of divisors is of codimension ≥ 2.
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dJ

0

1

Figure 8: An intersection-divisor

t1

t3

t2

dK

dJ∪K

∞

Note that according to this definition, two equivalent divisors may have up to four
associated intersection-divisors, depending on whether one chooses J or Z \ J , K or
Z \K as the labelling for the divisors.

We have the following result by F. Brown allowing us to deduce the cohomology of
certain partially compactified moduli spaces.

Theorem 4.25. [Br] Let δ be set of boundary divisors which contain faces on the boundary of
the associahedron (zi1 , ..., zin),

δ = {dK : K = {zij , ..., zij+k
}}, (4.3.1)

where K is a consecutive set of marked points along the associahedron.
Then the partially compactified moduli space, Mδ

0,n, is an affine variety.

Sketch of proof. Without loss of generality, we may assume that (i1, ..., in) = (1, ..., n).
The proof for arbitrary dihedral orderings can be repeated by replacing j with ij every-
where.

In F. Brown’s thesis, he considers the ring of PSL2-invariant regular functions on
M0,n, {uij ,

1
uij
| i, j, i + 1, j + 1 distinct modulo n}, defined by the cross ratio

uij : (z1, ..., zn) 7→ (zi − zj+1)(zi+1 − zj)
(zi − zj)(zi+1 − zj+1)

.

These functions can be labeled by chords on the polygon whose vertices are labeled
in the standard cyclic order. The function uij corresponds (naturally) to the chord be-
tween the vertices i and j. This ring of functions has the following defining relation.

For any four distinct vertices, {i, j, k, l}with the imposed dihedral order of the poly-
gon, define the sets,

A = {{p, q} : i ≤ p < j, k ≤ q < l} (4.3.2)
B = {{p, q} : j ≤ p < k, l ≤ q < i}. (4.3.3)

These are pairs of chords which “cross completely”, namely every chord in A intersects
every chord in B and vice versa. Let uA = Πa∈Aua and uB = Πb∈Bub. Then,

uA + uB = 1, (4.3.4)

for any two sets of completely crossing chords.
Let J be the ideal generated by the relations (4.3.4). It is then shown that

Mδ
0,n = Spec(Z[uij ]/J).
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In order to extend F. Brown’s theorem to more general partial compactifications, we
use the following classical algebro-geometric construction.

Proposition 4.26. Let X be an affine variety, X = Spec(R), and let D be a Cartier divisor on
X . Then X \D is an affine variety.

Proof. A Cartier divisor, D, is associated to a line bundle L(D) which is an invertible
sheaf over X . Since X is affine, every invertible sheaf is ample, so there exists an n > 0
such that L(nD) = (L(D))⊗n is very ample. Then, (L(D))⊗n is given by a section
f ∈ Γ(X,OX(nD)) where f vanishes exactly on D and is non-zero on X \D. We have
then that X \D = Spec(R[ 1

f ]) is affine.

From definitions 4.7 and 4.23, the boundary divisors, Dγ , are Weil divisors. Since
M0,n is smooth, Weil and Cartier divisors coincide, and hence we may consider Dγ as a
Cartier divisor.

Corollary 4.27. The partial compactifications, M
γ
0,n, are affine varieties for the following sets

of boundary divisors γ ⊂ D:

1. Any γ containing only one boundary divisor, |γ| = 1,

2. Any γ containing any 2 boundary divisors,

3. Any γ containing 3 boundary divisors such that if two divisors intersect (as chords), then
the third divisor is an intersection-divisor of the two.

Proof. All of these sets, γ, contain divisors which contain a face on the boundary of an
associahedron in M0,n, so we apply proposition 4.26.

For part (1), let γ = {dK} where K = {zi1 , ..., zik} for k < n − 1. Then dK contains
the face of the boundary of any associahedron enumerated by ∆ = (zi1 , ..., zik , ...). Let
δ denote the set of boundary divisors which contain a face of ∆ as in (4.3.1), so Mδ

0,n is
affine. By successive removal of all the divisors, we recursively obtain affine varieties,
the final one being M

γ
0,n.

For part (2), let γ = {dP , dQ} where P = {zi1 , ..., zip}, Q = {zj1 , ..., zjq} and without
loss of generality P ∩Q = {zik+1

, ..., zip} = {zj1 , ..., zjp−k
} (P ∩Q may be empty). Then

dP , dQ are divisors containing the face of the boundary of any associahedron enumer-
ated by

∆ = (zi1 , ..., zip , zjp−k+1
, ..., zjq , ...).

As in part (1), by recursive removal of divisors from Mδ
0,n, we have that M

γ
0,n is affine.

Finally for part (3), assume first that γ contains any two divisors which intersect (as
chords) and a third which is an intersection-divisor of the two. This means that we can
find sets, P and Q as in part (2) such that γ = {dP , dQ, dP∪Q}. Then all of these divisors
are on the boundary of the associahedron, (zi1 , ..., zip , zjp−k+1

, ..., zjq , ...). By applying
the proposition, we have that M

γ
0,n is affine. If γ contains three divisors defined by R,

P , Q which are disjoint subjets of Z, we can construct dP , dQ and dR as in part (2).
All of the varieties, M

γ
0,n for γ from the cases (1)-(3), are therefore affine.

The previous corollary can be extended to many other partial compactifications, but
we only treat these three in detail here.
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4.4 Explicit bases for Hn−3(Mγ
0,n)

In this section, I generalize a result of the previous chapter, namely I use the methods
introduced there to calculate the top dimensional cohomology of the subspaces M

γ
0,n ⊂

M0,n for certain small subsets γ ⊂ δ, where δ denotes as usual the union of the divisors
which contain the face of the boundary of an associahedron. We let ` = n − 3 and
Z = {z1, ..., zn} = {0, 1,∞, t1, ..., t`}.

Let us recall some definitions and results from chapter 3 that will be useful through-
out this and subsequent sections.

Definition 4.28. [Re] Let {x1, ...xn} be a set of non-commutative variables with a lexicographic
ordering and let Pn be the Q-vector space generated by monomials of degree n such that every
variable appears exactly once. The Lyndon basis for Pn is given by the set {A1x · · ·xAk} where
the Ai form a partition of the variables and the first letter of every Ai is the smallest letter
appearing in Ai for the imposed lexicographic ordering. We say that A1x · · ·xAk is a Lyndon
shuffle of degree k.

The Lyndon basis is an alternative basis to the standard basis of permutations of the
n variables. There are (n− 1)! degree 1 Lyndon elements, since these are all monomials
which start with the smallest letter. Let In ⊂ Pn denote vector subspace of Lyndon
shuffles of degree ≥ 2, whose dimension is n!− (n− 1)! = (n− 1)(n− 1)!.

Definitions 4.29. Given a divisor, dK , K = {ti1 , ..., tir}, we definePdK
to beQ-vector space of

polygons with sides decorated by the marked points in K. The subspace IdK
⊂ PdK

is generated
by shuffle sums with respect to one point (as in definition 1.38).

We may often denote the vector spaces, PdK
and IdK

simply by PK and IK . We will
often also note PdK∪{e} and IdK∪{e} by PdK∪{e} and by IdK∪{e} Note that In, where n is
an integer, is different from IK , where K is a set.

Let π be the map that sends a polygon to its associated cell form. The Resd map
sends a cell form to its residue along a divisor d while the Resp

d map sends a polygon to
the tensor product of the polygons cut the chord, e, as in definitions (3.4.2) and (3.3.3).
The Resd and Resp

d maps are related by the identity,

Resd(π(ωp)) = π(Resp
d(ω

p)),

for any polygon ωp.
Recall corollary 3.51 that identifies the kernel of the residue map on a divisor d,

ker(Resd) = π−1(Id∪{e} ⊗PZ\d∪{e}).

Theorem 4.30. Let γ = {γ1, ..., γk} be a set of boundary divisors in M0,n such that M
γ
0,n is

affine. Then, the Q-vector space H`(Mγ
0,n) coincides with the intersection of vector spaces,

k⋂

i=1

π((Resp
γi

)−1(Iγi∪{e} ⊗ PZ\γi∪{e})).

Furthermore, a basis for H`(Mγ
0,n) can easily be deduced from a Lyndon basis of the polygons

in Iγi∪{d} ⊗ PZ\γi∪{d} using insertion forms.
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Proof. From theorem 4.19, we have an injection

H`(Mγ
0,n) ↪→ H`(M0,n).

By theorem 3.16 a basis for H`(M0,n) is given by 01-forms.
By applying proposition 4.21, we obtain a basis for H`(Mγ

0,n) by taking the subspace
of 01-forms which converge on γ. A form is convergent on M

γ
0,n if and only if it is

convergent on all of the divisors, γi ∈ γ, since by the hypothesis, it is convergent on the
interior, M0,n.

A cell form, ω, is convergent on γi if and only if its residue on γi is 0, in other words
if and only if

ω ∈ ker(Resγi). (4.4.1)

We rely on two important combinatorial properties of 01-cyclic structures. Not only
do 01-forms form a basis for the cohomology, but also 01-polygons form a basis for the
Q vector space which is freely generated by 01-cyclic structures. Therefore, each ` form,
ω, has a unique lifting, ωp to a linear combination of 01-polygons. By propostion 3.51,
the condition (4.4.1) can be restated as

ωp ∈ (Resp
γi

)−1(Iγi∪{e} ⊗ PZ\γi∪{e}). (4.4.2)

If a form is convergent on all γi it must be in the intersection of the spaces spanned by
the spaces (4.4.2).

In the examples that follow, we exploit this theorem and the methods of chapter 3 of
insertion forms to calculate bases of cohomologies for some natural M

γ
0,n. Recall from

definition 3.36 that an insertion form is a cell form coming from a linear combination of
polygons such that the polygon residue map maps them to Id ⊗Pd′ for some divisors d
and d′.

Case 1: |γ| = 1

Firstly, we treat the smallest and most natural case of a partial compactification, namely
that obtained by removing all boundary divisors except one from M0,n. It was shown
in corollary 4.27 that if |γ| = 1, M

γ
0,n is an affine space.

Let γ = {dR} for R = {zi1 , ..., zir} and let ω be a differential `-form written in the
01-basis, where ` = n− 3 as in chapter 3. In writing 01-cell forms, it is useful to choose
an appropriate equivalence class representative modulo PSL2. So without loss of gen-
erality, we may assume that R = {ti1 , ..., tir}, where one of the tij may be∞.

From theorem 4.30, ω converges if and only if

Resp
γ(ωp) ∈ Iγ∪{e} ⊗ PZ\γ∪{e}.

The 01-gons that have 0 residue along this divisor are those that don’t contain the block
ti1 , ..., tir ; let this set of 01-gons be denotedWp

γ0 .
To calculate the dimension of the cohomology, we count the number of fixed struc-

tures containing this block. There are (n − 1 − r)! such fixed structures and r! ways of
ordering the elements in the block. So the number of 01-cell forms that map identically
to 0 by Resp

γ is (n− 2)!− (n− r − 1)!r!. The projection from these polygons to 01-forms
are in the basis of H`(Mγ

0,n) along with the insertion forms.
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The insertion forms for the divisor, γ are linear combinations of 01-forms which map
to Iγ∪{d} ⊗ Pγ∪{d} and don’t map identically to 0. These forms are the images of π of
formal sums of n-gons,

P = [0, 1, Z1, R1xR2, Z2],

where Z1 ∪ Z2 = {t1, ..., t`} \ {ti1 , ..., tir} and R1 ∪R2 = {ti1 , ..., tir}. LetWp
γx be the set

of such polygons. The image of π(Wp
γx) forms a linearly independent set of `-forms in

the cohomology by an argument used in chapter 3, theorem 3.41. The 01-forms form a
basis, therefore, we only need to worry about linear dependance for any fixed Z1 and
Z2. But the Lyndon shuffles form a basis for the polynomial algebra, so for any fixed Z1

and Z2 the forms [0, 1, Z1, R1xR2, Z2] are linearly independent.
To count the dimension of polygons that map to Iγ∪{e}⊗Pγ∪{e} is simple. There are

(r − 1)! degree 1 Lyndon generators in the shuffle algebra, therefore there are r!− (r −
1)! = (r − 1)(r − 1)! shuffle generators in Iγ∪{e}. There are (n− r − 1)! fixed structures,
so we conclude that

dim(H`(Mγ
0,n)) = (n− 2)!− (n− r − 1)!r! + (n− r − 1)!(r − 1)!(r − 1) (4.4.3)

= (n− 2)!− (n− r − 1)!(r − 1)!. (4.4.4)

A basis for H`(Mγ
0,n) is given by π(Wp

γ0 tWp
γx).

Examples 4.31. (1) n = 6, γ contains the boundary divisor corresponding to t1 = t2.
Then r = 2 so we conclude that the dimension of H`(Mγ

0,n) is 18. A basis for the cohomology
is given by the 12 01-forms, [0, 1, {t1, t2, t3,∞}] such that t1 is not next to t2, together with the
6 shuffle sums

[0, 1, t1xt2, t3,∞], [0, 1, t1xt2,∞, t3], [0, 1, t3, t1xt2,∞],
[0, 1,∞, t1xt2, t3], [0, 1, t3,∞, t1xt2], [0, 1,∞, t3, t1xt2].

(2) n = 6, r = 3, γ consists of the boundary divisor corresponding to t1 = t2 = t3.
The dimension is 20, and the basis elements are given by the 6 forms, [0, 1, ti,∞, tj , tk], the

6 forms [0, 1, ti, tj ,∞, tk], the 4 Lyndon shuffles,

[0, 1, t1x(t2, t3),∞], [0, 1, (t1, t2)xt3,∞], [0, 1, (t1, t3)xt2,∞], [0, 1, t1xt2xt3,∞],

and finally the 4 Lyndon shuffles,

[0, 1,∞, t1x(t2, t3)], [0, 1,∞, (t1, t2)xt3], [0, 1,∞, (t1, t3)xt2], [0, 1,∞, t1xt2xt3].

Case 2: |γ| = 2 and the divisors are disjoint

In this case, we are considering two divisors that do not cross as chords of any poly-
gon. Let these divisors be given by the equalities of the marked points in the sets
R = {zi1 , ..., zir}, S = {zjs , ..., zjs}, R ∩ S = ∅. (Recall that by corollary 4.27 we know
that M

γ
0,n is affine.)

In this case a basis for the cohomology is given by sets of 01-forms whose associated
polygon either maps identically to zero or to Iγi∪{e} ⊗ PZ\γi∪{e} for the corresponding
Resp

γi
maps, i = 1, 2. As in case 1, the forms mapping identically to zero are all forms

whose associated polygon contains no consecutive block of R or of S. The other forms
are insertions of Lyndon shuffles of degree two or higher of R (resp. S, resp. both) into
01-forms on Z \R (resp. Z \ S, resp. Z \ (R ∪ S)).
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Here, we count the dimension and give a small example of an explicit basis. In the
following formula we count the dimension of M

γ
0,n by methods similar to case 1. The

first line counts the 01-polygons whose polygon residue is identically 0 for both dR and
dS (of lengths r and s), where the last term counts their overlap. The second (resp.
third) line counts the insertions that land in IR∪{d} (resp. IS∪{d}) for Resp

R (resp. Resp
S)

and map to 0 for Resp
S (resp. Resp

R). The last line counts the number of terms that land
in IR∪{d} and IS∪{d} for the respective residue maps.

(n− 2)!− (n− r − 1)!r!− (n− s− 1)!s! + (n− r − s)!r!s! (4.4.5)
+ (n− r − 1)!(r − 1)!(r − 1)− (n− r − s)!(r − 1)!(r − 1)s! (4.4.6)
+ (n− s− 1)!(s− 1)!(s− 1)− (n− r − s)!(s− 1)!(s− 1)r! (4.4.7)
+ (n− r − s)!(r − 1)!(r − 1)(s− 1)!(s− 1). (4.4.8)

Example 4.32. (1) Let n = 6, R = {t1, t2} and S = {t3,∞}. The dimension of the cohomology
is 14 by the formula. There are 8 01-cyclic structures such that t1 is not next to t2 and t3 is not
next to∞,

[0, 1, t1, t3, t2,∞], [0, 1, t1,∞, t2, t3], [0, 1, t2, t3, t1,∞], [0, 1, t2,∞, t1, t3],
[0, 1, t3, t1,∞, t2], [0, 1, t3, t2,∞, t1], [0, 1,∞, t1, t3, t3], [0, 1,∞, t2, t3, t1].

Then we add the 6 insertion elements to form the basis,

[0, 1,∞, t1xt2, t3], [0, 1, t3, t1xt2,∞], [0, 1, t1, t3x∞, t2], [0, 1, t2, t3x∞, t1]
[0, 1, t3x∞, t1xt2], [0, 1, t1xt2, t3x∞].

Case 3: |γ| = 3 and contains two divisors that intersect as chords and their intersection-
divisor

Let d1 and d2 be any divisors that intersect (as chords) as in definition 4.24 and consider
them now as chords of a polygon. A chord between adjacent enpoints of d1 and d2 may
represent an intersection-divisor if it cuts the polygon into two sections, each with at
least two edges. For n ≥ 5 and for any d1, d2 that intersect (as chords), there exists at
least one well defined intersection-divisor, since the four possible intersection chords
form partitions of the edges of the polygon. Therefore we can can find sets R, S ⊂ Z
such that d1 = dR, d2 = dS , and 3 ≤ |R∪S| ≤ n−2 so dR∪S is a well defined intersection-
divisor. Let R and S be such sets and let γ = {dR, dS , dR∪S}.

The ideas used in the description of the cohomology of M
γ
0,n are similar to the ones

used in chapter 3 for finding the cohomology of Mδ
0,n. In fact, they provide a sort of

base case for studying the origin of insertion forms, since this cohomology space con-
sists of forms which converge on many divisors at the same time, some of which over-
lap. The method of constructing this space consists simply of finding elements of the
vector space of polygons decorated with the marked points in M0,n and categorizing
the polygons according to their image by the residue maps along the divisors in γ. We
construct vector spaces of polygons that map to 0 or to I ⊗ P for the Resp maps. Ac-
cording to corollary 3.51, this classification gives all of the differential forms convergent
on the divisors in γ and on M0,n.

To construct the combinatorial polygon sets that describe the cohomology, we con-
sider the subsets of marked points that define the boundary components we are looking
for.
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Let R ⊂ Z be the set {zi1 , ..., zir} and let S ⊂ Z be {zj1 , ..., zjs}. Since the intersection
of R and S is supposed to be non-empty, we may assume that zi1 = zj1 , ..., zik = zjk

.
Let the lexicographic order on R be zik+1

< · · · < zir < zi1 < zi2 < · · · < zik , and on
S be zj1 < · · · < zjs . In this way, we have that the elements of R are less than those of S.

For any set, P , with a given lexicographic order, defineLi(P ) to be the set of Lyndon
shuffles on P of degree i for the shuffle product.

In the following paragraphs, we construct the sets,W0,WdR
,WdS

,WdR∪S
,WdR∪S ,S ,

that describe the cohomology of M
γ
0,n.

Let Wp
0 be the set of 01 n-gons, {ωp}, such that Resp

dR
(ωp) = 0,Resp

dS
(ωp) = 0 and

Resp
dR∪S

(ωp) = 0, in other words all generating 01 polygons with no chord, e, that cuts
ω into a polygon in PK∪{e}⊗PK∪{e} where K = R, S or R∪S and K = {z1, ..., zn} \K.

The number of elements inWp
0 is given by the following formula,

|Wp
0 | = (n− 2)!−

(
(n− 1− s− r + k)!(r + s− k)! (4.4.9)

+ r!
(
(n− 1− r)!− (n− 1− s− r + k)!(s− k + 1)!

)
(4.4.10)

+ s!
(
(n− 1− s)!− (n− 1− s− r + k)!(r − k + 1)!

))
. (4.4.11)

The first term subtracted off counts all of the elements which do not map to 0 for
Resp

dR∪S
, i.e. those polygons which can be cut by a chord in such a way that one side

contains only elements labelled by R ∪ S. The second (resp. third) term counts the
polygons which do not map to 0 for the Resp

dR
(resp. Resp

dS
) map and subtracts off the

intersection with the first term.

Example 4.33. Let n = 6, R = {t1, t2}, S = {t2, t3}. ThenWp
0 contains the 4 cell forms,

[0, 1, t1, t3,∞, t2], [0, 1, t3, t1,∞, t2], [0, 1, t2,∞, t1, t3], [0, 1, t2,∞, t3, t1].

LetWp
dR

be the set of 01 n-gons, {ωp}, such that

Resp
dr

(ωp) ∈ IR∪{e} ⊗ PZ\R∪{e}
6= 0,

and such that Resp
dS

(ωp) = 0 and Resp
dR∪S

(ωp) = 0. This set contains all shuffle sums of
elements of Li(R), i ≥ 2, inserted into polygons decorated by {z1, ..., zn, e}\{zi1 , ..., zir}
and such that the elements of S ∪ {e} \R are never consecutive. The cardinality ofWp

dR

is (r − 1)!(r − 1)((n− r − 1)!− (s− k + 1)!(n− r − s + k − 1)!).
LetWp

dS
be defined similarly, so it has cardinality is (s− 1)!(s− 1)((n− s− 1)!− (r−

k + 1)!(n− r − s + k − 1)!).

Example 4.34. Let n, R and S be as in example 4.33. ThenWp
dR

is the set containing the two
elements,

[0, 1, (t1xt2),∞, t3], [0, 1, t3,∞, (t1xt2)],

andWp
dS

contains the two elements,

[0, 1, (t3xt2),∞, t1], [0, 1, t1,∞, (t3xt2)].

We define Wp
dR∪S

to be the set of insertions of elements (A1x · · ·xAJ) ∈ Li(R ∪
S), i ≥ 2, such that the shuffle factors, Ak, do not contain blocks that equal R or S into
the fixed 01 structures on Z ∪ {e} \ (R ∪ S) in the place of e. One could say that these
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are the standard type of shuffle elements that only have one level of insertion. These
elements map to IR∪S∪{e}⊗PZ∪{e}\(R∪S) for Resp

dR∪S
and can map either to 0 or to I⊗P

for Resp
dR

, Resp
dS

. There are (r + s− k − 1)!(r + s− k − 1) degree two or higher Lyndon
shuffle elements on R ∪ S. Any shuffle term with a consecutive block of R begins with
zik+1

by the lexicographic order we imposed on R ∪ S, so the number of shuffles that
have such a consecutive block in a factor is (r−1)!(s−k)!(s−k). The number of shuffles
where S is a consecutive block in one of the factors is ((r− k)!(r− k)− (r− k)!)s! + (r−
k)!(s − 1)!. The first term in this expression counts the number of shuffle sums where
S is in a successive block and in which there are other terms from R \ S in that factor.
By the lexicographic order, the elements of S are never the first letters of those factors,
therefore for each fixed structure, we have s! such shuffles. The second term counts the
number of shuffles in which the letters in S form their own word. By the lexicographic
ordering, we have (r − k)!(s − 1)! such shuffles. Then we may insert all such elements
into the (n−2− (r + s−k)+1)! fixed 01-structures on Z ∪{e}\ (R∪S). The cardinality
ofWp

dR∪S
is therefore

(n− 1− r − s + k)!
(
(r + s− k − 1)!(r + s− k − 1)− (r − 1)!(s− k)!(s− k)

− (((r − k)!(r − k)− (r − k)!)s! + (r − k)!(s− 1)!)
)
.

Example 4.35. Let n, R and S be as in example 4.33. Then there are the four elements in
Wp

dR∪S
,

[0, 1,∞, (t1xt2xt3)], [0, 1,∞, (t1t3xt2)], [0, 1, (t1xt2xt3),∞], [0, 1, (t1t3xt2),∞].

The final set in the combinatorial description of this cohomology follows closely the
methods of chapter 3, where we construct a second level of insertion sets by inserting
elements in L≥2(S) into the place of e in those elements of L≥2(R ∪ {e} \ S) in which
a consecutive block of e is not equal to a shuffle factor. In order to respect the given
lexicographic order on R ∪ S, e is greater than all elements in R \ S. Then, to obtain
an element in the cohomology, insert these into the place of e in 01-gons decorated by
Z∪{e}\(R∪S). LetWp

dR∪S ,S be the set obtained by this insertion process. The cardinality
ofWp

dR∪S ,S is (n− 1− r− s + k)!(s− 1)!(s− 1)
(
(r− k)!(r− k)− (r− k)!

)
, where the first

factor is the number of 01 fixed structures on Z ∪ {e} \ (R ∪ S), the second, the number
of degree two Lyndon shuffles on S and the third, the number of fixed structures which
are Lyndon shuffles on R ∪ {e} \ S such that e is not its own shuffle factor.

Examples 4.36. In the extended example, there are no level two insertion elements inWp
dR∪S ,S .

Take n = 7, R = {t1, t2, t3}, S = {t3, t4}. Then there are four level two insertion elements
inWp

dR∪S ,S given by

[0, 1,∞, ((t1, (t3xt4))xt2)], [0, 1,∞, (t1x(t2, (t3xt4)))],
[0, 1, ((t1, (t3xt4))xt2),∞], [0, 1, (t1x(t2, (t3xt4))),∞].

In the above examples, we constructed sets of polygons. To pass to elements of the
cohomology, let Wi be the image of Wp

i for the map from polygons to cell forms for
i = 0, dR, dS , dR∪S and dR∪S , S.

Proposition 4.37. The cell forms in the disjoint union,

Wγ =W0 ∪WdR
∪WdS

∪WdR∪S
∪WdR∪S ,S (4.4.12)
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form a basis for the Q vector space of differential ` forms, H`(Mγ
0,n) and its dimension is given

by

(n− 2)! + (n− 1− (r + s− k))!
(
(r − 1)!(s− k)! + (s− 1)!(r − k)!− (r + s− k − 1)!

)

− (n− 1− r)!(r − 1)!− (n− 1− s)!(s− 1)!.

Proof. Because 01-polygons are in bijection with the 01-cell form basis for H`(M0,n) by
theorem 3.16, we may and will prove this theorem combinatorially on the polygonsWp

γ .
First, we justify that the given sets are indeed disjoint. We can write the elements of

the sets as sums of 01 n-gons of the form,

ω =
∑

σ

[0, 1, σ(z1, ..., zn−2)]

where σ ∈ Sn. The elements ofWp
0 are sums of length one and contain no permutations

of the marked points where the elements of R, S or R ∪ S are consecutive. The other
sets contain sums of 01 n-gons whose terms all contain consecutive elements from at
least one of R, S or R ∪ S, so Wp

0 is disjoint from the union of the other four sets.
Similarly, by construction, Wp

dR
(resp. Wp

dS
) contains only sums of 01 n-gons whose

terms contain consecutive elements of R (resp. S), but neither consecutive elements
from S (resp. R) nor R ∪ S. Therefore, Wp

dR
and Wp

dS
are disjoint from the other sets.

Finally, the sets Wp
dR∪S

and Wp
dR∪S ,S are disjoint from each other, since they are sums

whose terms are insertions of Lyndon shuffles on r + s − k elements into 01 n-gons.
Since Lyndon shuffles form a basis for the shuffle algebra on n distinct letters, they
are distinct sums. The Lyndon shuffles in Wp

dR∪S
do not contain shuffle factors with

consecutive elements in either R or S, but those inWp
dR∪S ,S contain only sums of Lyndon

shuffles whose shuffle factors contain consecutive sequences in S. ThereforeWp
dR∪S

and
Wp

dR∪S ,S are also disjoint sets. The map from 01-polygons to cell forms is injective, so
the corresponding sets of cell forms,Wi, are disjoint as well.

By theorem 4.30, we need to justify thatWp
γ is a basis for

⋂

K=R,S,R∪S

π
(
(Resp

dK
)−1(IK ⊗ PZ∪{e}\K)

)
. (4.4.13)

Recall the definition of a framing for a divisor, dK on page 66. If Resp
K(ωp) ∈ PK⊗f ,

such that f is a 01-polygon, we define the framing of ωp with respect to K to be the
right hand factor, f , of its image. Depending on the context, the framing may also be
an element of a basis for PK which is the sum of 01-gons. Since the right hand factors
are assumed to be basis elements for PK , Resp

K(ωp) = 0 if and only if Resp
K(ωp) = 0 for

each framing on the letters Z ∪ {e} \K.
Note: Polygons decorated by a set, K ∪ {e}, are isomorphic to the noncommutative

polynomial algebra in K, where e can be just considered as an “marker”, i.e. the side
that follows it in the clockwise ordering corresponds to the first letter of the correspond-
ing monomial.

Claim 4.38. The sets, (4.4.12), are linearly independent.

Proof. To prove linear independence, we recall theorem 3.16. Since the 01-forms form
a basis for H`(M0,n), andW0 contains 01-forms, we only need to show linear indepen-
dance for the other four sets. Let ωp be a linear combination of forms from Wp

γ \ Wp
0 .

The vector space of 01-gons can be written as the direct sum, V0⊕VR∪S⊕VS⊕VR, where
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V0 is generated by 01-gons with no consecutive blocks of R,S or R ∪ S; VR (resp. VS)
is the vector space generated by 01-gons with consecutive blocks of R (resp. S), but no
consecutive blocks of R∪S and no consectutive blocks of S (resp. R); VR∪S is generated
by 01-forms with consecutive blocks of R ∪ S.

By the hypothesis, ωp ∈ VR∪S ⊕ VS ⊕ VR, so write

ωp =
∑

aR
i vR

i +
∑

aS
i vS

i +
∑

aR,S
i vR,S

i ,

where the vK
i ∈ Wp

K ,K = dR, dS and the last sum has terms fromWp
dR∪S

andWp
dR∪S ,S .

We only need to show linear independence for each individual sum, so we assume
that

∑
aR

i vR
i =

∑
aS

i vS
i =

∑
aR,S

i vR,S
i = 0 and show that this implies that all of the

coefficients, a••, must be 0.
Each vR

i is a sum of 01-gons with a framing (the same in each term) by Z ∪ {e} \ R.
Then we can rewrite the first sum separating out terms with the same framing fi,

∑

fi

∑

j

aR
fi,j

vR
fi,j

= 0,

so that

Resp
dR

(
∑

fi

∑

j

aR
fi,j

vR
fi,j

) =
∑

fi

∑

j

aR
fi,j

Resp
dR

(vR
fi,j

)

=
∑

fi

∑

j

aR
fi,j

(PR
fi,j
⊗ fi,j)

= 0,

where PR ∈ PR∪{e}, fi,j ∈ PZ∪{e}\R. The fixed structures, fi,j , are 01-polygons and
are linearly independent, thus the sum only equals 0 if

∑
j aR

fi,j
PR

fi,j
= 0 for each fi.

But for each j, PR
fi,j

is an element of the Lyndon basis for the polynomial algebra in R.
Hence these are also linearly independent and

∑
aR

i vR
i = 0 if and only if all aR

i are zero,
proving the claim forWp

dR
.

The proof forWp
dS

is identical.
Next, we look at the sum,

∑
aR,S

i vR,S
i and as in the previous two cases, we can write

this term as
∑

fi

∑
j aR,S

fi,j
vR,S
fi,j

, where here the fi are fixed structures on Z ∪{e}\ (R∪S).

Then we only need to prove linear independence for each fi,
∑

j aR,S
fi,j

PR,S
fi,j

. If the poly-
nomials PR,S come from Wp

dR∪S
, they are linearly independent for the reasons above.

So we only need to look at level two insertion elements, PR,S
fi,j
∈ Wp

dR∪S ,S . Without loss

of generality, assume that all of the terms, PR,S
fi,j

are inWp
dR∪S ,S . Now as above, we can

break the sum of the PR,S into fixed structures, gi, on R \S, and apply the residue map,

Resp
dS

(
∑
gi

∑

j

aR,S
fi,gi,j

PR,S
fi,gi,j

) =
∑
gi

∑

j

aR,S
fi,gi,j

Res(PR,S
fi,gi,j

)

=
∑
gi

∑

j

aR,S
fi,gi,j

PS
fi,gi,j

⊗ gi

= 0.

By definition the gi are Lyndon shuffles in R \S and are therefore linearly independent.
And we proceed as before: the PS are Lyndon shuffles in S, so the sum is zero only if
all aR,S

fi,j
are zero.
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Claim 4.39. The setWγ spans the set of forms convergent on γ.

Proof. From the previous claim, we may extend the set of linearly independent elements
inWp

γ to a basis, B, of 01-polygons. Then we show that if an element written in this basis
is in the intersection (4.4.13), then the coefficient on the basis elements B \ Wp

γ must be
0. Therefore the set, π(Wp

γ ) =Wγ , spans the space of convergent cell forms on γ.
The standard basis of 01-gons is B = {[0, 1, σ(Z \ {0, 1})];σ ∈ Sn−2}. As in claim

4.38, we may write the space of 01-gons as

V = VR∪S ⊕ V0 ⊕ VS ⊕ VR.

We now construct an alternative basis to B. The polygons inWp
0 span V0 since they are

elements of B. Furthermore, they are in the intersection of the preimage of the three
residue maps by definition 4.4. LetWp

0 = B0.
As a basis for VS , we take instead of permutations of S, the Lyndon basis for S and

insert into the framings given by Z ∪ {e} \ S. Let VS = VS1 ⊕ VS≥2 . A basis for VS≥2 is
given byWp

dS
and that for VS1 is given by all insertions of degree 1 Lyndon elements in

S. As before,Wp
dS

is in the preimage of the three residue maps. LetWp
dS

= BS≥2 and let
the basis for VS1 = BS1 .

By the same argument, we construct BR1 and BR≥2 as bases for VR1 and VR≥2 .
We take as a basis for VR∪S , insertions of Lyndon shuffles and write VR∪S as the

direct sum of the two vector spaces, V(R∪S)1 ⊕ V(R∪S)≥2 with respective bases, B(R∪S)1

and B(R∪S)≥2 as previously.
We can write an alternative to basis for V(R∪S)≥2 by taking inserting Lyndon shuffles

of S into consecutive blocks of S which appear in a shuffle factor, call this basis B′R∪S .

Example 4.40. Consider the subset of marked points in M0,9,

Z = {0, 1,∞, t1, t2, t3, t4, t5, t6}

and let R = {t1, t2, t3}, S = {t3, t4, t5}. In the usual basis for L≥2(R ∪ S), we have the
elements,

B1 = {(t1,t3, t4, t5xt2), (t1, t3, t5, t4xt2)(t1, t4, t3, t5xt2), (t1, t4, t5, t3xt2),
(t1, t5, t3, t4xt2), (t1, t5, t3, t4xt2)}.

We take the alternative basis in which the elements,

B2 = {(t1,t3, t4, t5xt2), (t1, t3, t5, t4xt2)(t1, (t3xt4, t5)xt2), (t1, (t3, t4xt5)xt2),
(t1, (t3, t5xt4)xt2), (t1, (t3xt4xt5)xt2)}

appear as insertions. To construct an element of B′R∪S , we insert elements of B2 into e in
framings of 01-polygons on {0, 1,∞, t6, e}.

The subspace spanned by B′R∪S can be written as

WR1 ⊕WS1 ⊕WS≥2 ⊕W(R,S)≥2 .

The space WR1 is spanned by the elements which are insertions of shuffles in which
R appears as a block in one factor, likewise for WS1 . WS≥2 is spanned by insertions of
shuffles in S of degree ≥ 2 into one factor as in example 4.40. And W(R,S)≥2 is spanned
by those elements in which neither S nor R appears as a block in any shuffle factor of
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R ∪ S. The setsWdR∪S ,S andWdR∪S
are subsets of B′R∪S and are respectively bases for

WS≥2 and W(R,S)≥2 . As before let WdR∪S ,S = B(R∪S),S≥2 and WdR∪S
= B(R∪S)≥2 . We

let B(R∪S),R1 and B(R∪S),S1 be the bases for WR1 and WS1 respectively. Then B(R∪S),S≥2 ,
B(R∪S)≥2 , B(R∪S),R1 and B(R∪S),S1 form a partition of B′R∪S

So now we have that

B = B0∪BS≥2 ∪ BS1 ∪ BR≥2 ∪ BR1 ∪ B(R∪S)1 ∪ B(R∪S)≥2

∪ B(R∪S),S≥2 ∪ B(R∪S),R1 ∪ B(R∪S),S1

is a basis for the 01-gons where

Wγ = B0 ∪ BS≥2 ∪ BR≥2 ∪ B(R∪S),S≥2 ∪ B(R∪S)≥2 .

We can now justify that if ωp is in the intersection, (4.4.13), then ωp is in the space
spanned byWγ .

The elements in the bases for the subspaces, V0, VS , VR and VR∪S all have unique
framings for a well-chosen basis for PK , K = R, S, R∪S, namely the basis coming from
the construction of the B sets. Let ωp be in the intersection (4.4.13), we can write ωp in
the basis B as

ωp = ω000 + ω001 + ω010 + ω011 + ω100 + ω101 + ω110 + ω111,

where ω000 are terms that are in the kernel of all three residue maps, ω001 is in the
kernel of Resp

dR
and Resp

dS
, but 0 6= Resp

dR∪S
(ω001) ∈ IR∪S ⊗ PR∪S , and so on. This

decomposition is unique.
First, we verify that the term ω000 ∈ Wp

γ . Since Resp
DR∪S

(ω000) = 0, the coefficient
on the elements BK (K = (R ∪ S)•, •) must be 0, since for each framing, the elements
of BK form a basis for their image in IR∪S . Since Resp

dS
(ω000) = 0 and Resp

dR
(ω000) = 0,

then the coefficient on ω000 on BK , K = R•, S• is also 0 for the same reason. Therefore
ω000 ∈ 〈B0〉.

Similarly, ω010 ∈ 〈BS≥2〉 and ω100 ∈ 〈BR≥2〉.
The term ω110 must be identically 0. For the same reasons as above, it must lie in the

space, 〈BS≥2 ∪ BS1 ∪ BR≥2 ∪ BR1〉. The framing for blocks of R consists of permutations
of Z∪{e}\R where the elements of S∪{e}\R are not in a consecutive block since these
elements are in the spaces generated by the B(R∪S)•,• bases since R ∩ S is non-empty.
Therefore if an element maps not to 0, and to IR ∪ PR for Resp

dR
, it must map to 0 for

Resp
dS

map.
Now, we look at the last four terms, ωR,S = ω001 + ω101 + ω011 + ω111. Since

0 6= Resp
dR∪S

(ωR,S) ∈ IR∪S ⊗ PR∪S ,

then the coefficients on ωR,S on the elements of B(R∪S)1 are 0.
We have that ω111 + ω101 maps by Resp

dR
to PR ⊗ PR which we can write as

(L1(R)⊗ PR)⊕ (IR ⊗ PR).

The residue map,

Resp
dR

: 〈B(R∪S),R1〉 ⊕ 〈B(R∪S)≥2 ∪ B(R∪S),S≥2 ∪ B(R∪S),S1〉
³ (L1(R)⊗ PR)⊕ (IR ⊗ PR)
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is equal to the direct sum of the residue maps,

R1 ⊕R≥2 :
(〈B(R∪S),R1 ³ L1(R)⊗PR

)⊕(〈B(R∪S)≥2 ∪ B(R∪S),S≥2 ∪ B(R∪S),S1〉³ IR ⊗ PR

)
.

We have such a decomposition of the residue map because the polygons in B(R∪S),R1

(for any framing) only have consecutive blocks in R which are of degree 1, so they map
to L1(R)⊗P . Furthermore, for any framing in which R is not a consecutive block, it is a
degree two or higher shuffle, and therefore maps to IR ⊗ P . Since we are searching for
elements that map to IR as a left-hand factor, 〈B(R∪S),R1〉 cannot be in the intersection
(4.4.13) and therefore ω101 + ω111 ∈ 〈B(R∪S)≥2 ∪ B(R∪S),S≥2 ∪ B(R∪S),S1〉.

We may repeat the same proof as above, substituting S for R, which shows that
〈B(R∪S),S1〉 cannot be in the intersection (4.4.13) and therefore ω011 +ω111 ∈ 〈B(R∪S)≥2 ∪
B(R∪S),S≥2〉.

We have now shown that if ωp is in the intersection (4.4.13), then ωp is in the space
spanned byWp

γ . The map from 01-polygons to H`(M0,n) is bijective, therefore by theo-
rem 4.30,Wγ spans H`(Mγ

0,n).

We have proven that Wγ is a set of 01-forms which are linearly independent and
span H`(Mγ

0,n) and therefore form a basis.

4.5 The non-adjacent bases of Pic(M0,n)

The following result emerged from the search for sets of divisors, γ, that satisfy the
criterion that M

γ
0,n be affine. If D is an ample divisor, then M0,n \D = M

γ
0,n is an affine

space. Given some “natural set”, γ (we considered for example sets γ which are in the
support of a multizeta form), we searched for explicit divisors having support equal to
γc, the complement of γ. We then attempted to prove, using a methods of A. Gibney
and S. Keel, that these are ample in the Picard group. As we will outline in this section,
their methods our similar to ours in that they describe the Picard group as generated
by polygon divisors. We have not yet succeeded in proving ampleness for the desired
sets, γ, however the search led to a new presentation of Pic(M0,n) with a very simple
form which we will prove in this section.

This section may stand alone from the rest of the text, hence we recall some defini-
tions for the ease of the reader.

Definition 4.41. Let X be a smooth manifold, and let Div(X) be the group formally generated
by Weil divisors on X . The Picard group, Pic(X), is the quotient of Div(X) by the principal
divisors.

We have the following characterization/definition of the Picard group of Weil divi-
sors on M0,n.

Theorem 4.42. [Ke] The Picard group, Pic(M0,n), is isomorphic to Div(M0,n)/ ∼, where ∼
denotes numerical equivalence of divisors.

Any simple closed loop on a stable curve in the Deligne-Mumford stable compacti-
fication of M0,n partitions the points of Z into two subsets as in figure 9. Pinching this
loop to a point yields a nodal topological surface. The stable curves of this type are ob-
tained by putting all possible complex structures on this topological surface. A single
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boundary component parametrizes these stable curves for a given pinched loop. We
denote by dA the boundary divisor in which the loop pinches the subset A ⊂ Z, hence
dA = dZ\A. We denote the set of irreducible boundary divisors on M0,n by Dn. This set
has cardinality 2n−1 − 1− n.

−→

Figure 9: A point on a boundary divisor in M0.n

Example 4.43. The set of boundary divisors, D4, on M0,4 contains the three divisors, dz1,z2 , dz1,z3

and dz1,z4 .
The set of boundary divisors, D5, on M0,5 contains the 10 divisors, dA, where A ⊂ Z has

cardinality 2.

Theorem 4.44. [Ke] A presentation of the Picard group, Pic(M0,n), is given by taking the
classes, δA of the boundary divisors, dA ∈ Dn as generators, subject to the following relations:
for any four distinct elements, zi, zj , zk, zl in Z,

∑

zi,zj∈A
zk,zl /∈A

δA =
∑

zi,zk∈A
zj ,zl /∈A

δA =
∑

zi,zl∈A
zj ,zk /∈A

δA.

The following theorem specifies a basis for Pic(M0,n) and also yields an expression
for its dimension.

Theorem 4.45. [Gi, 2008] Let [zi1 , ..., zin ] denote a cyclic ordering of the marked points, con-
sidered as labelling the consecutive edges of an n-gon. Then a basis for Pic(M0,n) is given by
the divisors defined by nonempty subsets of marked points on the n-gon which do not form an
adjacent set of vertices on the n-gon. We call this set of divisors the non-adjacent basis.

Remark. The following combinatorial formula for the dimension follows immedi-
ately from counting the elements of the non-adjacent basis:

dim(Pic(M0,n)) = 2n−1 − 1− n−
(

n

2

)
+ n = 2n−1 − 1−

(
n

2

)
. (4.5.1)

This dimension was found by S. Keel in [Ke] as the dimension of the first Chow group
of M0,n.

Example 4.46. Consider the standard ordering, (z1, z2, z3, z4, z5). Then the non-adjacent basis
for Pic(M0,5) for this ordering is given by the five divisors

d{z1,z3}, d{z1,z4}, d{z2,z4}, d{z2,z5}, d{z3,z5}.
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4.6 A new presentation of Pic(M0,n)

In this section, we give a simple expression of each boundary divisor in Pic(M0,n) in
terms of any non-adjacent basis. This yields a new and very simple presentation for
Pic(M0,n) with a minimal set of relations.

Before stating the theorem, we introduce some notation. Given an n-gon decorated
by marked points in the cyclic order, (zi1 , ..., zin), a divisor in the basis of the Picard
group can be described as an ordered list of disjoint subsets, B1, ..., BN , where each
Bi is a set of adjacent points on the n-gon but no pair (BJ , BJ+1) is a set of adjacent
points, and the divisor is given by the blowup at the equality of the marked points in
∪N

1 Bi. Each pair, BJ , BJ+1 mod N , defines a non-empty gap between them which we
denote GJ . Specifically, let BJ = {zij , ..., zij+k

}, BJ+1 = {zip , ..., zip+q}. Then GJ =
{zij+k+1

, ..., zip−1}. In this way, we can write a basis divisor as (B1, G1, ..., BN , GN ).

Theorem 4.47. Let δ denote a dihedral ordering (zi1 , . . . , zin) on the points z1, . . . , zn. Then
Pic(M0,n) is generated by the set of boundary divisors of M0,n (denoted by subsets of {z1, . . . , zn}
of cardinality between 2 and n− 2), subject to the relations

δI =
∑

J∈J
δJ −

∑

K∈K
δK , (4.6.1)

where I denotes a consecutive subset of points for the ordering δ, J denotes the set of non-
adjacent subsets

J = B1 ∪ · · · ∪Bj

of {z1, . . . , zn} such that I is equal to a “segment” of even length,

Bi, Gi, . . . , Bk, Gk or Gi, Bi+1, Gi+1, . . . , Gk, Bk+1

of (B1, G1, . . . , BN , GN ), and K denotes the set of non-adjacent subsets K = B1 ∪ · · · ∪ Bj

such that I is equal to a “segment” of odd length,

Bi, Gi, . . . , Bk, Gk, Bk+1 or Gi, Bi+1, Gi+1, . . . , Bk, Gk

of (B1, G1, . . . , BN , GN ).

The beauty of the theorem is more easily seen by rephrasing it as: the coefficients of
any divisor in the basis of the Picard group given by a cyclic ordering can be calculated
by the parity of the defining blocks of the divisor. The precise statement of the theorem
does not do justice to its simplicity, as illustrated in the following example.

Example 4.48. We have the following expression for the divisor, δ1,2,3, in the basis of Pic(M0,6)
given by the cyclic ordering (1, 2, 3, 4, 5, 6) = (z1, z2, z3, z4, z5, z6):

δ1,2,3 = −δ1,3 + δ1,4 + δ3,6 − δ4,6 + δ1,2,4 − δ1,3,5 + δ1,4,5.

Proof. We will do this proof by induction.
Let ∆δ be set of divisors which is a basis for Pic(M0,n) with respect to the cyclic

order δ by theorem 4.45. We denote by δB1···BN
= (B1, G1, . . . , BN , GN ) an element

of ∆δ. Let I be a consecutive subset for the cyclic order δ, and δI the corresponding
boundary divisor in the Picard group. Then we may restate the theorem as follows.
One can express δI as a linear combination of elements of ∆δ:
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δI =
∑

CI
B1,...,BJk

(B1, G1..., BJk
, GJk

), (4.6.2)

and the coefficients are given by

CI
B1,...,BN

=





1 I =
⋃j

p=1 Bi+p ∪Gi+p

−1 I =
(⋃j

p=1 Bi+p ∪Gi+p

) ∪Bi+j+1

0 otherwise,

(4.6.3)

where for 1 < p < j, i + p is taken modulo n.
The following theorem gives the base case for the induction.

Theorem 4.49. [Gi] The coefficient, CI
B1,B2

in the Picard basis with respect to γ of the basis
divisor (B1, G1, B2, G2) is given by

CI
B1,B2

=





1 I = Bi ∪Gj for any i, j

−1 I = Bi or I = Gj for any i, j

0 otherwise.
(4.6.4)

Furthermore, by recursion on N , this formula allows one to calculate CI
B1,...,BN

for any basis
element (B1, ..., GN ) ∈ ∆δ.

To calculate the coefficient recursively for N = 3, we use the following artful tech-
nique due to A. Gibney. Let B1B2 = B1 ∪ B2, G1G2 = G1 ∪ G2 and G3B1 = G3 ∪ B1.
Consider another basis of the Picard group containing (B1B2, G1G2, B3, G3). Then the
coefficient of δI on (B1B2, G1G2, B3, G3), CI

B1B2,B3
, is equal to the coefficient of

∑
CI

B1,...,BJk
(B1, G1..., BJk

, GJk
) on (B1B2, G1G2, B3, G3), (4.6.5)

by the expression (4.6.2) in this new basis. By theorem 4.49, the the only non-zero terms
in the expression (4.6.5) are the four terms in which the basis element in the basis with
respect to δ can be written as a union of the sets, B1B2, G1G2, B3 and G3:

CI
B1,B2,B3

, CI
B1,B2

, CI
G1,G2

and CI
G3B1,B2.

Hence we have

CI
B1B2,B3

= CI
B1,B2,B3

CB1,B2,B3

B1B2,B3
+ CI

B1,B2
CB1,B2

B1B2,B3
+ CI

G1,G2
CG1,G2

B1B2,B3

+ CI
G3B1,B2

CG3B1,B2

B1B2,B3

= CI
B1,B2,B3

− CI
B1,B2

− CI
G1,G2

+ CI
G3B1,B2

CI
B1,B2,B3

= CI
B1B2,B3

+ CI
B1,B2

+ CI
G1,G2

− CI
G3B1,B2

. (4.6.6)

Example 4.50. In M0,6, take a basis for the Picard group defined by the standard cyclic order,
(z1, z2, z3, z4, z5, z6). In this example, we write the divisor, δI , I = {z2, z3, z4}, in this basis.
By theorem 4.49 we can calculate most of the coefficients directly, since all but one of the basis
elements can be written as the partition into four sets, (B1, G1, B2, G2).

δI = δz1,z4 − δz1,z5 − δz2,z4 + δz2,z5 + δz1,z3,z4 + δz1,z4,z6 + CI
{z1},{z3},{z5}δz1,z3,z5 . (4.6.7)

We can now apply the recursion step in (4.6.6). The first term, CI
{z1,z3},{z4} = 0 by theorem

4.49. Likewise, CI
{z1},{z3} = 0, CI

{z2},{z4} = −1 and CI
{z1,z6},{z3} = 0, so CI

{z1},{z3},{z5} = −1.
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...

G1B1

BN

GN

G2

B2

δB1,...,BN

Figure 4.1: Polygon representing a basis divisor

We can generalize this recursive procedure to prove (4.6.3), which is equivalent to
the formula (4.6.1) in the statement of the theorem.

It will be useful to consider a visual interpretation of a basis divisor (B1, ..., GN ),
which pictures the divisor as an N -gon with the sets Bi, Gj on the vertices as in figure
4.1.

We have an equivalent restatement of theorem using the pictorial representation in
figure 4.1 of a basis divisor: The coefficient of δI on the basis divisor δB1,...,BN

is (−1)m

if I is the union of m of the vertices on the polygon representation of the basis divisor
δB1,...,BN

.
Using this pictorial interpretation, we prove (4.6.3) by induction on N , the number

of blocks of consecutive elements on δ that define the basis divisor.
Statement 4.6.1 is true for N = 2 by theorem 4.49.
Assume statement 4.6.1 is true for N − 1. Let (B1, .., GN ) be a basis element in ∆δ.
We denote by B1 · · ·BN−1 = B1 ∪ · · · ∪ BN−1, G1 · · ·GN−1 = G1 ∪ · · · ∪ GN−1,

GNB1 = GN ∪B1. Let δ′ denote the dihedral ordering of {z1, . . . , zn} given by

δ′ = (B1, . . . , BN−1, G1, . . . , GN−1, BN , GN ),

where the ordering on the points inside each set Bi, Gi is that inherited from δ. By
theorem 4.45, the ordering δ′ determines a basis ∆δ′ of Pic(M0,n), and the divisor
δB1···BN1

,BN
, which we denote by d = (B1 · · ·BN−1, G1 · · ·GN−1, BN , GN ) is in the set

∆δ′ .
By expression (4.6.5), the coefficient of δI on d in the ∆′δ′ basis is equal to the coeffi-

cient of ∑
CI

B1,...,BJk
(B1, G1..., BJk

, GJk
) on d.

Just as in expression (4.6.6) for N = 3, the only divisors in ∆δ which have a non-zero
coefficient on d are





δB1∪···∪BN
= (B1, G1, . . . , BN , GN )

δB1∪···∪BN−1
= (B1, G1, . . . , BN−1, GN−1BNGN )

δG1∪···∪GN−1
= (G1, B2, ..., GN−1, BNGNB1)

δGN∪B1∪B2∪···∪BN−1
= (GNB1, G1, B2, ..., GN−2, BN−1, GN−1BN ).

(4.6.8)

By (4.6.4), these four coefficients are respectively 1,−1,−1 and 1. Thus, we obtain

CI
B1,...,BN

= CI
B1···BN−1,BN

+ CI
B1,...,BN−1

+ CI
G1,...,GN−1

− CI
GNB1,B2,...,BN−1

(4.6.9)
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... ...

B1 · · ·BN−1 G1 · · ·GN−1

BNGN

G1B1

BN−1 G2

B2

G1

B2

G2 G2

G1

δB1···BN−1,BN

δG1,...,GN−1
δGNB1,...,BN−1

GN−1BN

BN−1BN−1

GNB1

B2GN−1

BNGNB1

δB1,...,BN−1

GN−1BNGN 2

3 4

1

Figure 4.2: Polygons corresponding to T1, T2, T3, T4

which we rewrite more concisely as

C = T1 + T2 + T3 − T4. (4.6.10)

Each of the basis elements, δB1···BN−1,BN
, δB1,...,BN−1

, δG1,...,GN−1
, δGNB1,...,BN

is a divisor
defined by less than N blocks, so by the induction hypothesis, T1 = (−1)m1 if I is the
union of m1 vertices in polygon 1 in figure 4.2, T2 = (−1)m2 if I is the union of m2

vertices in polygon 2. Likewise, polygon 3 gives T3 and polygon 4 gives T4.
To prove (4.6.3), we need the induction step in each of the following cases.
Case 1. I is not the union of any collection of the sets Bi, Gj . Then by the expression

(4.6.9) and the induction hypothesis, the coefficient of δI on (B1, ..., GN ) is 0.
Case 2. I is the union of an even number of consecutive subsets:

I =
j⋃

p=1

Bi+p ∪Gi+p or I =
j⋃

p=1

Gi+p ∪Bi+p+1

and these sets are not “on the boundary”, in other words i ≥ 1 and i + j ≤ N − 2. By
theorem 4.49, T1 = 0. By the induction hypothesis, T2 = T3 = T4 = 1. Then δI

B1,...,BN
=

1 + 1 − 1 = 1 verifying statement 4.6.3 of the theorem. This case covers all divisors δI

such that I is the union of an even number of subsets from {B2, G2, ..., BN−2, GN−2} or
{G2, B3, ..., GN−2, BN−1}.

Case 3. I is the union of an odd number of non-boundary consecutive subsets:

I =
( j⋃

p=1

Bi+p ∪Gi+p

) ∪Bi+j+1 or I =
( j⋃

p=1

Gi+p ∪Bi+p+1

) ∪Gi+j+1,

i ≥ 1, i + j + 1 ≤ N − 2. Then by the same arguments as in case 2, T1 = 0, T2 =
T3 = T4 = −1 so that δI

B1,...,BN
= −1 − 1 + 1 = −1 verifying statement (4.6.3) of the

theorem. This case covers all δI where I is the union of an odd number of subsets from
{B2, G2, ..., GN−3, BN−2} or {G2, B3, ..., BN−2, GN−2}.

107



For the following 12 boundary cases, we calculate T1 by theorem 4.49 and T2, T3, T4

are gotten from the induction hypothesis. The results of the calculation are summarized
in the following table and can be deduced from the parity of loops around the vertices
in the polygons in figure 4.2. Recall that the last column, C = T1 + T2 + T3− T4 denotes
CI

B1,...,BN
. To prove the theorem, it suffices to calculate that C = 1 when I is the union

of an even number of subsets, Bi, Gj , and that C = −1 when I is the union of an odd
number of such subsets.

Case I T1 T2 T3 T4 C

4 Gi ∪Bi+1 ∪ · · · ∪BN ∪GN ∪B1, 2 ≤ i ≤ N − 1 0 1 1 1 1
5 Bi ∪Gi ∪ · · · ∪GN ∪B1, 2 ≤ i ≤ N − 1 0 -1 -1 -1 -1
6 GN or BN -1 0 0 0 -1
7 BN ∪GN 1 0 0 0 1
8 Gi ∪Bi+1 ∪ · · · ∪BN ∪GN , 1 ≤ i ≤ N − 1 0 -1 0 0 -1
9 Bi ∪Gi ∪ · · · ∪BN ∪GN , 2 ≤ i ≤ N − 1 0 1 0 0 1
10 Bi ∪ · · · ∪BN , 2 ≤ i ≤ N − 1 0 0 0 1 -1
11 Gi ∪ · · · ∪BN , 1 ≤ i ≤ N − 1 0 0 0 -1 1
12 Gi ∪ · · · ∪GN−1, 1 ≤ i ≤ N − 1 0 0 -1 0 -1
13 Bi ∪Gi ∪ · · · ∪GN−1, 2 ≤ i ≤ N − 1 0 0 1 0 1
14 Gi ∪ · · · ∪BN−1, 2 ≤ i ≤ N − 2 0 1 1 1 1
15 Bi ∪ · · · ∪BN−1, 2 ≤ i ≤ N − 1 0 -1 -1 -1 -1

The fifteen cases above cover all possible consecutive subsets I and all verify the
statement of the theorem.
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Chapter 5

Index of Notations and Definitions
by Chapter

In this index, the number following the definition indicates the page.

Chapter 1

ζ(k1, ...kd): 1
Z : 1
Depth, weight of a multizeta value: 1
Convergent: 3
· : 5
∗, st(a, b): 5
x, sh(ω1, ω2): 5
Double shuffle: 6
Hoffman’s relation: 6
FZ , ζF (w): 6
nfz, z(w): 7
nz, ζ(w): 7
Q〈〈x, y〉〉, Q〈〈yi〉〉: 7
πY : 7
∆x, ∆∗: 8
ds: 8
Primitive: 8
The Poisson bracket, {f, g}: 8
F i

n(ds): 8
grt: 9
ñfz, zx(w), z∗(v): 10
Hn−3(M0,n): 12, 15
M0,n: 12
`: 12
The fat diagonal, ∆: 12
M0,n: 12
dA: 13
Cell, (zi1 , ..., zin): 13
Period: 13

C: 13
Z: 14
δ, the standard cell: 14
Cell form, [zi1 , ..., zin ]: 15
PZ , IZ : 16
Partial compactification, Mδ

0,n: 16
FC: 17
Chord: 18
Residue map, Resp

d: 19

Chapter 2

Weight, depth of a multizeta: 20
f: 21
(f |w): 21
Weight, w(f) in Q〈〈x, y〉〉: 21
Depth, d(f) in Q〈〈x, y〉〉:21
Vn: 21
L[x, y], and bracket, [f, g]: 21
Li

n[x, y]: 21
Weight, depth in Q〈〈yi〉〉: 23
L[yi]: 23
πY(f): 24
The Poisson bracket, {f, g}: 24
Lyndon word: 25
Lyndon-Lie word, [ω]: 25
Ci

n: 25
F ids: 28
P , P : 29
Q: 31
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Λ, ΛD, ΛA: 31
Dj , Dj,z : 33
Ak: 33
ΦKZ : 34
Φx: 34
DM , DMγ : 34
M : 36
N : 37

Chapter 3

The standard cell, X = Xδ: 46, 49
01-cell form: 47
Mixed Tate motive,MT (Z): 49
Xδ, Mδ, Aδ and Bδ: 49
Framed mixed Tate motive,M(Z): 49
m(ω): 49
L, F: 49
M0,n: 50
S: 51
Cyclic structure, dihedral structure: 51
Cell-form, [s1, ..., sn]: 51
Cell, (γ1, ..., γn), Xn,γ = Xγ : 52
Standard cell, XS,δ = Xn,δ: 52
ID(i, j): 52
Cell-function, 〈γ〉: 53
01 cell-function: 55
PS : 56
Pairs of polygons, (γ, η): 57
Product map: 57
Cell-zeta value, C: 60
Formal cell-zeta values, FC: 61
VS , IS : 62
Lyndon basis: 62
Chord, χ(γ): 62
The polygon residue map, ResD

p (η): 63
WS : 65
Lyndon insertion shuffles, LS : 65

Framing: 66
Lyndon insertion words,WS : 66
Special convergent words: 66
L(γ, v1, ..., vk): 67
Composed residue map, Resp

D1,...,Dm
: 68

JS , KS : 69 c0(n): 77

Chapter 4

Arnol’d’s ring, A: 82
Hk(M0,n): 82
dK : 83
D: 83
M

γ
0,n: 83

Cq(X): 84
Zi,q−i

r : 84
Bi,q−i

r : 84
Er, Ei,q−i

r : 84
dr, di,q−i

r : 84
Spectral sequence: 84
F , E, B: 84
h[λ]: 85
Algebraic (k form): 88
Prime divisor: 89
Weil divisor: 89
Divisor: 89
Intersection-divisor: 89
`, Z: 92
Lyndon basis, Lyndon shuffle: 92
π: 92
Wp

γ0 ,Wp
γx : 93

Li(P ): 96
Wp

0 ,Wp
dR

,Wp
dS

,Wp
dR∪S

,Wp
dR∪S ,S : 96

W0,WdR
,WdS

,WdR∪S
,WdR∪S ,S : 97

Div(X): 102
Pic(M0,n): 102
Bi, Gi: 104
CI

B1,...,BJk
: 105
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∗, st(a, b), 5
Ak, 33
Bi, Gi, 104
Bi,q−i

r , 84
Ci

n, 25
Cq(X), 84
CI

B1,...,BJk
, 105

D, 83
DM, DMγ , 34
Dj , Dj,z , 33
Div(X), 102
Ei,q−i

r , Er, 84
F, E, B, 85
F i

n(ds), 28
Hk(M0,n), 82
Hn−3(M0,n), 15
IS , 62
IZ , 16
JS , 69
KS , 69
L(γ, v1, ..., vk), 67
M , 36
Mδ, Bδ, Aδ, 49
N , 37
P , 29
Pic(M0,n), 102
Q, 31
S, 51
VS , 62
Vn, 21
WS , 65
Z, 14, 92
Zi,q−i

r , 84
[ω], 25
∆x, ∆∗, 8
FZ , ζF (w), 6
ID(i, j), 52
L, F , 49
Λ, ΛD, ΛA, 31

L[x, y], bracket [f, g], 21
L[yi], 23
MT (Z), 49
Z , 1
M0,n, 12
M0,n, 12
M

γ
0,n, 83

ΦKZ , 34
Φx, 34
Q〈〈x, y〉〉, Q〈〈yi〉〉, 7
Resp

D(η), 63
Resp

D1,...,Dm
(ω), 68

LS , 65
δ, standard cell, 14
ds, 8
`, 12, 92
grt, 9
Li

n[x, y], 21
C, 13
FC, 17
PZ , 16
f, 21
nfz, z(w), 7
nz, ζ(w), 7
π, 92
πY , 7
x, sh(ω1, ω2), 5
ñfz, zx(w), z∗(v), 10
ζ(k1, ..., kd), 1
c0(n), 77
dA, 13, 83
di,q−i

r , dr, 84
h[λ], 85
Li(P ), 96
PS , 56
W0,WdR

,WdS
,WdR∪S

,WdR∪S ,S , 96
Wp

0 ,Wp
dR

,Wp
dS

,Wp
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Wp
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M(Z), m(ω), 49
WS , 66
01-cell form, 47

Algebraic (k form), 88
Arnol’d’s Ring, A, 82

Cell form, [s1, ..., sn], 51
Cell form, [zi1 , ..., zin ], 15
Cell function, 〈γ〉, 53
Cell zeta value, 60
Cell, (zi1 , ..., zin), 13
Cell, Xn,η, 52
Chord, 18
Chord, χ(γ), 62
Concatenation product, ·, 5
Convergent sequence, 3
Cyclic structure, 51

Depth in Q〈〈x, y〉〉, 21
Depth in Q〈〈yi〉〉, 23
Depth of ζ(k), 20
Dihedral structure, 51
Divisor, 89
Double shuffle, 6

Fat diagonal, ∆, 12
Formal cell zeta value algebra, 61
Framed mixed Tate motive, 49
Framing, 66

Hoffman’s relation, 6

Intersection-divisor, 89

Lyndon basis, 62, 92
Lyndon insertion shuffle, 66
Lyndon insertion words, 66
Lyndon shuffle, 92
Lyndon word, 25
Lyndon-Lie word, 25

Partial compactification, 83
Partial compactification, M

γ
0,n, 16

Period, 13
Poisson bracket, {f, g}, 8
Polygon pair, (γ, η), 57
Prime divisor, 89
Primitive, 8
Product map, 57

Residue map, Resp
d, 19

Special convergent words, 66
Spectral sequence, 84
Standard cell, X = Xδ, 46
Standard cell, Xn,δ, 52

Weight in Q〈〈x, y〉〉, 21
Weight in Q〈〈yi〉〉, 23
Weight of ζ(k), 20
Weil divisor, 89
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