Klausur zur Linearen Algebra für gymnasiales Lehramt

Nachname:				Vorname:			
Matrikelnumn	ner:						
Geburtsdatun	n:						
Studiengang:				ggf	alte Ll	PO□ ne	eue LPO 🗆
	1	2	3	4	5	\sum	

Bitte beachten Sie:

- (a) Bitte tragen Sie auf jedem Blatt, das Sie abgeben, Ihren Namen ein!
- (b) Arbeitszeit: 10:10 11:50 Uhr (100 Minuten).
- (c) Zugelassene Hilfsmittel: Schreibgerät.
- (d) Schreiben Sie auf gar keinen Fall Lösungsvorschläge zu verschiedenen Aufgaben auf dasselbe Blatt!
- (e) Jede Aufgabe gibt dieselbe Punktzahl.
- (f) Bei Bedarf kann zusätzlich Papier angefordert werden.

Viel Erfolg!

Aufgabenstellung

Aufgabe 1.

Zeigen Sie, dass jeder euklidische Vektorraum ein normierter Vektorraum ist, indem Sie eine geeignete Norm angeben und die Normeigenschaften nachweisen. (Die Cauchy-Schwarz Ungleichung darf benutzt werden.)

Aufgabe 2.

(a) Bestimmen Sie <u>alle</u> Eigenwerte (mit algebraischen Vielfachheiten) und \underline{einen} der Eigenvektoren der Matrix

$$B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}.$$

(b) Ist B diagonalisierbar? Beweisen Sie Ihre Behauptung.

Aufgabe 3. Lösen Sie das lineare Gleichungssystem Ax = b, wobei

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 6 & 0 & 5 \\ 5 & 0 & 4 \end{pmatrix} \text{ und } b = \begin{pmatrix} -3 \\ 2 \\ 2 \end{pmatrix}.$$

Aufgabe 4. Seien $F \in M(n \times n, K)$ eine nilpotente Matrix, so dass $F^3 = 0$ und $F^2 \neq 0$. (In der originalen Version gab es die sinnlose Bedingung "und $m \in \mathbb{N}$ ". Dieser Fehler wurde während der Klausur korrigiert.)

(a) Sei jetzt $v \in K^n$ ein Vektor, so dass $F^2v \neq 0$. Beweisen Sie, dass die drei Vektoren, v, Fv und F^2v , linear unabhängig sind.

(b) Seien $v \in K^n$, $v \neq 0$ und $\lambda \in K$, so dass $Fv = \lambda v$. Beweisen Sie, dass dann $\lambda = 0$ sein muss. (In der originalen Version war die Bedingung " $v \neq 0$ " ausversehen ausgelassen. Dieser Fehler wurde in jedem Klausurraum während der eigentlichen Klausur an der Tafel korrigiert.)

Aufgabe 5.

(a) Zeigen Sie, dass die Abbildung,

$$\mathrm{spur}_{2\times 2}: M(2\times 2, K) \to K$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto a_{11} + a_{22}$$

K-linear ist.

(b) Geben Sie eine Basis von $ker(spur_{2\times 2})$ an.