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Abstract: We present a self-contained survey of the flexion structure and its
core ARI//GARIL. We explain why this pair algebra//group is uniquely suited
to the generation, manipulation, description and illumination of double sym-
metries, and therefore conducive to an in-depth understanding of arithmetical
dimorphy. Special emphasis is laid on the monogenous algebras generated by
flexion units, their special bimoulds, and the corresponding singulators. We
then attempt a broad-brush overview of the whole question of canonical irre-
ducibles and introduce the promising subject of perinomal algebra. As a recre-
ational aside, we also state, justify, and computationally check a refinement
of the standard conjectures about the enumeration of multizeta irreducibles.
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1 Introduction and reminders.

1.1 Multizetas and dimorphy.

Let us take as our starting point arithmetical dimorphy, which in its purest
form manifests in the ring of multizetas. Some extremely important Q-rings
of transcendental numbers happen to be dimorphic, i.e. to possess two natural
Q-prebases! {a,,}, {3} with a simple conversion rule and two independent
multiplication tables, all of which involve only rational coefficients and finite
sums :

Oy = Z*H% Bn y ﬁn = Z*Kgl Qm (ng KTT S Q)
aml Oém2 = Z*Am?,mg Oéms ) 6711 ﬁn2 = Z*Bgf,ng 6"3 (AZ?,TLQ ? B:LL?,’N,Q S Q)

The simplest, most basic of all such rings is Zeta , which is not only mul-
tiplicatively generated but also linearly spanned by the so-called multizetas.?

In the first basis, the multizetas are given by polylogarithmic integrals :

Lodt Bodt B dt
Waiq,...,ozz — (_1)lo / o . / 2 / ! (1.1)
o (au—1) o (a2—t2) Jo (a1 —t1)

1

a;=0 "

with indices a; that are either 0 or unit roots, and Iy := >

In the second basis, multizetas are expressed as “harmonic sums”:

Ze* S seees sr/ i— E n1_51 e n;ST el_nl e e;nr (12)

n1>->n,>0

with s; € N* and unit roots e; := exp(2mie;) with ‘logarithms’ ¢; € Q/Z.

lwith some natural countable indexation {m},{n}, not necessarily on N or Z. We
recall that a set {a,,} is a Q-prebasis of a Q-ring D if any o € D is expressible as a
finite linear combination of the «,,’s with rational coefficients. But the «,,’s need not be
Q-independent. When they are, we say that {a,,} is a Q-basis.

2also known as MZV, short for multiple zeta values.
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The stars * means that the integrals or sums are provisionally assumed
to be convergent or semi-convergent : for Wag this means that a; # 0 and

a; # 1, and for Zeig) this means that (<) # (0) ie. (2) + (1)

€1
S1 1 1

The corresponding moulds Wa; and Ze} turn out to be respectively sym-
metral and symmetrel:3

Wa® Wa® = > Wa Val, Va2 (1.3)
acsha(al,a?)

Zol) 76l — % oy

€4 € = Z Ze, Vi), V() (1.4)

(¢) €she((51),(5))

These are the so-called quadratic relations, which express multizeta dimorphy.
As for the conversion rule, it reads :*

EP s Ep_ i seees €

[s1—1] [spr—1] 1:2
Wa*6170 1 7“‘,67‘70 T = Ze*(sr, Sy eens s1 ) (15)

’ [sr—1] [s2—1] [s1—1]
e, 51552 0 sp/ —- Wa*eb--emo T, e1e2,0 ,e1,0 (1.6)

with 0% denoting a subsequence of k zeros.

There happen to be unique extensions Wa, — Wa® and Ze, — Ze® that
cover the divergent cases and keep our moulds symmetral or symmetrel while
conforming to the ‘initial conditions’ Wa® = Wa! = 0 and Ze)) = 0. The
only price to pay will be a slight modification of the conversion rule: see §1.2
infra.

Basic gradations/filtrations.

Four parameters dominate the discussion:

— the weight s :=)_ s; (in the Ze®-encoding) or s :=I (in the Wa*-encoding)
— the length or “depth” r := number of ¢;’s or s;’s or non-zero «;’s.

— the degree d := s—r = number of zero o;’s in the Wa®-encoding.’

— the “coloration” p := smallest p such that all root-related ¢; be in %Z/ 7.
Only the weight s defines an (additive and multiplicative) gradation; the
other parameters merely induce filtrations.

3As usual, sha(w’,w’) denotes the set of all simple shufflings of the sequences w’, w”’,
whereas in she(w’, w") we allow (any number of) order-compatible contractions w; + wj'.

4with the usual shorthand for differences: €i:j 1= € — €.

5d is called degree, because under the correspondence scalars — generating series, the
multizetas become coefficients of monomials of total degree d. See (2.19),(2.23).



1.2 From scalars to generating series.

The natural encodings Wa®* and Ze® being unwieldy and too heterogeneous
in their indexations, we must replace them by suitable generating series, so
chosen as to preserve the simplicity of the two quadratic relations and of the

conversion rule. This essentially imposes the following definitions :°
(u1 ,, ur) L 61,0[5171]7...76 .70[5771] s1—1 s9—1 s —1
Zag 1 er’ = E Wal " uy' uyy o ouy s (17)
1<s;
. (51 ..... Gr) L (51 ,,,,, er) s1—1 s—1
Zig vl = E Ze s it T (1.8)
1<s;

The first series Zag®, via its Taylor coefficients, gives rise to yet another Q-
prebasis {Za®} for the Q-ring of multizetas. The mould Za® is symmetral
like Wa® but quite distinct from it and much closer, in form and indexation,
to the symmetrel mould Ze® :

UY yeeny up 81 seees sr _ o
Zagle i) = E Zala Er)u‘il Yoot (1.9)

r
1<s;

These power series are actually convergent: they define generating functions”

that are meromorphic, with multiple poles at simple locations. These func-
tions, in turn, verify simple difference equations, and admit an elementary
mould factorisation (mark the exchange in the positions of do and co):

Zag® = klim Zagy, = klim (doZag; x coZagy) (1.10)
Zig® = klim Zigy = klim (coZigy x doZig}) (1.11)

with dominant parts doZag®/doZig® that carry the u/v-dependence®:

doZag/,(j1 """ R~ Z ey ™ ...e, ™ P(my—uy)P(mya—ui9)...P(my r—uy ,(1.12)

Q.
o
N
a2
=
<
E
|

Z ey ...e," P(ny—v1)P(ng—vy)...P(n,—v,) (1.13)

k>ni>ng>..np>1

6with the usual abbreviations: U j = Ui+ Uyj, Us 4 ) = Ui +Uj+Up ete.
7still denoted by the same symbols.
8with the usual abbreviations My 5 2= M+, My 5 & = M;+mj+my ete.



and corrective parts coZag®/coZig® that reduce to constants:

(ul ,,,,, ’u,r) ,
coZag,” " = (=1)" Y P(mi)P(map)..P(my_,) (1.14)
1<m;<k
(0 ,,,,, 0)
coZig," T = (—=1)" Z p"mr P(ng ) P(ng)...P(n,) (1.15)
k>ni1>ng>..n>1
coZag. ) = 0 i (1) £ (0,.0.,0) (1.16)
coZig = 0 i (e, ) # (0, 0,0 (1.17)
with P(t) := 1/t (here and throughout) and with g™ "2 = m

the non-increasing sequence (nq, ...,n,.) attains r; times its highest value, ry
times its second highest value, etc.

Setting Minig := Zigp||,_, we find :°
[11§1§T/I€2}
o) <~ - (L))" (L))"
Mini," " = — 1)y 1.18
S ) - " (L1
|:2§r1§r2...§rlj|
Tl+72+mrl:r
Minit = 0 i (e e) £ (0,...,0) (1.19)

Let us now compare the bimoulds C’;, and C3 thus defined:

A\ A\

swap.Zagy, = gwap.coZagg X gwap.doZagz = Z; X E; = 6; (1.20)

A

~

—~
Mini$) ™ x Zig? = (Mini}) ™' x coZig? x doZig} = Al x B! =: C% (1.21
k k k k k k k

with X standing for ordinary mould or bimould multiplication'?; with (Minij)~!
denoting the multiplicative inverse of (Miniy}); and with the involution swap

defined as in (2.9) infra. Here, the v-dependent factors Efg) and EI(C”) are
both given by the finite sum

d e e, P(ny —v1) ... P(n, — vy) (1.22)

%f we had no factor g™ ~" in (1.18), we would have Zigs||,_, = 0 and therefore no
Ming;, terms. But the mould Zig; would fail to be symmetril, as required. Herein lies the
origin of the corrective terms in the conversion rule.

1Tn the case of bimoulds, x is often noted mu the better to distinguish it from the
various other flexion products.



with summation respectively over the domains B, and B,

By ={k>n.>12k>n.y >n,,...,(r=1)k >ny >ng,rk >ny >ns}
B, ={k>n>ny>...n4 >n, >1}

2rk

Likewise, the v-dependent factors Z,(g”) and A,(C”) vanish unless € = 0, in
which case they are both given by the finite sum

> (1) P(ny) ... P(n,) (1.23)

with summation respectively over the domains .71% and Ar,k

A = k> >12k>n>n,...,(r—=1)k>n0my >0, mk >0, >0}
A =1{k>2n>2n.>...ny>n; > 1}

=T

It easily follows from the above that for any compact K C C" and k large
enough, the difference 61(5’) — Q,(f”) is holomorphic on K, and that there exists

a constant ¢y such that:
» (log k)™
k

Summing up, we have an exact equivalence between old and new symme-
tries:!t

1T — ) < (ex) (veK , klage)  (1.24)

{Wa® symmetral} <= {Zag® symmetral} (1.25)
{Ze* symmetrel} <= {Zig® symmetril} (1.26)

and the old conversion rule for scalar multizetas ' becomes:
Zig®* = Mini®* x swap(Zag)* (1.27)
( < swap(Zig®) = Zag® x Mana® ) (1.28)

with elementary moulds Mana®/Mini® := limy_.., Mana;, / Mini; whose only
non-zero components:

UT yeeey up L. 0 ,..., 0
Manal@ 20 = Minilw 2 v) = Mono, (1.29)
Y Symmetrility is precisely defined in §3.5. Roughly, it mirrors symmetrelity, but with
., o uhl
all contractions M ¢+« ) gystematically replaced by M(”" vi "")P(Ug - ) +

(ot
M j P(vj —ol).

2pnamely, some modified form of the rules (2.16),(2.17), which apply in the convergent
case.



due to (1.18), may be expressed in terms of monozetas:

1+ Z Mono, t" := exp (Z(—l)s’lg(s) i) (1.30)

S
r>2 s>2

To these relations one must add the so-called self-consistency relations:

U yeeny ur " q*T 1
Zag(‘“ll """ i) = Z Zag i i) Yqlp,Vu; € C,Ve;,ef € =77 (1.31)
p

which merely reflect trivial identities between unit roots of order p.

1.3 ARI//GARI and its dimorphic substructures.

What is required at this point is an algebraic apparatus capable of accommo-
dating Janus-like objects like Zag®/Zig®, i.e. an apparatus with operations
that not only respect double symmetries and reproduce them under composi-
tion, but also construct them from scratch, i.e. from a few simple generators.

Such a machinery is at hand: it is the flexion structure, which arose in
the early 90s in the context of singularity analysis, more precisely in the
investigation of parametric or “co-equational” resurgence. Its objects are
bimoulds, i.e. moulds M* of the form

M* € BIMU <= M® = {Mvvr = Ml D)y (1.32)

with a double-layered indexation w; = (;'). What makes these M*® into
bimoulds, however, is not so much their double indexation as the very specific
manner in which upper and lower indices transform and interact: all bimould
operations can be expressed in terms of four elementary flexions that go by
pairs, | with | and | with [, and have the effect of adding together several
consecutive u; and of pairwise subtracting several v;, and that too in such a
way as to conserve the scalar product <w,v>:= > w;v; and the symplectic
form dw := > du; A dv;. Lastly, central to the flexion structure is a basic
involution swap which acts on BIMU by turning the w;’s into differences of
v;’s, and the v;’s into sums of u;’s (see §2.1 below).

The flexion structure, to put it loosely but tellingly, is the sum total of
all interesting operations and structures that can be constructed on BIMU
by deftly combining the four elementary flexions. It turns out that these
interesting structures consist, up to isomorphism, of
— seven + one Lie groups
— seven + one Lie algebras (each with its pre-Lie structure)

— seven + one pre-Lie algebras.



In the three series, there exist exactly two triplets of type
group//algebra//superalgebra, which “respect dimorphy”, namely
GARI//ARI//SUARI and GALI//ALI//SUALIL

Moreover, when restricted to dimorphic bimoulds (i.e. bimoulds display-
ing a double symmetry), these two triplets actually coincide, thus sparing us
the agony of choosing between them.

1.4 Flexion units, singulators, double symmetries.

To understand dimorphy, and in particular to decompose the pair Zag®/Zig®
into the elementary building blocks capable of yielding the multizeta irre-
ducibles, we require bimoulds M*® which combine three properties that do
not sit well together:

— M*® must possess a given symmetry, say alternal or symmetral

— swap.M*® must possess its own symmetry, which usually coincides with
that of M*® or a variant thereof

— M* and swap.M*® must be entire, i.e. for a given length r their dependence
on the complex indices (the w;’s in the case of M* and the v;’s in the case
of swap.M*®) must be polynomial or holomorphic or a power series. That
precludes, in particular, singularities at the origin.

The strange thing, however, is that in order to come to grips with “en-
tire dimorphy” in the above sense, we cannot avoid making repeated use of
bimoulds that are dimorphic alright, but with abundant poles at the origin.
We must then get rid of these poles by subtracting suitable bimoulds, with
exactly the same singular part, but without destroying the double symmetry.
The only way to pull this off is by using very specific operators, the so-called
singulators, whose basic ingredients are quite special dimorphic bimoulds,
which:

— possess poles at the origin

— lack the crucial parity property which most other dimorphic bimoulds
possess and which ensures their stability under the ARI or GARI operations.
— are constructed from very elementary functions E** = (’E(zi), the so-called
flexion units, of which there exist about a dozen. These units are odd in w;
and verify an elementary functional equation, the tripartite relation, which
is the most basic relation expressible in terms of flexions.

1.5 Enumeration of multizeta irreducibles.

The Q-ring Zeta of formal multizetas (i.e. of multizeta symbols subject only
to the two quadratic relations (1.3),(1.4)) is known to be a polynomial ring,
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freely generated by a countable set of so-called irreducibles. Hence the ques-
tion: how many irreducibles (let us call that number Dy, ) must one pick
in each cell of degree d and length r to get a complete and free system of
irreducibles? The so-called BK-conjectures, which were formulated in 1999
(they applied to the genuine rather than formal multizetas, and resulted
from purely numerical tests) suggest a startlingly complicated formula for
D,, but no plausible rationale for its strange form. Soon after that, we
published in [E2] a convincing explanation for the formula, which however
went largely unnoticed. We therefore return to the question in §5, §6, §9
in much greater detail. We actually enunciate four new conjectures which
considerably improve on the original BK-formula, and in §10 we report on
formal computations carried out by S. Carr to test these strengthened con-
jectures. But the key lies in the theoretical explanation: in our approach,
the irreducibles correspond one-to-one to polynomial bialternal bimoulds, of
which there exist two series: the regular and utterly simple ekma® on the one
hand, and the exceptional, highly intricate carma® on the other. We explain
in detail the mechanism responsible for the creation of these exceptional gen-
erators. That mechanism crucially involves the singulators mentioned in the
preceding para.

1.6 Canonical irreducibles and perinomal algebra.

In §5 and §8 we move from the (d,r)-gradation to the more natural s-
gradation, s being the weight. In that new setting, the irreducibles corre-
spond to entire bimoulds which are no longer alternal/alternal (or bialternal
for short) but alternal/alternil and which for that reason never reduce to a
single component, as bialternals do. That may seem a complication, and it
is, but it also brings a drastic simplification in its wake: instead of the dual
system of generators {ekmag, carmag, } for the algebra ALAL C /Ulf]%ln/ta*1 of
entire bialternals, we now have a single system, either {lama?} or {loma?}'?,
of generators for the algebra ALIL C ARI %ln/fl of all entire bimoulds of alter-
nal/alternil type, with a transparent indexation by all odd weights s = 3,5,7
etc. Like carma®, but to an even greater extent, lama® and loma® depend for
their construction on the repeated use of singulators, with parasitical poles
being alternately produced and then destroyed. In §5.7 and §8 we also intro-
duce a third system of generators for ALIL, namely {"luma®}, with indices

n now running through N* and with functional simplicity'* replacing arith-

3these are closely related variants.
4the components luma®™ are meromorphic functions with simple poles away from the
origin.
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metical simplicity'® as guiding principle. Just like with lama® and loma®, the
singulators are key to the construction of luma®, but under a quite different
mechanism, which involves infinitely many (interrelated) linear representa-
tions of SI,.(Z). This is a whole new field unto itself, and a fascinating one at
that, which we call perinomal algebra, and of which we try to give a foretaste.

1.7 Purpose of the present survey.

A four-volume series (on the flexion structure and its applications) is ‘in the
works’, but as often happens with fast-evolving subjects, centrifugal temp-
tations are hard to resist, centripetal discipline difficult to maintain, and
the whole bloated project shows more signs of expanding and mutating than
of converging. To remedy this, we intend to post some of the accumulated
material (including a library of Maple programmes for ARI//GARI calcula-
tions) online, on our Web-page, before the end of 2010. But we feel that a
compact Survey like the present one might also serve a purpose — not least
that of fixing notations and nomenclature.*¢

Some of the subject-matter laid out here is fairly old — going back eight
years in some cases — but unpublished for the most part.!” There are nov-
elties, too, the main one being perhaps the systematic use of flexion units
as a means of introducing order into the theory’s bewildering plethora of
notions and objects: operations, symmetries, structures (algebras, groups)
and substructures, bimoulds, bimould identities etc.

“The” flexion unit €°® is an unspecified function E"* that is odd in w; :=
(') and verifies a bilinear, three-term relation'® — the so-called tripartite
relation. From €* one then constructs a whole string of objects (bimoulds,
symmetries, subalgebras of ARI subgroups of GARI, etc) which, despite
their considerable complexity, owe all their properties to the tripartite rela-
tion verified by the seed-unit €°. As it happens, €* is capable of a dozen or
so distinct realisations as a concrete function of wq, each of which automati-
cally induces a realisation of the whole string of satellite objects (bimoulds,
symmetries, etc). The total effect is thus a drastic and welcome ‘division by
twelve’ of the flexion jungle.

15the components lama™ and loma®™ have rational coefficients with “manageable” de-
nominators.

16 . . . . . .

which up till now were still fluctuating from context to context in our various papers.

Working out a coherent standardisation was, strangely, the hardest part in producing this
survey.

17although much of it was circulated as private notes and e-files, or taught at Orsay in
two DEA courses.

Binvolving the product &1 ¢"2 and two flexions thereof.
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Throughout, there is as much emphasis on the apparatus — the flexion
structure and its special bimoulds — as on the applications to multizeta the-
ory. We wind up with a sketch of perinomal algebra, in the hope of stimulat-
ing interest in this brand-new subject and of paving the way for a collective
programme of exploration,'® to start hopefully in the course of 2011.

2 Basic dimorphic algebras.

2.1 Basic operations.

Elementary flexions.
In addition to ordinary, non-commutative mould multiplication mu (or x):

r(wt),r(w?)>0
A =B'xC*=m(B*,C*) = A= > BYCY (21

'wl -'LU2 =w

and its inverse ‘nvmu:

(invmu. A)¥ = Z (—1)° Z AW A (w* #£0) (2.2)

1<s<r(w) S = w

the bimoulds A® in BIMU = @<, BIMU, (see (1.32))*° can be subjected
to a host of specific operations, all constructed from four elementary flex-
ions |, ], [, ] that are always defined relative to a given factorisation of the
total sequence w. The way the flexions act is apparent from the following
examples:

_ _ (u1,u2,u3 __ (u4,us, ue
w=ab a = ( ) b= ( )
v1, V2, U3 V4, U5, V6
_ (w1, wu2, us __ (u1234, us, ug
= = ') To=( )
V1:4, U2:4, U3:4 V4, Us, V6
_ _ (u1,u2,us __ (ua,us, ue
w=>b.c = ( ) c= ( )
U1, V2, U3 V4, U5, V6
— (U17u27u3456) |_C — ( U4, U5, Ug )
v, V2, U3 V4:3, V5:3, V6:3
w = a.b.c — (U17u2,u3) b = (u4,u57u6) c = (u7,us7u9)
e v1, V2, U3 V4, U5, V6 v7, U8, V9
_ (w1, wu2, us __ (w1234, us, U789 __ ( u7r, ug, ug
= aJ—( ) 61 =( ) Le=( )
V1:4, V2:4, V3:4 V4, Vs, Ve VT7:6, U8:6, V9:6

with the usual short-hand: w; _; := w;+...+u; and v;;; := v;—v;. Here and
throughout the sequel, we use boldface (with upper indexation) to denote

9Vast, multi-facetted, and very demanding in terms of computation, this field calls, or
rather cries, for sustained teamwork.

20BIMU,. of course regroups all bimoulds whose components of length other than r
vanish. These are often dubbed “length-r bimoulds” for short.
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sequences (w, w®, w? etc), and ordinary characters (with lower indexation)
to denote single sequence elements (w;, w; etc), or sometimes sequences of
length r(w) = 1. Of course, the ‘product’” w'.w? denotes the concatenation
of the two factor sequences.

Short and long indexations on bimoulds.

For bimoulds M*® € BIMU, it is sometimes convenient to switch from the
usual short indexation (with r indices w;’s) to a more homogeneous long
indezxation (with a redundant initial wy which gets bracketted for distinctive-
ness). The correspondence goes like this:

w1 e ) v e
MO o g o ) (2.3)
with the dual conditions on upper and lower indices:
uy = —uy_, = —(ur+...+u,) , uf =wu; Vi>1
vy arbitrary , vf =g =0 Vi>1
and of course D, Ui = Y o, UV
Unary operations.
The following linear transformations on BIMU are of constant use:
B®* = minu.A®* = BYYr = — AWLetr (2.4)
B® =pari.A® = Bt = (=1)" ATV (2.5)
B® = anti.A* = Bt = AWt (2.6)
B® = mantar.A* = BV = (—1)"1 AV (2.7)
B®* =neg.A* = Bt = ATWLeTwr (2.8)
B* = swap.A* =BG = 4G A D (2.9)
B pus At = BULIE) At (210)
B* =push.A® = Bl e = Aol ) (2011)

All are involutions, save for pus and push, whose restrictions to each BIMU,
reduce to circular permutations of order r resp. r+41:2!

push = neg.anti.swap.anti.swap (2.12)

leng, = push"™.leng, = pus”leng, (2.13)

Inflected derivations and automorphisms of BIMU.
Let BIMU, resp. BIMU* denote the subset of all bimoulds M*® such that

2lpus resp. pushis a circular permutation in the short resp. long indexation of bimoulds.
Indeed: (push.M)[“’O]vwl’""“’T = Mwrlwo,..wra

14



M" = 0 resp. M? = 1. To each pair A* = (A3, A%) € BIMU, x BIMU,
resp. BIMU* x BIMU™ we attach two remarkable operators:

axit(A*) € Der(BIMU) resp. gaxit(A®) € Aut(BIMU)
whose action on BIMU is given by:*?
1 2
N* = axit(A®).M* & Nv=Y" MeleAl + 3 meledy (2.14)
3 1 S al a’ cl
N*=gaxit(A").M® & Nv =3 M40 A8l Alf2.15)
and verifies the identities:

axit(A®).mu(M7, Ms) = mu(axit(A®). M7, M3 )+mu(M;, axit(A®). M5(2.16)
gaxit(A®).mu(M7, My) =mu(gaxit(A®). M7, gaxit(A*). M) (2.17)

The BIMU-derivations azit are stable under the Lie bracket for operators.
More precisely, the identity holds:

[axit(B®), axit(A*)] = axit(C*®) with C* = axi(A*, B®) (2.18)
relative to a Lie law azi on BIMU, x BIMU, given by:

C; = axit(B*).A] — axit(A®).B] + lu(A}, B7) (2.19)
Cy, = axit(B*).A} — axit(A*).B}, — lu(A%, By) (2.20)

Here, lu denotes the standard (non-inflected) Lie law on BIMU:
lu(A*, B®*) := mu(A°®, B®*) — mu(B*, A®) (2.21)

Let AXI denote the Lie algebra consisting of all pairs A®* € BIMU, x BIMU ,
under this law az.

Likewise, the BIM U-automorphisms gazit are stable under operator com-
position. More precisely:

gaxit(B*®).gaxit(A®) = gaxit(C®) with gaxi(A°*, B®) (2.22)

relative to a law gaxi on BIMU* x BIMU™ given by:

C; := mu(gaxit(B°*).A},B7) (2.23)
A% = mu(By, gaxit(B*).A%) (2.24)
%2The sum El resp. 22 extends to all sequence factorisations w = a.b.c with

b#0 c+# 0Oresp. a # 0, b # 0. The sum 3.° extends to all factorisations
w = a'.bl.cl.a®.b?.c%...a®.b%.c® such that s > 1, b* # 0, ct.a™ # (0 Vi. Note that the
extreme factor sequences a® and ¢® may be 0.
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Let GAXI denote the Lie group consisting of all pairs A* € BIMU* x BIMU*
under this law gaxi.

The mixed operations amnit = anmit:

For A® := (A®,0°) and B* := (0°, B®) the operators azit(A®) and azit(B*)
reduce to amit(A®) and anit(B®) respectively, and the identity (2.18) be-
comes:

amnit(A°®, B®) = anmit(A°, B®) (VA*, B* € BIMU,) (2.25)

with
amnit(A°®, B®) := amit(A°*).anit(B*) — anit(amit(A°*).B*) (2.26)
anmit(A°®, B®) := anit(B*®).amit(A®) — amit(anit(B*).A*) (2.27)

When one of the two arguments (A®, B®) vanishes, the definitions reduce to:

amnit(A°®,0°) = anmit(A°®,0°) := amit(A®) (2.28)
amnit(0°*, B*) = anmit(0°®, B*) = anit(B*) (2.29)
Moreover, when amnit operates on a one-component bimould M* € BIMU,

(such as the flexion units €*, see §3.1 and §3.3 infra), its action drastically
simplifies :

N*:=amnit(A®, B*).M* =anmit(A*, B*).M* < N*:=) _ A*MM1B1(2.30)
aw;b=w

Unary substructures.
We have two obvious subalgebras//subgroups of ARI//GARI, answering to
the conditions:

AMIC AXI : A% =0° , GAMIC GAXI: A3 =1°
ANICAXI: A3 =0° , GANIC GAXI: A3 =1°

but we are more interested in the mized unary substructures, consisting of
elements of the form:

A* = (A}, A%)  with AR =h(A}) and h a fized involution  (2.31)

with everything expressible in terms of the left element A} of the pair A°.
There exist, up to isomorphism, exactly seven such mixed unary substruc-
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tures:

algebra h swap algebra h
ARI minu — IRA mainu.push
ALI anti.pari — ILA anti.pari.neq
ALA  anti.pari.neg, <« ALA  anti.pari.neg,
ILI anti.pari.neg, < ILI anti.pari.neg,
AWI anti — IWA anti.neg
AWA anti.neg, > AWA anti.neg,
IWI anti.neg, — IWI anti.neg,
group h swap  group h
GARI Mumu —  GIRA push.swap.invmu.swap
GALI anti.pari —  GILA anti.pari.neq
GALA anti.pari.neg, <  GALA anti.pari.neg,
GILI  anti.pari.neg, <« GILI anti.pari.neg,
GAWI anti —  GIWA anti.neg
GAWA anti.neg, —  GAWA anti.neg,
GIWI anti.neg, —  GIWI anti.neg,

Dimorphic substructures.

Among all seven pairs of substructures, only two respect dimorphy, namely
ARI//GARI and ALI//GALI Moreover, when restricted to dimorphic ob-
jects, they actually coincide:

ARIVal — ALVl yith - {al/al} = {alternal/alternal and even}
GARI®/2 — GALI®/2  with {as/as} = {symmetral /symmetral and even}

We shall henceforth work with the pair ARI//GARI, whose definition involves
a simpler involution h (it dispenses with the sequence inversion anti: see
above table).

2.2 The algebra ARI and its group GARI.

Basic anti-actions.
The proper way to proceed is to define the anti-actions (on BIMU, with its
uninflected product mu and bracket lu) first of the lateral pairs AMI//GAMI,
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ANI//GANI and then of the mixed pair ARI//GARI.

N* = amit(A).M* & N =3 peleat] (2.32)

N* = anit(4%).M* & N@=F Meleglt (2.33)
1 2

N* =arit(A®).M* & Nv=> "MTeAd -y " prelealt (2.34)

with sums 3" (resp. 3°7) ranging over all sequence factorisations w = abe

such that b # 0,¢c # 0 (resp. a # 0,b # 0).

1 1 S 1 s
N*® = gamit(A®).M* & N¥ = "M -7 400) 4o (2.35)

S

2 1 S 1
N*® = ganit(A®).M* & N =) "M>T-0gle - gle (2.36)

3 s s
N* = garit(A®).M* & N =" "M 01400 getlgle’  Alq37)

with A® := invmu(A®) and with sums $', 3%, 3°° ranging respectively over
all sequence factorisations of the form:

w = a'b'...a’b? (s>1 , only a* may be 0)
w = blcl...bc* (s>1 , onlyc® may be )
w = a'blet...a®b’c® (s>1 , withb® # 0and cta™ # 0)

More precisely, in 23 two inner neigbour factors ¢* and a*! may vanish
separately but not simultaneously, whereas the outer factors a' and ¢® may
of course vanish separately or even simultaneously.

Lie brackets and group laws.
We can now concisely express the Lie algebra brackets ami, ani, ari and the
group products gamsi, gani, gari :

ami(A®, B*) = amit(B*).A* — amit(A°®).B* +1u(A*, B®) (2.38)

ani(A®, B®*) := anit(B*®).A®* —anit(A®).B* —Iu(A*, B*) (2.39)
ari(A®, B®) := arit(B*).A® — arit(A®).B* + 1u(A°®, B®) (2.40)

gami(A®, B®) := mu(gamit(B*®).A*), B*) (2.41)
gani(A®, B®*) := mu(B®, ganit(B*).A*%)) (2.42)
gari(A®, B®*) := mu(garit(B*®).A*), B®*) (2.43)
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Pre-Lie brackets.
Parallel with the three Lie brackets, we have three pre-Lie brakets:

preami(A°®, B*) := amit(B*).A* + mu(A°®, B®) (2.44)
preani(A®, B®) := anit(B*®).A* —mu(A°®, B®) (sign!)  (2.45)
preari(A®, B®*) := arit(B*).A* + mu(A°®, B®) (2.46)

with the usual relations:

ari(A®, B®*) = preari(A®, B®) — preari(B°*, A®) (2.47)
assopreari(A°®, B*,C*) = assopreari(A°®,C*, B®) (2.48)

with assopreari denoting the associator of the pre-Lie bracket preari. The
same holds of course for ami and ani.

Exponentiation from ARI to GARIL.
Provided we properly define the multiple pre-Lie brackets, i.e. from left to
right:

preari(Aj,..., A%) = preari(preari(AS, ..., AL,), A?) (2.49)
we have a simple expression for the exponential mapping from a Lie algebra
to its group. Thus, the exponential ezpari : ARI — GARI can be expressed
as a series of pre-brackets:

n times

1 /_/%
expari(A®) = Z ] preari(A®, ..., A®%) (2.50)

n

The operation from GARI to ARI that inverses ezpari shall be denoted
as logari. It, too, can be expressed as a series of multiple pre-ari brackets,
but in a much less straightforward manner than (2.50).

For any alternal mould L* we also have the identities:

Z Loty Wa(r)preari(A;(l), . 7A;'(’r')> =
ocCS(r)

1 Z
— Lwa(l)""’w"(’") a,I‘i(A;,(l), e 7A;'(T')) (VAiu e ’A;) (251)
r

ocC6S(r)

which actually characterise prears.

Adjoint actions.
We shall require the adjoint actions, adgari and adari, of GARI on GARI
and ARI respectively. The definitions are straightforward:

adgari(A®).B® := gari(A®, B®,invgari.A*) (A°®, B®* € GARI) (2.52)
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adari(A®).B* := logari(adgari(A®).expari(B*)) (2.53)
:= fragari(preari(A®, B*), A*) (A®* € GARI, B*®* € ARI)(2.54)

except for definition (2.54), which results from (2.53) and (2.43) and uses the
pre-ari bracket®® defined as in (2.46) supra and the gari-quotient®* defined as
in (2.58) infra.

Definition (2.54) has over the equivalent definition (2.53) the advantage of
bringing out the B*-linearity of adari(A®).B* and of leading to much simpler
calculations.?®

The centers of ARI and GARI.

The sets Center(ARI) resp. Center(GARI) consist of all bimoulds M* that
verify

(i) M? =0 resp. M?=1

(i) M0 Z10) =m, e C Y,
(iii) M) =0 unless 0=v; =---=u,

Moreover, in view of (2.43), gari-multiplication by a central element C'*
amounts to ordinary post-multiplication by that same C*:

gari(C*, A®) = gari(A®,C*) = mu(A®,C*) (C* € Center(GARI)) (2.55)

Relatedness of the four main group inversions.

Lastly, we may note that the inversions relative to the four group laws mu,
gari, gami, gani are not totally unrelated, but verify the rather unexpected
identity:

invmu = invgari.invgami.invgani = invgani.invgami.invgari (2.56)

In fact, the group generated by these four involutions is isomorphic to the
group with presentation < a,b,c,d > /{a? b* c*, d?, abed}.

23Properly speaking, preari applies only to elements M*® of ARI, i.e. such that M? = 0.
Here, however, only B® is in ARI, whilst A® is in GARI and therefore A? = 1. But this is
no obstacle to applying the rule (2.46).

24 Properly speaking, fragari applies only to arguments S?,S3 in GARI, i.e. such that
S? = 1. Here, however, only S := A® is in GARI, whilst S? := preari(A®, B®) is in ARI
and therefore S? = (0. But this is no obstacle to applying the rule:

fragari(SY, S9) := mu(garit(S3)~*.S7, invgari.S3) = mu(garit(invgari.Ss).S7, invgari.Ss)

Z5Despite the spontaneous occurence of the pre-ari bracket in (2.54), it should be noted
that adari(A®) is an automorphisms of ARI but not of PREARI
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Complexity of the flexion operations.

Compared with the uninflected mould operations, the flexion operations on
bimoulds tend to be staggeringly complex. Here is the natural complexity
ranking for some of the main unary operations:

mugami ~ nvgani < invgari <K logart < expari

and here is the number of terms which two of them produce, as the length r
increases:

length r 1 2 3 4 5 6 7 8
#(invgari) 1 4 20 112 672 4224 27459 183040
#H(expari) 1 4 21 126 818 5594 39693 289510

Fortunately, the whole field is so strongly and harmoniously structured, and
offers so many props to intuition, that this underlying complexity remains
manageable. While formal computation is often indispensable at the ex-
ploratory stage, the patterns and properties that it brings to light tend to
yield rather readily to rigorous proof.

2.3 Action of the basic involution swap.

Dimorphy is a property that bears on a bimould and its swappee. How-
ever, even the group product most respectful of dimorphy, i.e. gari, doesn’t
commute with the involution swap. But if we set

gira(A®, B®*) := swap.gari(swap.A®, swap.B®) (2.57)
fragari(A®, B®*) := gari(A®, invgari.B®) (2.58)
fragira(A®, B®*) = gira(A®, invgira.B®) (2.59)

the operation gari//gira and fragari//fragira, though distinct, can be ex-
pressed in terms of each other

gira(A®, B*) = ganit(rash.B®).gari(A°® ras.B°®) (2.60)
gari(A®, B®*) = ganit(rish.B*).gira(A°®, ris. B®) (2.61)
fragira(A®, B*) = ganit(crash.B®).fragari(A°®, B®) (2.62)
fragari(A®, B*) = ganit(crish.B*).fragira(A*, B®) (2.63)

via the anti-action ganit(B?) and with inputs B related to B® through one
of the following, highly non-linear operations

ras.B* := invgari.swap.invgari.swap.5*® (2.64)
rash.B* := mu(push.swap.invmu.swap.B*, B*) (2.65)
crash.B* := rash.swap.invgari.swap.B* (2.66)
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ris := ras™' = swap.invgari.swap.invgari (2.67)

invgani.rash.ris (2.68)

rish

crish := invgani.crash = rish.invgari (2.69)

2.4 Straight symmetries and subsymmetries.

e alternality and symmetrality.
Like a mould, a bimould A® is said to be alternal (resp. symmetral) if it
verifies

Z A =0 (resp. = Aw'Aw") Vw' £ 0, Vw"” £  (2.70)

wesha(w’,w')

with w running through the set sha(w’, w”) of all shufflings of w’ and w”.

e {alternal} = {mantar-invariant, pus-neutral}.

Alternality implies mantar-invariance, with mantar = minu.pari.ant: defined
as in (2.7).

It also implies pus-neutrality, which means this:

(Y pus)A =0  de Y AY=0 (ifr(w)>2) (271)

1§l§r(o) w,c’i\rjcw

e {symmetral} —{gantar-invariant, gus-neutral}.
Symmetrality implies likewise gantar-invariance, with

gantar := invmu.anti.pari (2.72)

as well as gus-neutrality, which means (Zlglgr(.pusl).logmu.fl' =0i.e.

o=t > avt a4t =0 (ifr(w) >2) (2.73)

1<k<r(w) wl . w* T

e {bialternal} g;{neg—invariant, push-invariant}.

Bialternality implies not only invariance under neg.push but also separate
neg-invariance and push-invariance for any A®* € BIMU, but the implication
holds only if r > 1, since on BIMU; we have neg=push. So neg.push=id,
meaning that there is no constraint at all on elements of BIMU;. But we
must nonetheless impose neg-invariance on BIMU; (or what amounts to the
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same, push-invariance) to ensure the stability stability of bialternals under
the ari-bracket: see §2.7.

essl . . . .
e {bisymmetral} :;{neg—lnvarlant, gush-invariant }.
Bisymmetrality implies not only invariance under neg.gush, with

gush := neg.gantar.swap.gantar.swap with (2.74)

but also separate neg-invariance and gush-invariance, but only if we assume
neg-invariance for the component of length 1. If we do not make that as-
sumption, every bisymmetral bimould in GARI splits into two bisymmetral
factors: a regular right factor (invariant under neg) and an irregular left fac-
tor (invariant under pari.neg)

Let us now examine the stable combinations of alternality or ‘subalter-
nality’ (resp. symmetrality or ‘subsymmetrality’), i.e. the combinations that
are preserved under at least some flexion operations and give rise to inter-
esting algebras or groups.

Primary and secondary subalgebras and subgroups.

Broadly speaking, simple symmetries or subsymmetries (i.e. those that bear
only on bimoulds or their swappees but not both) tend to be stable under a
vast range of binary operations, both uninflected (like the lu-bracket or the
mu-product) or inflected (like ari/gari or ali/gali). The corresponding alge-
bras or groups are called primary. On the other hand, double symmetries or
subsymmetries (i.e. those that bear simultaneously on bimoulds and their
swappees) are only stable — when at all — under (suitable) inflected opera-
tions. We speak in this case of secondary algebras or groups.

“Finitary” and “infinitary” constraints.

Another important distinction lies in the character — “finitary” or otherwise
— of the contraints corresponding to each set of symmetries of subsymmetries.
These constraints always assume the form

0 =Y e(r)M™™ +Y" (g, w) M7™) (2.75)

T

with w=(wy,...,w); €1)€Z, eloc,w)eC, 7eGl.(Z)(2.76)

with a first sum involving a finite number of sequences 7(w) (resp. o(w))
that are linearly dependent on w and of equal (resp. lesser) length. What
really matters is the subgroup < 7>, of Gl,.(Z) generated by the 7 in the first
sum and unambiguously determined (up to isomorphism) by the constraints.
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When < 7>, is finite?® we speak of finitary constraints. The corresponding
algebras or groups are always easy to investigate; the algebras in particular
split into cells whose dimensions are readily calculated by using standard
invariant theory. When < 7 >, is infinite 27 things can of course get much
trickier, but the important point to note is this: whereas simple symmetries
(like alternality) are always finitary, and full double symmetries (like bialter-
nality) always infinitary, there exist a very useful intermediary class — that
namely of finitary double symmetries. The prototypal case is the (ari-stable)
combination of alternality and push-invariance.?®

We can now proceed to catalogue all the basic symmetry-induced algebras
and groups — basic in the sense that all others can be derived from them by
intersection.

Throughout, we adopt the following convenient notations. For any set
E C BIMU:
(i) E* or E"* denotes the subset of all bimoulds M* with the property h
(ii) E™* denotes the subset of all bimoulds such that M*® has the property
h and swap.M?* has the property k.
(iii) if h or k is a unary operation, the property in question should be taken
to mean h- or k-invariance
(iv) pusnu or gusnu denote pus- or gus-neutrality (see §2.4)
(v) the underlining (as in al/al or as/as) always signals the parity condition
for the length-1 component
(vi) boldface ARI or GARI is used to distinguish the few infinitary subal-
gebras or subgroups of ARI or GARI

The only infinitary algebras are:

ARIVE  ARIPUPER  ARIPSIIET . ARPUW/PEIT O ARpmantar/
As for the intersection ARIP™™/P™  ARTPUE it can be shown to coincide
with ARI2/2 deprived of its length-one component. The same pattern holds
the groups.

26]ike with the alternality constraints, in which case <7 >,~ &,.

2T]ike with the bialternality constraints, in which case <7 >, is generated by two distinct
finite subgroups of Gl,.(Z), which we may denote as &, and swap.S,..swap.

28That combination is indeed a double symmetry, since a bimould’s push-invariance is
a consequence of its and its swappee’s alternality or at least mantar-invariance.
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la

push-invariant

pus-neutral

pus-neutral (strictly)

push-neutral

pus-tnvariant

mantar-invariant
mantar-invariant
push-invariant

mantar-invariant

alternal

alternal
alternal
alternal
alternal
alternal
mantar-invariant
mantar-invariant

push-invariant

2.5 Main subalgebras.

1i* := swap(la®)

pus-neutral (strictly)
pus-neutral (strictly)
push-neutral

mantar-invariant
mantar-invariant
mantar-invariant
mantar-invariant
push-invariant
alternal

alternal

alternal
mantar-invariant
mantar-invariant
push-invariant
alternal

alternal

alternal
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neg

neg

neg

neg

subalgebra

ARJPUSI/*
ART/Prem
ARTP/Ps
unstable
unstable
unstable
ARJmantar/+
unstable

unstable
ARImantar /mantar

ARIpush/mantar
ARImantar/push
ARIal/*
unstable
unstable
ARI2V/al
unstable
ARIgl/mantar
ARIal/push
unstable
ARImantar/al
ARIpush/al



2.6 Main subgroups.

ga® gi® := swap(ga®) subgroup
gush-invariant & gush-invariant GARIE=
gus-neutral L GARIE™™/*
.................... gus-neutral (strictly) GAR[*/&™™
gus-neutral (strictly) gus-neutral (strictly) G AR E™™/Ewsm
gush-neutral < gush-neutral unstable
gus-tnvariant unstable
.................... gus-invariant unstable
gantar-invariant ... G ARJgantar/
.................... gantar-invariant unstable
gantar-invariant gantar-invariant unstable
gantar-tnvariant gantar-tnvariant neg G AR gantar/gantar
gush-invariant gantar-invariant G AR[8Ush/gantar
gantar-invariant gush-invariant G ARJeantar/gush
alternal GARI™/*
.................... symmetral unstable
symmetral symmetral unstable
symmetral symmetral neg GARI2/2
symmetral gantar-tnvariant unstable
symmetral gantar-invariant neg GARJ2/gantar
symmetral gush-invariant GARJ/gush
gantar-tnvariant symmetral unstable
gantar-invariant symmetral neg G AR]gantar/as
gush-invariant symmetral GARJ&Ush/2s

2.7 The dimorphic algebra ARI%/9 « AR/,

The space ARI®/ of bialternal and even bimoulds is a subalgebra of ARI.
The total space ARI®/ of all bialternals is only marginally larger, since
ARIM/A = ARI¥/# @ ARI2V2L (2.77)

with a complement space ARI® .= BIM Ui oaa that simply consists of all
odd bimoulds with a single non-zero component of length 1. The total space
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ARI® is not an algebra, but there is some additional structure on it, in
the form of a bilinear mapping oddari of ARI®/ into ARI%/4 .

oddari : (ARI®A ARI#VA) . ARI2V/al (oddari # ari) (2.78)
with
C* = oddari(A®*.B*) = (2.79)
COL) L L AGD BUB) L AT gL L 4Ge) g

_ U 4G _ UL 40,0 — gl o)
Remark. Although swap doesn’t act as an automorphism on ARI, it does
on ARI®2  essentially because all elements of ARI?/2 are push invariant.

2.8 The dimorphic group GARI®/% < GARI™/®.

The set GARIY % of bisymmetral and even bimoulds is a subgroup of GARI
The total set GARI®/® of all bisymmetrals is only marginally larger, since
we have the factorisation

GARI®® = gari(GARI®/% GARI2/2) (2.80)
CARI®/& = U €55 (€ = flezion unit , essy bisymmetral) (2.81)
¢

with a left factor GARI*/% consisting of bisymmetral bimoulds that are
invariant under pari.neg (rather than neg) and correspond one-to-one to very
special bimoulds of BIMU,, the so-called flexion units (see §3.2 and §3.5). Of
course, the union Jg extends to the vanishing unit €* = 0°, to which there
corresponds esse = idgars. The total set GARI®/® is not a group, but the
above decomposition makes it clear that it is stable under postcomposition

by GARI®/®:
gari(GARI®/® GARI®/2) = GARI™/* (2.82)

Remark. Although swap doesn’t act as an automorphism on GARI, it
does on GARI®/® essentially because all elements of GARI®/® are gush
invariant. In fact, for B* in GARI®/® formula (2.60) reads gira(A®, B*) =
gari(A®, B®) since in that case rash(B*®) = 1°* and ras(B*) = B®.
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3 Flexion units and basic dimorphic bimoulds.

3.1 The free monogenous flexion algebra Flex(€).

To any €* € BIMU; of a given parity type (i;), i.e. such that

elin) = e 7°? ¢lor) with s1,s9 € {0,1}; e,n € {+,—}; Yu,v1 (3.1)

let us attach the space Flex(€) of all bimoulds generated by &* under all
flexion operations, unary or binary®. Flez(€) thus contains subalgebras not
just of ARI but of all 7+1 distinct flexion algebras, and subgroups not just
of GARI but of all 741 distinct flexion groups. Moreover, for truly random
generators €°, all realisations Flex(€&) are clearly isomorphic: they depend
only on the parity type (2) Lastly, for all four parity types, we have the
same universal decomposition of Flez(€) into cells Flex,(€) C BIMU, whose
dimensions are as follows :
(37)!

Flex(€) = @DFlex,(€) with dim(FlexT((’E)):m (3.2)

The reason is that Flex, (&) can be freely generated by just two operations,
namely mu and amnit:

A? € Flex, (€¢) = mu(Ay,...,As) € Flex,, 4 . (€) (3.3)
A? € Flex,,(€¢) —> amnit(A;, A3).€* € Flexq 1y (€)

As a consequence, each cell Flez,(€) can be shown to possess four natural
bases of exactly the required cardinality, namely {e}} ~ {eg} ~ {e5} ~ {eg},
which merely differ by the indexation :

1) t runs through all r-node ternary trees.

2) p runs through all r-fold arborescent parenthesisings.

3) o runs through all arborescent, coherent orders on {1,...,7}.

4) g runs through all pairs g =(ga, gi) of r-edged, non-overlapping graphs.

The basis {e¢}}.
The t-indexation is implicit in the free generation of Flez,(&) under the
operations (3.3) and (3.4).

The basis {e¢j}.

Pother than swap, which exchanges the u;’s and v;’s, and pus (see (2.10)) which, we
recall, doesn’t qualify as a proper flexion operation. But push is allowed, as well as all
algebra and group operations.
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We fix r and puncture the unit circle at all points Si; and Sa, 1 of the form

k K+
Siy 1= exp (2mr+_1) . Sap :=exp (27rzr+i) (ke Z/(r+1)Z)

Let G, be the set of all 2’11), pairs g = (ga, gi) such that :

(i) ga is a connected graph with vertices at each Sa; and with exactly r
straight, non-intersecting edges.

(ii) g¢ is a connected graph with vertices at each Si; and with exactly r
straight, non-intersecting edges.

(iii) ga and gi are ‘orthogonal’ in the sense that each edge of one intersects
exactly one edge of the other.?”

To each such g = (ga, gi) we attach the bimould ¢j € Flex,(€) defined by

eévi i) = H e (exactly r factors) (3.5)
r€Egangi
with
u(z) = Z Un, (with 1 <n <r)
[Sio<Sam, <San<Sam,]™**
v(x) = Vp, — Up, (ng #0; v,, =014 ny =0)

with Sty , Stm, (resp. Siy,, Sin,) denoting the end-points of the edge of ga
(resp. gt) going through = and with the indexation order so chosen as to
ensure

circ circ

[Sip < Sam,, < Sam,] and  [Siy, < Sam,, < Siy, < Sau,]

The basis {¢}}.

Anorder oon {1,...,r} is arborescent if each ¢ in {1, ..., 7} has at most one
direct o-antecedent i_, and it is coherent if the following implication (which
involves both the natural order < and the o-order <) holds:

This amounts to saying that the set of all 7 such that + < j has to be an
interval i~ < j < ¢t for the natural order. The basis elements are then
defined as follows

g=it

(Gro u(i) .
eo "= H ebi)  with u(7) E uj= E uj = U;—v;_

1<i<r =7

30Each ga verifying (i) has one orthogonal gi verifying (i) and vice versa.
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If i has no o-antecedent i_ we must of course set v(i) := v;.

The basis {e3,}.

The set P, of all r-fold arborescent parenthesisings may be visualised as
consisting of non-commutative words p made up of r letters a (“opening
parentheses” ), r letters b (“inter-parenthesis content”) and r letters ¢ (“clos-
ing parentheses”). These words, in turn, are defined by a simple induction:
each non-prime p admits a unique factorisation into prime factors p;, and
each prime p admits a unique expression of the form

P =a.p,.b.py.c (p1, P2 €P) (3.7)

with factors p,, p, that need not be prime, and one of which may be empty.3
Thus Py = {abc}, P> = {aabcbe, ababee, abeabe}, ete.

To define the correspondance between the p- and o-indexations, we assimilate
each i in {1,...,7} to the i-th letter b in the words p € P, and set

h(i) =a—vy=+"—d (3.8)

if that ¢-th letter b is preceded in p by « letters a and v letters ¢ or, what
amounts to the same, followed by o' letters a and +' letters c. We then
define the order o on {1,...,r} by decreeing that i < j iff h(i) < h(j) and
h(i) < h(k) for all k between i and j.*?

3.2 Flexion units.

As it happens, the most useful monogenous algebras Flex(€) are not those
spawned by ‘random’ generators & but on the contrary by very special ones
- the so-called flexion units.

Exact flexion units. The tripartite relation.
A flexion unit is a bimould €* € BIMU; that is odd in w; and verifies the
tripartite relation below. More precisely:

¢ v =_@guw  gugw = guil glwz | gui] glwe ie

e = _elth gl Z elihe) 4 e(iel) (3.9

3lor even both, if p € P;.

32As a consequence, if the i-th and j-th letters b fall into distinct prime factors of p,
then ¢ and j are non-comparable.
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In view of the imparity of &® the tripartite identity may also be written in
more symmetric form:

el @bl) pelal) @lod) @bl @) = 0 vy, Yoy with ug+uy +up = 0

If two units &* and O°® are constant respectively in v; and wu , then the sum
¢* + O° is also a unit.

If &* is a unit, then for each v € C the relation m = EWL Y"1 defines a
new unit 6['7].

Conjugate units:
If ¢* is a unit, then the relation 9l) .= ¢lu) define another unit 9°* — the
so-called conjugate of €°. Indeed, setting (uy,us) := (v}, v5—v)), (v1,v2) 1=
(u)+uh, uly), then using the imparity of €* and re-ordering the terms, we find
that (3.9) becomes:

uy uh uy ulg ulg uh w v
ool — ol olw) L ot gle) L ol = e

i.e. conserves its form.
Let us now mention the most useful flexion units, some exact and others
only approximate. Throughout the sequel, we shall set:

1 &

P =1 . Q)= o Q)= s (3.10)

Polar units:
They consist purely of poles at the origin:

Pa” = P(uy) (3.11)
Pi"' = P(v;) (3.12)
oo optay pltny - @ 8

Paiyl; = P(a)+P(ﬁ) = +U1 (3.13)

Pa®, Pi®, Paif, 5 are exact units.

Trigonometric units:
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They are ‘periodised’ variants of the polar units:

Qa¥ = Qu(u)) = m (3.14)
@?=:@@o=5555 (3.15)
Qaitlhy = Q)+ Q) = tanf%ﬁtanf%) (3.16)
Qaihyt , = Qc(%)—Qci(%) = tan(c%) —tanhc(%) (3.17)

Qa; , Qig are approzimate units but Qai; , 5 , Qaih , 5 are evact.

Bitrigonometric units:

uy —2minivy —2minivy
Qi =Ly Q) (3

™y +cu den(v den(v
n1€Z 1 1 1<n1<den(v1) ( 1) ( 1)
—2miniu —2miniu
--(Zi) _ ce 1u1 B ce 1u1 TNni+cv; o (Zi)
Qi = ) e T dentun) O\ den(ur) ) = ¥
n1€Z 1 ! 1<n;<den(u1) ! 1

Qaa’ | Qiit are approrimate units. (den = denominator)

Flat units:
Let o be the sign function on R, i.e. 0(R*) = +1 and ¢(0) = 0. Then set:

Sa"* =o(uy) , Si"=o(v1) , Sai"* =o(uy)+o(vy) (3.19)
Sa® , Si® are approzimate units but Sai® is exact.??

Mixed units:

Qasé’fi = Qc(uy) £cio(vy) Qisfz‘j;E = Q(v1) £cio(uy) (3.20)

L] N .
Qas; 1 , Qis; . are exact units.

“False” units:

+2civy

Qigﬁ::Qig’lici:cQ(cvl)ici:i2ci (3.21)

e:l:Qcivl -1

33when viewed as a distribution or as an almost-everywhere defined function on R. But
when viewed as a function on Z, it becomes an approximate unit.
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Qg and Qif _ verify the exact tripartite relation but not the imparity con-
dition.3*

Approximate flexion units. Tweaking the tripartite relation.
The approximate flexion units listed above verify tweaked variants of the
tripartite relation:

Qag* Qay* = Qafl Qal™ + Qay"! Qal™ + ¢’ (3.22)
Qi Qi = Qe+ Qi Qi - (3.23)
Qaa® Qaa™ = Qaa" Qaal™® + Qaa”! Qaal™ + ¢ §(vy) 6(v,)(3.24)
Qi Qi = Q¥ Qiil* + Qi Qiil*2 — ®§(uy) 6(uz)3.25)
Sa'Sa®? = Sa®Salv2 4+ Sa®lSalvz — 1 4 §(uy) d(usy) (3.26)
Sivt Sivz = S Sifvz gl Silwz 4 1 — §(uy)d(vy)  (3.27)

In the last four relations, §(¢) := 1 if t = 0 and §(¢) := 0 otherwise.

3.3 Unit-generated algebras Flez(&).

For an ezact flexion unit &* the monogenous flexion algebra Flex(€&), also
known as eumonogeneous®® algebra, is richer in interesting bimoulds, though
much smaller in size than in the case of a random generator &*. The total
algebra Flex (&) can still, as in §3.1, be freely-canonically generated, but un-
der the sole operation amnit and without mould multiplication mu. In other
words, we retain only the steps (3.4) and forego the steps (3.3). As a conse-
quence, Flex(€) decomposes into cells Flex, (&) C BIMU, whose dimensions
are given by the Catalan numbers and whose inductive construction goes like
this:

: : (2r)!
Flex(€) = @Flexr(é) with dlm(FleXr(G))zm (3.28)
Flex,(€) = (P amnit(Flex,, (€),Flex,,(€)). ¢* (3.29)
r1+ro=r—1
1,722>0

34Tn terms of applications, the failure of imparity has more disruptive consequences
than the failure to verify the exact tripartite equation, because it means that & has no
proper conjugate £, which in turn prevents it from serving as building block for dimorphic
bimoulds such as ess® etc.

35with eu standing for good. For the polar resp. trigonometric specialisations of the unit,
Flez(¢®) is known as the eupolar resp. eutrigonometric algebra. In the eutrigonometric
case, though, the basis elements are more numerous than in the eupolar case, and amnit
is no longer sufficient to generate everything. See the last table in §10.5.
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The new basis {¢}}.
It follows from (3.29) that Flex,(€) has a natural basis {e}} indexed by all
r-node binary trees t. The construction is by induction on r:

¢; = amnit(eg, , ep,) . €* = anmit(e; ,e7 ). €° (3.30)

where 1,2 denote the left and right subtrees (one of them possibly empty)
attached to the root of the binary tree ¢.

This new basis {ef} is a natural subset of the analogous basis of §3.1,
which was indexed by ternary trees.

The new basis {e}}.

It coincides with the analogous system in §3.1, but restricted to the pairs
g = (ga, gi) meeting either of these two equivalent conditions:

(i) the graph ga has no pair of edges issuing from the same vertex and con-
taining Si( in the angle so defined.

(ii) the graph g¢ has no pair of edges with end-points (Si,, Siy), (Six, Siy)
disposed in the circular order 0 < p < k < k+1 < g <r+1.

The new basis {e?}.
It coincides with its prototype in of §3.1, but under restriction to the separ-
ative orders o, i.e. to orders such that:

{i—j=1}={izj}or{j=i} (3.31)

In other words, elements that are consecutive in the natural order must be
comparable in the o-order. This implies that o has a smallest element. It also
implies that if ¢, j are not o-comparable, then the intervals [i~,i"] and [, j 7]
cannot be contiguous (which justifies calling the order o “separative”).

The new basis {e3}.

It coincides with the analogous system in §3.1, but restricted to the words
p constructed from the sole induction rule (3.7), without recourse to word
concatenation. These less numerous p are necessarily prime, and can be
compactly represented by sequences h = [h(1),..., h(r)], with A(7) denoting
the height of the i-th letter b in p, as defined in (3.8). For the lengths r < 3
we have thus:

Hy = {[1]} — Py = {abc}
Hy = {[1,2],[2,1]} «—— Py = {ababcc, aabebe }
Hs ={[1,2,3],(1,3,2],(2,1,2],[2,3,1],[3,2,1]} «— P3= {abababccc, ...}

The involution syap between conjugate flexion structures.
All monogenous structures Flex(€) generated by the exact flexion units listed
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in §3.2 are actually isomorphic. In the case of two conjugate units, the
isomorphism becomes an involution, denoted syap:

syap : Flex,(€) < Flex,(O) , e < o0} (&, O conjugate) (3.32)

The involution syap, being defined only on monogenous structures, is quite
distinct from the universal involution swap, which applies to the whole of
BIMU. On the other hand, syap is more regular: it commutes with all flex-
ion operations, whether unary or binary, whereas swap commutes only with
a few, such as ami//gami.

The involution sap on each flexion structure.

Both mappings swap and syap exchange Flex(€) and Flex(9). Since these
two involutions actually commute, their product sap is also a linear involu-
tion, with eigenspaces {£1} of approximately equal size :

syap Flex,(€) < Flex, (D) (3.33)
swap Flex,(€) < Flex, (D) (3.34)

sap Flex,(€) < Flex,(€) , Flex,(O) < Flex, (D) (3.35)

with sap = syap.swap = swap.syap : (3.36)

For r even, the dimensions dF of sap’s eigenspaces of eigenvalues +1 are
equal, but for r odd d; is slightly larger than d,. In fact, computational
evidence supports the following conjectures®® :

dy. —dy, = 0 (Vr) (3.37)

_ (27)! B
dypy —dypy = Al df +d; (Vr) (3.38)

Polar specialisation and graphic interpretation.

In the specal case (€°*,9°) = (Pa®, Pi*), both the canonical basis and the
involution syap have a simple interpretation, as shown on the polygonal di-
agrams in §10.5, with the dotted resp. full lines representing the variables w
resp. v.

3.4 Twisted symmetries and subsymmetries in univer-
sal mode.

To every exact flexion unit € there correspond twisted variants of all straight
symmetries and subsymmetries listed in §2.4. But before defining these, we

36They have been verified up to r = 8.

35



must introduce two elementary bimoulds e3* and e3* = pari.e3® :
g = LGN gt = (1) e e (3.39)

as well as the symmetral bimould es® := sap.e3®. (see also (3.91)).

e C-alternality and E-symmetrality.
The simplest characterisation of the E-twisted symmetries is by means of the
equivalence :

{B*® €-alternal resp. €-symmetral} <= {A® alternal resp. symmetral}

with B® = ganit(e3*).A® or B®* = gamit(e3*).A*, on choice.?”

As for the analytic expression of the twisted symmetries, it reproduces
that of the straight symmetries on which they are patterned, except for the
systematic occurence of inflected pairs (w;, w;), with w;, w; not in the same
factor sequence. Let us illustrate the €-alternality (resp. €-symmetrality)
relations for two sequences w'’, w” first of length 1:

Bz 4 Uit Bwﬂﬁtm + B[Wgwlj =0 (resp. B**B"?) i.e

(u17u2) u2v“1)

B vi v/ B(vz sv1/ — B(I:Jllz)@(;;?l) — B(T;)Qf(;;g) =0 (r@sp‘ B(zi)B(:g))
and then of length 2:

B Ws,wa 4 RUWIWs,Wa,wa 4 RW3,WLW204 4 RWIWS,WW2 4 RS, W14,y RS, W04, w2
Bl wigglus y pluswawsggun] 4 punlwswsgslws 4 plwswiws gyun)

+ Bl wzgslwe | gusfwawzggwr] 4 purwelwigslws | pui,fwsw gqws)

4+ Burwsw2leslws | puiwsfwiggual 4 puswnwzleglws 4 pwswn,fwaprwe)

+ Bwilwz] e lws,[wa  plws,we] e3w1J7Lw4 + mew%é [wsw2] BW3Jw4e3w1va2J

= 0 (resp. B¥v"2Bws™1)

These two examples should suffice to make the pattern clear. Remark-
ably, when & runs through the set of all flexion units, the corresponding
¢-symmetralities essentially exhaust all commutative flexion products®® that
may be defined on BIMU.

3Tganit(e3®) and gamit(e3®) define two distinct mapplings A® — B*, but both result in
the same transformation of symmetries.

38Provided we include the approximate flexion units, for which the twisted symmetries
become more intricate. For the trigonometric case, see §10.4.
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Like their straight models, the twisted symmetries induce important sub-
symmetries, which we must now sort out.

e {C-alternal} — {¢-mantar-invariant, ¢-pus-neutral}.
E-mantar is a linear operator conjugate to mantar:

E-mantar := ganit(e3*).mantar.ganit(ez*) (3.40)
and with explicit action:
((€mantar).B)” = (—1)"" > BRI e [eal”  (3.41)
[1; atb;ci=w ( (

(Note that w always denotes the sequence w in reverse order).
¢-pus-neutrality also is derived from straight pus-neutrality:

( Z pUSl)-ganit(ez,)_l.B° =0
1<i<r(o)

and admits a simpler direct expression :

YooY (-1 Y B gl gl =0 (3.42)
w' cisc w a"wibi:w

e {¢-symmetral} — {¢-gantar-invariant, ¢-gus-neutral}.
¢-gantar is a non-linear operator conjugate to gantar:

E-gantar := ganit(e3*).gantar.ganit(ez*)

ganit(e3®).invmu.anti.pari.ganit (e3*) ~*
= ganit(e3*).invmu.anti.pari.minu.ganit(e3®) " 'minu
= invmu.ganit(e3®).anti.pari.minu.ganit(e3*) " 'minu

= invmu.(&-mantar).minu
To establish the above sequence, we used the commutation of ganit(M*®) with
both minu and invmu, and the mutual commutation of minu, anti, pari.

Using the last identity, we see that the action of &-gantar is given by:

((¢-gantar).B)" = Z Z (=)™ H BY Hg‘ﬂ Hﬁw (3.43)

[1; a*bici=w J[;6/=[],[b:] 1<j<s

¢-gus-neutrality also is derived from straight gus-neutrality:

( Z gUSl)-ganit(eg)_l,B' =0

1<i<r(eo)
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and admits a simpler direct expression :

> (=) BB =(=1)y™ Y Bl g7 gl (3.44)

1<s circ [ X 2
> wl s SIS0 a*w;b*=w

One should take care to interpret the circular sums correctly, i.e. without
repetitions. Thus, if w has length 4, on the left-hand side of (3.44) the terms
BYvw2 Bwswa gand BY2Ws BY4Wl occur once rather than twice, and the term
B B"2 B"3 B* also occurs once, not four times.

esstY

e {alternal//©-alternal} = {&-neg-invariant, ¢-push-invariant}.
As mentioned in §2.4, bialternality implies invariance not just under neg-
push= mantar.swap.mantar.swap but also®® separate invariance under neg
and push. Likewise, given any any pair of conjugate flexion units (&, 9), a
bimould B*® of type al/ol (i.e. alternal and with a ©O-alternal swappee) is
ipso facto invariant not just under E-negpush but also® separately so under
¢-neg and E-push. The definitions of these operators run parallel to those of
the straight case*!:

€-negpush := mantar.swap.(E-mantar).swap (3.45)
¢-neg = neg.adari(es®) = adari(pari.es®).neg (3.46)
¢-push := (€E-neg).mantar.swap.(E-mantar).swap (3.47)

In fact, invariance under E-push is equivalent to invariance under a distinct
and simpler operator E-push,, which is defined as follows:

E-push, := (&-ter) '.push.mantar.(&-ter).mantar (3.48)

with
((@-tel‘).B.)wl""’wr ‘= BWLesWr _ QWL Wel @ Bwl,...,wr,l] @Lwr(349)
((E-ter) L. B*)wirwr .= > B muesl® es® (3.50)

a.b.c = w=(wi,...,wr)

and with mues® := invmu.es® = pari.anti.es® and es® as in (3.91).
The reason for this equivalence is the identity:

(id — €&-push,).B* = swamu(es®, (id — &-push).B*) VB*  (3.51)

3provided we assume (as assume we must, to ensure ari-stability) the component of
length 1 to be even.

40again, assuming parity for the length-1 component.

4lsee (2.12) for push and also (3.91) for es®.
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with swamu defined as the swap-conjugate of mu.*?
The notable advantage of E-push,-invariance over E-push-invariance is that
it leads straightaway to the so-called senary relation:*?

(&-ter).B* = push.mantar.(&-ter).mantar. B* (3.52)

which is the simplest way of expressing the &-push-invariance of B*.

essY . . . .
e {symmetral//O-symmetral} = {€-neg-invariant, ¢-gush-invariant}.
Here, the first induced subsymmetry is the same as above, namely invari-

ance under the linear operator €-geg, defined as €-neg in (3.46) but with
adari replaced by adgari:

¢-geg 1= neg.adgari(es®) = adgari(pari.es®).neg (3.53)
The second induced subsymmetry is &-gush-invariance, with:
¢-gush := (€E-neg).gantar.swap.(E-gantar).swap (3.54)

The only moot point is whether €-gush-invariance is equivalent to invariance
under some simpler operator &-gush, defined along the same lines as (3.48).
Even though the existence of a senary relation, or for that matter of a rela-
tion of finite arity is unlikely, it ought to be possible to improve considerably
on &-gush.

3.5 Twisted symmetries and subsymmetries in polar
mode.

Let us now restate the above results for the most important unit specialisa-
tion, which is the polar specialisation (&*,9°®) = (Pa®, Pi*). The transposi-

42 e. swamu(My, M3) := swap.mu(swap. M, swap.M3)
4350-called because it involves only six terms — three on the left-hand side and three on
the right.
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tion goes like this:

¢-alternal — alternul (¥) ; 9O-alternal — alternil
¢-symmetral — symmetrul (%) ; O-symmetral — symmetril
¢-mantar — mantur (%) ; ©O-mantar —  mantir
¢E-gantar —  gantur (%) ; ©O-gantar — gantir
¢-pus —  pusu (¥) ; O-mantar —  pusi
¢-gus — gusu (¥) ; O-gus —  gusi
¢-push —  pushu ;. O-push — pushi (%)
¢-gush — gushu ; O-gush — gushi (%)
¢-neg —  negu ;. O-neg —  negi (%)
¢-geg —  gegu ; O-geg —  gegi (*)
¢-ter — teru ; O-ter —  teri (%)
And of course:

alternal/O-alternal — alternal/alternil

alternal/€-alternal — alternal/alternul (x)

In the above tables, the stars (%) accompany all symmetry types that are
incompatible with entireness. For further details, see §3.11.

e Alternility and symmetrility.
Let us write down the alternility (resp. symmetrility) relations for two se-
quences w’, w” first of length (1,1):

(1:12)

B'vi, v B(Z% Z;) _ B(uvllQ)Pw;l _ B(uvl;)Pm;Q =0 (T@Sp B(Ul)B(“2))

then of length (1,2):

BU i) 4 pLalvllvd) 1 gGlied o)) — U 3) praa _ gL 03) pore
ug, u13 ug, u13 ug, ug
_ (Uz, 01 )Pv3;1 o B(“Q’ v3 )Pm:s =0 (resp. B(“l)B(”% vg))
and then of length (2,2):
uy, ug, Uz, ug uy, uz, ug, ug ug, up, ug, ug
B(vl v9, V3, U4)+B(v1,v3,v2 'u4)+B('U3 vy, V9, 1)4)
Uy, uz, ug, ug ug, Uy, ug, ug ug, ug, uy, uQ
+B(v1 V3, V4, v2)_'_B(v3,v1, Vg, U )+B(v3 Vg V1, 1/2)
_ U v prsn _ g s ) pris _ g UQ)pval _ gl v2)pvl3
U u u y U u u u
B (o oy Uz)PU‘“ _B( R UQ)PUM _B(U} e, pvsz _B(v} e Pvzs
u u u u u u u u u u u
_ UL e ) prae _ gl vi“)Pm _ pla ) prae _ gl ) praa
+B(uv113 vo )Pva 1 pra g B( va, v2 )PUI 3 PUa:2
+B(1'fl)113 vy )P’US 1PU24 _"_ B(1:,133 vy )PUI 3P’U24
uy, ug ug, ug
=0 (Tesp. Bl v) Bl 04))

40



Here and in all such formulas, we set P" := P(v;) := 1/v;, purely for
typographical coherence.

e {alternil} — {mantir-invariant, pusi-neutral}.
For length r = 1,2, 3 the mantir operator acts thus:*

(mantir.B)(Z}) = +B'w)

(mantir.B)(zi:zg) — gL w) 4 BUW) praa 4 gUWY) puia
(mantir.B)(Zi: vpvg) = 4 Blogl vl vr)

(“23 u23> (“3’ u12

— B vs, vl PU23_B( vy, v1 Pv32—B(”3 UQ Pv12_B v3, V| )PU2:1
+B( )Pv21pv31+B( b )PUIZPU52+B( o )pvupvzs

and pusi-neutrality means this:

ZB(E,’E) _ _{_B(qﬁ}f)Pvm + B pri
circ
ZB vl wdl s _{_B(uif?’)Pvavsg + B33%) priz pus2 + B3 pois pras

circ

e {symmetril} — {gantir-invariant, gusi-neutral}.
For length r = 1,2, 3 the gantir operator acts thus:

(gantir.B)(zi)— +BG)
(gantir. B)C D= _ U3 4 gD pOD 4 pU) praa | g puies

u ;s U, u3) ug, ug, ug ug ug uj )

(gantlr B) ”1 vy, v3 —+B(v3, v, Ul )_|_B( )B( )B(vl ) _B(vg v9 )B(Ul ) _B(ZS)B(UQ v
_B(u;,233 ”1)PU23 _ B(u23, Z‘II)P’L)’;Q _ B(vg vo )PUIQ _ B(vg v1 )Pv21
L RUBI BUD pras . gUE) g puse | gGi) gU2) pora . g(3) gUiA2) puaa

+B("123)Puz 1 pusi —l—B( vy ) po12 pus:2 +B( "30) puis pras

As for gusi-neutrality, it has the same expression as pusi-neutrality, but with
left-hand side replaced for r = 2, 3, etc, respectively by:
(ul » U2, u3) (“2 > U3 “'1) (""5 > UL “2) (u2,u3) (“3’"1)

B v, v, V3 +B vy, v3, V] +B v3, V], V9 B(”':l MQ)B('Ug) B v9, v3 B(Z})_B v3, U] B(zg)

etc.

e {alternal//alternil} — {negu-invariant, pushu-invariant}.
The first induced subsymmetry here is invariance under negu, with

negu := neg.adari(paj®) = adari(pari.paj®).neg (3.55)

4 To get the general formula, one simply transposes (3.41).
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and with paj® defined as in (3.93). The second induced subsymmetry is
invariance under pushu,with

pushu := negu.mantar.swap.mantir.swap (3.56)

with mantar as in (2.7) and mantir as above; and it is in fact equivalent to
invariance under the simpler operator pushu,:

pushu, := teru '.push.mantar.teru.mantar (3.57)
whose main ingredient is the arity-3 operator teru and its inverse:*
(teru. B®)Wh-Wr 1=  BWleeWr _ QWL @O g Bl pglwr
(teru . B®)wrvr = Z B mupajl® paj®
a.b.c = w=(wi,..,w)
leading to the linear senary relation:
teru. B* = push.mantar.teru.mantar. B® (3.58)

e {symmetral//symmetril} = {negu-invariant, gushu-invariant}.
Here, the first induced subsymmetry is gegu-invariance, with gegu defined as
negu in(3.55), but with adari replaced by adgari:

gegu := neg.adgari(paj®) = adgari(pari.paj®).neg (3.59)
and the second is gushu-invariance, with
gushu := negu.gantar.swap.gantir.swap (3.60)

with gantar as in (2.72) and gantir as above.

3.6 The secondary bimoulds e¢ss® and es3® .

We shall now use the flexion units to construct two objects of pivotal impor-
tance: two very special secondary or dimorphic bimoulds (i.e. bimoulds with
a double symmetry) which are, uncharacteristically, invariant under pari.neg
rather than neg, and which, owing to that rare property, will prove helpful
— in bridging the gap between straight and twisted double symmetries

— in connecting GARI®/® with GARI%/

45The inverse teru~! is not of finite arity, of course, but its main ingredient is the mould

mupaj® = invmu.paj® which, due to symmetrality, has the simple form pari.anti.paj®.
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— in constructing the singulators on which all the deeper results rest.

To do this, however, we must proceed step by step, and begin by construct-
ing some remarkable alternal moulds of Flex(&) which, though not exactly
dimorphic, come very close.

The algebra ARI ...~ and its group GARI _.~ .
If we set:

tew1,---7ws = O Zf T # S

T

veyt = €Y ve) = arit(ve)).ve] if r>2  (3.61)

the bimoulds rve? thus defined are alternal. They even exhibit (but only when
suitably combined) some traces of dimorphy, since the bimould ste® :

1 1 2
ste® == vel + gteg + gteg =D oD te® € ARIYV (3.62)
r>1

is not only alternal, but has a O-alternal swappee. But the real importance
of the ve) derives from the remarkable identities:

ari(vey ,vey ) = (ry —ro)vey .

VTl,’l”g Z 1 (363)

which lead straightaway to the following commutative diagram:

GIFF o> 2% GARI.. C GARI® | se(z)=—21 — se°

(I—=") "

1 exp 1 expari I Texp 1 expari
DIFF_,. 2% ARI... CARI® | re(z)=2"10, — re

T

Here, GIFF ..~ denotes the group of (formal, one-dimensional) identity-
tangent mappings of the form:

f=r—ax(l+ ZCLT z") (3.64)

and DIFF .. denotes its infinitesimal algebra, whose elements may be rep-
resented as sums Y, a, "9, provided we change the sign before their
natural bracket. -

Of course, since the Lie algebra ARI .~ contains only alternal bimoulds,
its exponential, the group GARI .-, contains only symmetral bimoulds.

Let us now explicit the isomorphisms between these classical objects and
their counterpart in the flexion structure. We begin with the easy direction,
i.e. from flexion to classical.
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The isomorphism GARI_.. — GIFF_,~ made explicit.

Let S* in GARI 4~ be the image of some f(z) = z(1 + > a,2z") in
GIFF _,~. How do we read the coefficients a, directly off the bimould S* it-
self, without going through the costly operation logari? The answer is given
by the bilinear operator gepar:

gepar.S*® := mu.(anti.swap.S®, swap.S*®) (3.65)
and by the formula:

(gepar.S)“t"r = (r+1)a, O ... O with O congugate to € (3.66)

The isomorphism GIFF_,. — GARI_.,~ made explicit.
The isomorphism from classical to flexion is more difficult but also more inter-
esting to explicit. We may of course transit through DIFF _,~ and ARI o~
in the above diagram, but that involves performing the ‘costly’” operation ex-
pari and leads, in the course of the calculations, to rational coefficients with
large denominators, which vanish in the end result. Fortunately, there exists
a much more direct scheme, which involves only integer coefficients.

For each integer sequence r := (ry,...,rs) let us define inductively the

3 L] L] e .
three bimoulds me;., ney., ey :

me} ;= €* ;  me) = amit(mey,;).€* ; mey  :=mu(me) ..., me)
nef :=€* ;  mney :=anit(ney).€* ; ey . c=mu(ne ... ne )
tef :=€° ;  vey :=arit(ver,). & ;  vey . =mu(te ... ve)
Clearly, mes, nel, ve are in Flez,(€) with r := ||| = >_ r;. In fact, one can

show that all three sets: {mey., ||7| = r}, {nel, ||r] =7}, {vel, ||| = r} span
one and the same?® subspace Flexin,(€) of Flex,(€), with the dimensions

27)!
dim(Flexin,(€¢)) = 2" ; dim(Flex,(€)) = %
These three bases of Flexin,(€) are connected by integer-valued matrices,
and provide the proper setting for expressing the image S* € GARI o4~ of
the generic element f € GIFF _,~. In fact, we have the choice between three
series of coefficients {ax}, {bx}, {ck }:

1+Za93 —1—|—Zbkx log —1—|—ch$

(3.67)

46This would no longer be the case if €®* were not a flexion unit.
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which are well-suited for expressing S*® in the bases {nep},{mep} {ves} re-
spectively (mark the order!), leading to three expansions:

S = E m, me, = g n,ne, = g T ve,
T' r r

Here are the first structure polynomials m,., n,., r,. up to ||r| = 4

m, =
moy = -2 bg —f-b%
my; = +b

—b,

n = m r = G
ny = -2 Qo +a% ro =
ny =  tas T =

ms3 — —363 +3blbg —b:lS

mi2= +2b3
mso = +bg
mii11= —b3

mii11,1

Ty
nigs
n31
Nnao

Mn11,2

N2

UDPRN!

Mn111,1
T4

13

r31

T2.2
T11,2
T121
T21,1

11,11

byt

—b1by

n3 = +3a3 —3a,ay +a}

(3.68)
Co —C%
1 2
7
Ty =+c3 —201¢p +5c]
+35¢3
7.3
+cico —§c1
3
+861

Nis= —a3 —ajay +a} 1Ty =
Ng1 = —2CL3 +2CL1(L2 —CL% T12=
ni11= +as r111=
—Aby +4biby 4282 —4b2by +b1
+3 by
+by  —by by —2b3  +b?by
$2by —2biby  +b2
—2b, 12
—by +b3
—by  +b1 b3
+0b4
—4day; +dajaz +2ai —4aiay  +aj
+ays +2ara3 +ai —Hatay +2ai
+3a4s —3ajaz —3a3 +6aiay —2af
+2 ay —2 ay as +CL%
—ay —a% —l—a% as
—ay —ajas +2ata; —af
—2a; +2ayaz  +ai —3aiay  +aj
+ay
+e —2c1c35  —3 FIide -8B
+eies +idd —Icie, +3¢
—13 +3dce, -2
+363  —cdlcea 43cf
+35cdcs —3cf
—i—% c‘l1
+35 €1
+o5 cf

45



For any unordered integer sequence {r} := {ry,...,rs}, with repetitions al-
lowed, we set:

a{,.} = H Ay, ) b{r} = H bn ) C{r} = H Cr, (3.69)

There exist efficient algorithms for calculating the three series of structure
coefficients my, (4}, 14 fo}, Te (o} Which occur in the above tables:

m, = Z m, o by 5 My = Z Ny (7} Ay 5 Ty = Z Ty (77} Cl{p/'}
{r"} {r"} {r"}

and which encode, each in their way, all the information about the mapping

from GIFF ..~ to GARI _..~. These structure coefficients have many prop-

erties, some of which are still imperfectly understood. We mention here but

two of them. Consider the regularised coefficients my,} (e},1(e} o} defined

by:47

m{rl},{rll} —= Z m’r‘,{'r‘”} 7 n{,r,/}7{,,,n} = Z nT‘,{’r‘”} (370)

re{r'} re{r’'}

We then have the remarkable symmetry properties:

My} (pry = Mpry ey 5 D) ) = Dy ) (3.71)
together with the identity:
m{,,./}7{,,,u} = (_1)7‘ n{""}v{”'"} ’(U’Lth r = ZT; = ZT‘;/ (372)

The following tables give ng) 7y up to 7 = 6. The entries left vacant
correspond to zeros.

|2 12 | 3 1.2 13
I | - I | -
2 | -2 +1 3] 43 -3 +1
12 | +1 1.2 | -3 +1
| 12 | +1
| 4 1.3 22 122 14
__ | - . .
4 | —4 +4 42 -4 +1
1.3 | +4 -1 -2 +1
22 | +2 -2 +1
122 | -4 +1
1* | 41

4Tthe two sums in (3.70) range over all ordered sequences r that coincide, up to order,
with the unordered sets {r’}.
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5 1.4 2.3 123 1.22 13.2 1°

|
|
5 | +5 -5 -5 45 +5 -5 +1
14 | -5 41 +5 -1 =3 +1
23 | -5 45 -1 -2 41
123 | 45 -1 -2 +1
1.22 | +5 -3 +1
13.2 | -5 +1
1° | +1
y 6 1.5 2.4 3% 124 1.2.3 13.3 2% 12.22 142 1°
6 | 6 46 +6 +3 —6 —12 46 -2 +9 —6 +1
15 | +6 -1 -6 -3 +1 +7 -1 +2 —4 +1
24 | 46 -6 +2 -3 +2 +4 -2 -2 41
33 | +3 -3 -3 +3 +3 -3 0 +1
124 | -6 +1 +2 43 -1 =3 +1
1.2.3 | =12 47 +4 -3 -3 +1
133 | +6 -1 -2 0 +1
28 | -2 42 -2 +1
1222 | 49 —4 +1
142 | -6 +1
1% | +1

Dimorphic elements of GARI .. .

We are now in a position to construct the two main dimorphic bimoulds
esse and es3s of GARI ..., simply by taking the images of two well-chosen
elements f, and g, of GIFF_,~. In the para before last, we mentioned
the economical way of taking such images, without transiting through the
algebras. Here, for the sake of expediency, we adopt the theoretical way, via
the infinitesimal generators:

fo(x)  — ess] I 8o(r)  — es3]
T exp 1 expari I 1 exp 1 expari
fo(z)  — lessg | 8uolz)  — leszy

The above diagram immediately translates into the formulas:

1 __ o 0X
essy, = expari(y_,., 0" Y rer) —— fo(z) = ‘ (3.73)
= o
1—(1— 120
esze = expari( Y o, 0, tel) —— go(x) := % (3.74)
= — 20
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with rational coefficients v, and ¢,, determined by:

(eXp (o™ xr),x.am)) o= L) =21+ Y o'ea’) =a— Za? 4 .(3.75)

2
r>1 r>1

(exp ((Z Oor xr).x.8$)> x=gy(r)=2(1+ Z doyr @) =2+ 02”4+ .. (3.76)

r>1 r>1
Thus:
1 11 o 1
M= 2772— 12,73— 48,74— 180’75_ 86407'76— 6720
1 1 1
50-’1 =S, 50-’2:50' (1—0'), 50’3:60-<1_0-)27 5074:%0 (1-0’)(3-40’)(3—2 0')

Main property: The bimoulds ess? are bisymmetral (i.e. of type as/as)
whilst the bimoulds es3s are symmetral/O-symmetral (i.e. of type as/o0s).
Here, O denotes as usual the flexion unit conjugate to €.

Remark 1: This is a survey, dedicated to stating rather than proving.
However, the double symmetries of ess? and es3 are so essential that we
must pause to justify them. The symmetrality of these two bimoulds is
easy enough: it simply results from their being, by construction, elements
of GARI_,~. But what about their swappees? The way the operator
gepar is defined (see (3.6)), it is clear that if ess? is to be symmetral, then
gepar.esss too has to be symmetral. Similarly, if es3? is to be O-symmetral,
then gepar.es3s too has to be O-symmetral. Now, in view of (3.66) and
(3.75),(3.76), we can see that

(gepar.ess, )t = S, QWL O (3.77)
(gepar.esz, )V = Z,, 0% O (3.78)
with
Spr = (r+1)0" ¢, = % (3.79)
1, ,
Zor = (r41)dgy = IT @o+i) (3.80)
0<j<r-1

Now, it is an easy matter to check that the above coefficients S, , resp. Z,,
are the only ones that can make the bimoulds defined by the right-hand
sides of (3.77) resp. (3.78) symmetral resp. O-symmetral. Thus, gepar.ess
and gepar.es3s do possess the right symmetries, and from there it is but
a short step to check that their constituent factors, namely swap.ess; and
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anti.swap.esss resp. swap.esze and anti.swap.es3s, also possess the right
symmetries.

Remark 2: Whereas the bimoulds esz: really differ when o varies, the
bimoulds ess? merely undergo dilatation — an elementary transform that
commutes with all flexion operations. So all these ess; essentially reduce to
their prototype ess® := ess], which we shall henceforth call the bisymmetral
element of Flez(€).

Remark 3: By continuity in o, we see that gi/2(x) = —log(l — ). Thus
fi1 0912 = id and therefore gam‘(ess{,eﬁg;m) = idgagrr = 1°, which shows
that invgari.ess} and by implication all invgari.ess?, are not bisymmetral.

Comparing ¢ss® and ¢ss® := sap.ess®:

The bimould ess® belongs to the group GARI ...~ whereas its image ¢ss®
under the involution sap=swap.syap belongs to swap.GARI _, ,, ..~ i.e. to
swap.GARI _,,-, which is not a group — only the swappee of one. Neverthe-
less, ess® and éss° have much in common, since they

~ belong both to Flez(€) and are both bisymmetral, i.e. in GARI*/%

— are both invariant under pari.neg

— have both the same length-one component: ess*! = ¢ss™".

This is enough for them to be exchanged under gari-postcomposition by a bi-
mould sées® that is not only bisymmetral, but also even®®, i.e. in GARI®/%,
It is therefore the exponential of an element [¢el® of ART?/2. In other words:

es5s® = gari(ess®, sees®) = gari(ess®, expari(leel®)) (3.81)

But since both sées® and [éel* are invariant under neg and pari.neg, they
are invariant under pari. All their non-vanishing components are therefore
of even length; or more precisely of even length r > 4, since, since an ini-
tial, length-2 component of sées® would have to be a bialternal element of
Flexs(€), and no such element exists.

It would seem that the bialternal algebra Flex(€) U ARIY is freely
generated by the non-vanishing components of [¢el®) i.e.

leely , leelg , [eely , [leel], , [eel], , leel}, ... (3.82)
as well as by the singulator-generated (see §4.2 below) bialternals
lel3, := senkq,(ess®).€*  (r > 2) (3.83)

but this is unproven so far (only verified up to length r = 14) although there
exists a precise conjecture linking the [¢el5, and the lel3,.

48i e. invariant under neg rather than pari.neg.
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If we now repeat the above construction but with & replaced by the
conjugate unit O, identity (3.81) becomes, with self-explanatory notations:

055° = gari(0ss°®, 500s°) = gari(0ss®, expari(lool*)) (3.84)

So far, so predictable. The remarkable thing, however, is that the compo-
nents [¢el, and [6ol3, of the rightmost bimoulds in (3.81) and (3.84) get
exchanged, up to sign, under the involutions swap and syap (see (§3.3)). As
a consequence, each one of them is, again up to sign, invariant under the
involution sap.

Polar and trigonometric specialisations:
Let us now consider the three polar and the three trigonometric specialisa-
tions of €* along with the corresponding bisymmetrals and their swappees:

Flexion units €* : Pa® Pi* Paij, Qa; Qii Qail,,
bisymmetrals ess® : par® pil® pail], ; ... til} tail}, 4
swappees oss” : pir® pal® pial},; ... tal} tiall, g
type as/os esjo © bary bily baill,; ... ... dail}_.,;
swappees 0s3, : bir) baly bialy 5 ... ... dial}_ .,

All these unit specialisations are ezact, except (Qa., which generates no
bisymmetral, and Q:?, which does.*?
Let D! be the dilation operator:

uy/t ..., ur/t)

(DtM) VL seees vr /i —= M(vl/t ,,,,, vr /[t

It clearly respects bialternality and bisymmetrality. Due to the general iden-
tities:

A® v-constant and B® u-constant =

swap.mu(A®, B*) = mu(swap.B®, swap.A®)

we can form new bisymmetrals in turn generate new ones:

vipail, ; = gari(D" pal®, DPpil*)  C GARI®/®
vipairy, 5 = gari(D”.par®, DPpir*)  C GARI®/®
vitail, 5 = gari(D*.tal}, D"til?) C GARI*/*

49But of course with an elementary corrective factor mini® € center(GARI) in the
connection formula: swap.tils = gari(mana?, tal.*) = gari(tal.®, mana?).
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The next four identities are special cases of (3.81) when €& specialises respec-
tively to Pa, Pi, Paiy g, Qaicap:

par® = gari(pal®, lar®) with  lar® C GARI2/2s
pil® = gari(pir®,ril®) with — ril® C GARI2/2s
pail}, 5 = gari(pial} ,,lappil?, 4) with — lappil}, ; C G ARIE/as
tail? , 5 = gari(tial} 5, lattil? , 5) with  lattil} , ; C G ARJ2/2s
vipaily ;= gari(pail?, 5, paiv, ) with — paiv; C GARI®/2
vitail? , 5 = gari(tail? , 5, taivy, 5) with — taivy,; CG ARJas/as

while the last two identities provide yet other examples of elements of GARI */ %
sharing the same first component and related under postcomposition by an
element of GARI®/®.

Difference between even and non-even bissymmetrals:

To bring out the sharp difference between even and non-even bisymmetrals,
we introduce two distinct copies €;,&y of the universal unit €, and define
their blend as follows:

sse] , = blend (€7, &3) =

(ul ..... ur) ul (“12) (“123) (u1 r) “1 (“2) “3) (ur)

s5e9 @1”” (’31“23 N @2“1 2‘32”2 @2”3 L& (3.85)

The blend ssef , is obviously even. It is also easily seen to be symmetral. In
fact, since, up to order, blend commutes with swap:

swap

swap.blend(€&], €3) —— blend(swap.&5, swap.€?) (3.86)

and since the swappee of an exact flexion unit € coincides with the conjugate
unit O, the blend is actually bisymmetral.

Moreover, we have a remarkable (non-elementary) identity for expressing
the gari-inverse of the blend of two flexion units: it is itself a blend, but pre-
ceded by pari and with the two arguments arguments exchanged. Therefore,
under invgari, the two entries of (3.86) become:

swap

pari.blend(€&3, &}) «— pari.blend(swap.€&], swap.&3) (3.87)

and are still connected by swap.
As a consequence, for the even® bisymmetral ess7 , we have this commu-

50i.e. neg-invariant.
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tative diagram,®! with self-explanatory notations:

symmetral s5e] & ss08 symmetral
1,2 2,1
invgari | ] invgari
symmetral) pari.sses & pari.ssol symmetral!
2,1 1,2

In sharp contrast, with the non-even®? bisymmetral ess® constructed in (3.73),
the diagram’s commutativity breaks down:

symmetral 55t b 05s° symmetral
Y Y
invgari | \\ invgari
(symmetral) 557 S Gsst A 0ss;,  (non symmetral!)

3.7 The related primary bimoulds e¢s® and ¢3° .

After constructing the secondary bimoulds ess®, es3s (non-elementary, with a
double symmetry), we must now define the much simpler, yet closely related
primary bimoulds es®, ¢3* (elementary, with a single symmetry):

es® = expari(€®) (3.88)
¢3* = invmu(1® — €°) (3.89)
es® 8 ¢3° (3.90)
This leads to the more explicit formulas:53
et i) = @lab) @l @ell) e (symmetral) (3.91)
e3lon o) = @b @Gl el (E-symmetral) (3.92)

The symmetrality of es® resp. E-symmetrality of ¢3® relies entirely on € being
an exact flexion unit, but the definitions also extend, albeit at the cost of
significant complications, to approximate units.
Let us now consider the three polar and the three trigonmetric speciali-
sations of €* and the corresponding incarnations of es® and e3°:
Flezion units ~ €* . Pa® Pi* Paiy,; Qai Qif Qail,,
symmetrals es® @ paj® pij* paij s taj, tij taijp, s

E—symmetrals ¢3* : pac® pic® paic;ﬁ tac ticy taic;aﬁ

Slwe would of course have similarly commutative diagrams (only with less explicit gari-

inverses) if we replaced sse® by any element of GARI®/®_since on that subgroup swap
acts as an automorphism, just as it does on AR/

52more precisely: ¢ss® is pari.neg-invariant instead of neg-invariant.

53To derive (3.91) from (3.88), one must use the fact that € is a flexion unit.
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The definitions of the new bimoulds are straightforward for the exact units,

but less so for the approximate units Qa, and Q..

In those two cases, we

mention only the elementary part (mod. ¢?), which conforms entirely to the
general formulas (3.91) and (3.92), and refer to §3.9 for the corrective terms.

)

pajtovr = H Pui+..
1<j<r
circ

WY e, W _ o

pij*vr = [ Plvj—vsn)
1<j<r
circ

22 W1,eeey Wy

pai] =

a7B a

TWLyeeny Wy —
ta], =
13 W15eey Wy _
t1),. =

22 WY yeeny Wy —
talj 5" =

1<j<r

H Qc(ur1+. . .+u; )
1<j<r

circ

I @c(v

1<j<r

UTH

circ

1T (QC(W) + Qo2

1<j<r

]jI <1)(92jt;;;j:ﬂl) 4_}9(3ﬁ;2fﬁil)>

(modulo ¢

(modulo c*)

B

— Ui

B

%)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

)) (exactly)(3.98)

In the above products, circ means that the (non-existing) variable v,,; should
be construed as vy = 0 whenever it occurs. No such precaution is required
for the following specialisations of e3°.

pacwl 77777 Wr —
1<5<r
plcwl ~~~~ Wy —
1<5<r
2 AWy Wy —
paic, 3 =
1<j<r
W1yeeey Wr — .
tac = | | Qc(uy)
1<j<r
s W W _ )
ticy ro= | | Qc(v)
1<j<r
2 AWy Wy —
talcw 3 =

1<j<r

33

(modulo c*)

(modulo c*)

IT (@) +e3))

(exactly)

(3.99)
(3.100)

(3.101)

(3.102)
(3.103)

(3.104)



3.8 Some basic bimould identities.

Let us list, first in universal mode, the main relations between the primary
bimoulds:

invmu.es® = pari.anti.es® | invmu.ez® =1°—¢°
invgami.es® = pari.e3® I invgami.e3® = pari.es®
invgani.es®* = unremarkable [ invgani.e3®* = pari.anti.es®
invgari.es® = pari.es® I invgari.e3®* = unremarkable

The relations that really matter, however, are the ones linking primary and
secondary bimoulds. To state them, we require a highly non-linear operator
slash which measures, in terms of GARI the un-evennness of a bimould:

slash.B* := fragari(neg.B®, B*) = gari(neg.B*,invgari.B*)(3.105)

We can now write down the two secondary-to-primary identities:

slash.ess® = es with  ess® := ess? (3.106)

sap.eszy = e3° with sap := syap.swap = swap.syap  (3.107)

To conclude this section, let us reproduce some of the above identities in the
polar and trigonometric specialisations — for definiteness, and also to show
which relations survive and which don’t when € specialises to the approzimate
flexion units like Qa; and Q.

slash.pal® = paj* , slash.tal? = taje
slash.pil® = pij* , slash.til} = tije
slash.pailf, 5 = paijs; , slashtail? , 5 = taij},
paj* = expari.Pa’ , taje = expari.Qa’
pij* = expari.Pi* . tije # expari.Qi}
paij;, 5 = expari.Pai; ; , taij},; = expari.Qail, ;
. . e trivially . . . .o . °
Invgami.paj = Invgani.antl.paj = pari.pac
. . ..e trivially . . . .0 . - e
Invgami.pij = Invgani.anti.pij = pari.pic
invgami.paijg, 4 erivially invgani.anti.paij, 5 = pari.paic; g
. . .o trivially . . . e . °
Invgami.taj, = Invgani.anti.taj, # pari.tac?
. ., .-0 trivially . . . .0 .- e
Invgami.tij,. = Invgani.anti.tij, % pari.tic]
. . .o trivially . . . ..o . - e
ivgami.talj, , 3 = Invgani.anti.talj,, s = parltaic,, g
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3.9 Trigonometric and bitrigonometric bimoulds.

Correspondence between polar and trigonometric.

Polar bimoulds of a given type may have one trigonometric equivalent, or
several, or none. The reverse correspondence, however, is always straightfor-
ward: when ¢ goes to 0, (Qa,, Qi.) goes to (Pa, Pi) and the various trigono-
metric bimoulds, whenever they exist, go to their polar namesakes.

Correspondence between trigonometric and bitrigonometric.

The correspondence, here, is always one-to-one. This may come as a surprise,
since the bitrigonometric units Qaa,, Qii, are far more complex than their
trigonometric counterparts Qa,, Q)i,. To turn a trigonomeric bimould of a
given type into a bitrigonometric one of the same type, the recipe is:

— to change Qa, resp. (i, into Qaa, resp. Qii,.

— to change ¢®* into ¢2*§(lin}") ... d(liny,) with discrete diracs § defined as
in §3.2 (see after (3.27)) and with their arguments lin}’ denoting suitable
differences of v;’s or sums of u;’s, as the case may be. There are simple rules
for picking, in each instance, the right inputs lin}’, which alone preserve the
symmetries. We shall see examples in the last para of the present section,
when expliciting the passage from trigo to bitrigo for the primary bimoulds.

The secondary bimoulds tal}/til} and taal’/tiil?.

Of all the bimoulds constructed so far, these are the most important,>* but
also the most difficult to construct and describe. We can do no more here
than state the main facts:

— the secondary bimoulds es3? have no trigonometric specialisation, whether
under € = Qa, or € = (i,.

— the secondary bimould ess® has no trigonometric specialisation under € =
Qa,, but it has one under € = Qi,, namely #il’, with tal. as swappee.

In other words, while the polar pair par®/pir® has no trigonometric,
and therefore no bitrigonometric, counterpart, the polar pair pal®/pil® does
possess exact, though far more complex analogues, namely tal®/til> and
taal? [ tiil.

For illustration, the pair taall/tiil> has been tabulated in §10.8 up to
length r = 4. The simpler pair tal’/til: can be deduced from it, simply by
recalibrating the flexion units and by changing all §’s into 1’s.

Like pil® in the polar case, the bisymmetral #il> and its gari-inverse ritil>
possess the important property of separativity: under the gepar transform®
they turn into polynomials of ¢ and the Q.(u;) (all strict u;~sums vanish!),

5because it is the main part of the first factor Zag$ in the trifactorisation of Zag® and
also the main ingredient of the canonical-rational associator.
5®We recall that gepar.S® := mu(anti.swap.S*®, swap.S*).
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with a particularly simple expression in the case of ritil, :

(gepar.til,)“* %" = homog. polynomial in (¢, Q.(u1), ..., Qc(u,))(3.108)

e w " -1 3025
(gepar.ritil, )" = ZT % sym,_y o (Qc(u1), ..., Qc(ur))(3.109)
0<s<I
with sym,.(z1,...,x,) denoting the k-th symmetric function of the ;.5

The primary bimoulds: trigonometric specialisation.
To explicit the primary bimoulds, we require six series of coefficients that are
best defined by their generating series:

a(t) = arctan(t) =Y ot =t — 234 115 — 2T
B(t) = tan(t) =D Ot =14 33+ 25 4 STt
M) = g =t@(0): =N ant™ =t =35+ 50— ST
Bt) =Gl =tB1)T =SBt =t + I 5+ St
a(t) = G = a(t)(/(8)72 = Dpng Gn ™ =t + 415 — {517+ 04T
B(t) =sin(t) = BENB (D)2 = X png B t™ =t = 5+ 58" — it

As in the polar case, the basic primary bimoulds taj?, 758 (symmetral)
derive from the secondary bimoulds tal?, til> (bisymmetral) under the slash-
tranform®” and are best expressed via their swappees. To the polar pair
pac®/pic®, however, there now correspond two trigonometric pairs, namely
tac?, tic: and the “correction” tak?, tik> which will be needed to reproduce

all the exact relations between primary bimoulds that obtained in the polar

56symy is = 1; sym; is the sum; sym,. is the product.
5TWe recall that slash.S® := gari(neg.S*®, invgari.S*®).
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case. Let us begin with the definitions. We have:

. cw® LW awl . cws
swap.tajy’ = E E Jiy? Qi JiY L Qidne JiY
5>0 wownlwl...wnswszw
.. ~ 0 w 1 S
swap.tijy = E Qs g Ja¥ Qa. " Ja®™ ... Qal"sJa¥
5>0 wownlwl...wnSwSZW
0 w 1 s
tac, = E Qs g Ca" Qa. "' Ca" ...Qak"Ca"
5>0 wownlwl...wnSwSZ’LU
. caw? AW . 1 . cws
tic,” = E E Ci* Qi " Cic™ ... Qiy" Ci*
5>0 wownlwl...wns’wszw
w < w® Wny wl Wng w?®
taky = Qs Ka" Qac " Ka" ...Qa;™ Ka}
5>0 wownlwl...wnstZM
. w p T .
tik? = f.c if w=(wy,...,w)

with auxiliary building blocks themselves defined by:

JaWtewr = Cattotr = " (Vr > 0)
Jivreowr = CiWter =" G, (Vr > 0)
Jiwvewr = o (Vr > 0)
Ka®t % .= " (Vr > 0)
Kaftvr = ¢ (Vr > 1) but  Ka’:=0

Here are some of the main trigonometric identities that are exact transposi-
tions of their polar prototypes:

slash.tall = taj.* (3.110)
slash.til? = tij.* (3.111)
invgani.tac, = anti.swap.anti.pari.tic} (3.112)
invgani.tic. = anti.swap.anti.pari.tac’ (3.113)
invgami.taj. = invgani.anti.taj; (3.114)
invgami.tijs = invgani.anti.tij? (3.115)
And here is an example when polar identities:

invmu.paj® erivialy pari.anti.paj® = invgani.pac® (3.116)
invmu.pij® erivielly pari.anti.pij®* = invgani.pic® (3.117)

require a corrective term in the trigonometric transposition:
invmu.taj; erially pari.anti.taj. = fragani(tak’ tac?)  (3.118)
invmu.tij> ridially pari.anti.tij. = fragani(tik?, tic?) (3.119)
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The abbreviation fragani denotes of course the gani-fraction:
fragani(A®, B®) := gani(A®, invgani.B*)

and the relations (3.118), (3.119) basically reflect the functional identities:

~

B=doaxa ; a=pfop
Here is another example. The important polar identity:
pij* = expari.Pi®
doesn’t transpose to tij> = expari.Qi; but to the variant:
tijjo = expari.Qi (anti.swap.tijj® =: astajj)

with a bimould ?7j;% best defined via its anti.swap-transform astajj:, for
which the following remarkable expansion holds:

s=r—2t
astajjt v = Z (—1)t Z Ta™m2em2e Qg Qg
. e
0<t<3 wownlwl...wnswszw
with
[ma,ma, ... ,may] == 1[1,2,...,7] — [n1,n9,...,n4
and

Tyt me-m2t .— m@ ma¢—1

Mo My may

Primary bimoulds: bitrigonometric specialisation.
The bimoulds of the preceding para become:

. el W el . cewS
swap.taajs = E E Jiy Qiie ™ Ji® .. Qiigne Jii®
520 wOwn, wl wp,wi=w
tiiiw = A J w? wnlJ w? Wns J w®
swap.tiij;’ = Qs aa" Qaa. 'Jaa" ...Qaa. " Jaa
>0 wownlwl...wnsws:w
t w__ C w9 Wny C w?t W g C ws
aac.'= Qg aa" Qaa. ' Caa™ ...Qaa."sCaa
>0 wownlwl...wnsws:w
.. el W el .. ceows
tiicl’= E E Cii* Qii. "' Cii* ... Qiiys Cii"
520 wOwn, wl wp,wi=w
k'w_ ~ K w? Wny K wl Wng K ws
taak,' = fa TR aa" Qaa. 'Kaa™ ...Qaa;" Kaa]
520 wOwp, wl. wn, w¥=w

tiikf’:@ " o(uy) ... 0(uy) if w=(wy,...,w,)
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with elementary building blocks defined by:

Caa"tr = Jaa®t " = " 0(vy)...0(v,) (Vr >0)
Ciitvr = Jif¥vvr =6 0(ug) ... 0(uy) (Vr >0)
Ji’ =0, Jiveevr = 6. 0(w) ... 6(uy) (Vr >1)
Kaa’ :=1 | Kaa® " = ¢ 0(vy)...0(v,) (Vr > 1)
Kaal :=0 |, Kaa % = ¢ §(vy)...0(v,) (Vr > 1)

Remark: though there is one and only one ‘proper’ way of ‘filling in’ the
trigonometric formulas with §’s to get the bitrigonometric equivalents, the
procedure is non-trivial. Indeed, the arguments inside the ¢’s are not always
single u;’s or v;’s but often non-trivial sums or differences.’®

3.10 Dimorphic isomorphisms in universal mode.

We can now enunciate the main statement of the whole section, namely that
there exists a canonical isomorphism between straight dimorphic structures
(algebras or groups) and their twisted counterparts.’® But before that, we
must begin with the less remarkable isomorphisms which connect straight
or twisted monomorphic structures® and exchange only one symmetry with
another.

All these results are summarised in the following diagrams
— with various groups in the upper lines,
— with various Lie algebras in the lower lines,
— with horizontal arrows that stand for (algebra or group) isomorphisms.
— with vertical arrows representing the natural exponential mapping of each
Lie algebra into its group.

Basic diagrams of monomorphic transport.

MU ganiL(e;s') MU || MU ganit(p?rjnti.es') MU
T expmu T expmu || 1 expmu T expmu
Lual ganit(es®) LU I Lual ganit(pari.anti.es®) LU
MU ST MU My SRR e
1 expmu Texpmu || T expmu 1 expmu
Lus Y opue o pus ety

%8 As with taaj® and tiij%, once we carry out the swap transform in the above definitions.

%90r, more properly, “half-twisted”, since the first symmetry remains straight, and only
the second gets twisted.

60i.e. subgroups of MU := {BIMU", mu} or subalgebras of LU := { BIMU.,, lu}.
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Basic diagram of dimorphic transport.

GARJ2/as

logari | T expari

ARjp2V/al

Dimorphic subsymmetries.

adgari(ess®)
—

GARI2/e®

logari | T expari

adari(ess®)

—

ARI2/®!

The subsymmetries listed below are by no means the only ones®! but they
are the ones that matter most and also (whether coincidentally or not) the
only ones that are properly dimorphic.%?

A* € AR — A°
A® € GARI®/* — A°
A® € AR — A
A® € ARI®®  — 4

neg.A*
neg.A*®
O-neg. A*
D-neg. A*

push.A®
gush.A*®
-push. A*
$-gush.A*®

As noted earlier, D-neg-invariance is expressible in terms of an elementary
primary bimould es® := slash.ess®, and D-push-invariance also is equivalent
to the much simpler senary relation.

3.11 Dimorphic isomorphisms in polar mode.

Diagrams of monomorphic transport.
For the specialisation € = Pa, the first universal diagrams of monomorphic

transport become :

MUss R g
T expmu T expmu
LU EERe

MU as

T expmu

LU al

For the specialisation € = Pi, they become:

MU RO s
T expmu T expmu
Lua ganit(pic®) LUl

61See §3.4.

MU

T expmu

LU al

ganit(pari.anti.paj®)
-

MUY
T expmu
ganit(pari.anti.paj®)
2 LUul
ganit(pari.anti.pij®) is
— MU
T expmu
ganit(pari.anti.pij®) il
— LU

52in the sense that it takes two symmetries, not one, to induce them.
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Diagrams of dimorphic transport.
For the specialisation (€,9) = (Pa, Pi), the diagram of dimorphic transport
becomes :

GARI®/es "B g pRpes/
logari | T expari logari |1 expari
ARJ2Val ada%l') ART2Vi
and the dimorphic subsymmetries become:
A* e AR — A* = neguA®* = pushu.A*
A® € GARI®/E — A* = negu.A®* = gushu.A*

For the ‘conjugate’ specialisation (&, 9) = (P1i, Pa), the diagram becomes:

GARI®/es BT g pRese
logari | T expari logari |1 expari
ARI&Val B A prall
and the dimorphic subsymmetries become:
A* e ARIYY — A* = negi.A* = pushi.A®
A® € GARI®/® — A* = negi.A* = gushi.A®

The matter of ‘entireness’.

A few comments are in order here, regarding the preservation, or otherwise,
of the entire character of bimoulds.%

(i) The simple symmetries al and as are compatible with entireness, and so
are the double symmetries al/al and as/as.

(ii) The twisted symmetries il and is are compatible with entireness, but ul
and us are not.

(iii) However, even in second monomorphic diagram, when all four structures
contain entire bimoulds and the isomorphism ganit(pic®) might conceivably
preserve entireness, it does not. The same holds when ganit(pic®) is replaced
by gamit(pic®).

(iv) The (important) twisted double symmetries al/il and as/is are compat-
ible with entireness, but the (less important) double symmetries al/ul and
as/us are not.

63i.e. their being polynomials or entire functions or formal power series of their u-

variables.
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(v) However, even in the first dimorphic diagram, where all four structures do
contain entire bimoulds and when the isomorphism adari(pal®) might con-
ceivably preserve entireness, it does not.

(vi) The dimorphic subsymmetries induced by al/il and as/is (i.e. negu- and
pushu- or gushu-invariance), despite the massive involvement of ‘poles’, are
compatible with entireness, whereas the dimorphic subsymmetries induced
by al/ul and as/us (i.e. negi- and pushi- or gushi-invariance), are not. For
the first dimorphic subsymmetries (of the ‘neg’sort), both the compatibility
and incompatibility may be checked on the formulas:

negu.B* = neg.adari(paj®).B* = adari(pari.paj®).neg.B* (3.120)
negi.B* = neg.adari(pij®).B* = adari(pari.pij®).neg.B*  (3.121)

For the first dimorphic subsymmetries (of the ‘push’sort), the compatibility
resp. incompatibility may be checked on the senary relations:

teru.B* = push.mantar.teru.mantar.B* (3.122)
teri. B* = push.mantar.teri.mantar.B* (3.123)

which express pushu- resp. pushi-invariance in much simpler form, and in-
volve the elementary, linear operators:

C*® = teru.B® <= QWirWr — BWLoWr _ BWL.Wr1 PaWr 4 Bwh-u,wr—ﬂ Patwr
C* = teri. B® <= C"WirWr = BWLes®r _ BWLeoWel Pitr 4 R ] pilwr

The six entire structures.

All the above remark still hold, mutatis mutandis, when we replace the polar
symmetries by their trigonometric counterparts (to be precisely defined in
§10.4). Thus, whereas for the six fundamental structures we have the follow-
ing commutative diagram, with all horizontal arrows denoting either group
or algebra isomorphisms:

adgari(pa adgari(Za adgari(ta
GARI2s/2s dear(pal’) GARIa/is ™ ( &) GARJ2/is depriftal’) GARJ2/as
1 expari 1 expari 1 expari 1 expari
ART2Val ada&f‘l. ) ARI2/L adaﬁgl *) ARTaVil adariﬂl. ) ARI2V/al

the picture changes when we add the requirement of entireness: the straight
and twisted structures are no longer isomorphic® and only the middling

64neither under adari(pal®), adari(tal®), nor any conceivable replacement.
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isomorphism adari(Zag®) between the twisted structures (polar and trigono-
metric) survives, as pictured in the following diagram:

as/as adgari(pal®) as /is adgari(Zag, *) as iis adgari(tal®) as/as
GARI_;— > GARI,,~ — GARI_ |~ <+ GARI, (™
T expari T expari 1 expari T expari
adari(pal®) . adari(Zag. ® . adari(tal®)
ARIZ/R UL AR/ Dy ppali TEST ARgpalal

The six entire and v-constant structures.

This applies in particular to the six important substructures below, whose
bimoulds

— are power series of the upper indices u;

— are constant in the lower indices v;.

Here is the diagram, with self-explanatory notations:

adgari(pal®) adgari(Zag, *) adgari(tal®)

ASAS Y ASIS — ASIIS o+ ASAS
T expari T expari T expari T expari
adari(pal®) adari(Zag, ®) adari(tal®)

ALAL A ALIL D ALIIL £ ALAL

The projector cut:

,,,,,,

(3.124)

clearly defines isomorphisms of

ARIYA  GARI®/P | ARIYY | GARI®/s | ARIMW | GARI/s
respectively onto

ALAL , ASAS , ALIL , ASIS , ALIIL , ASIIS

Now, all the bimoulds associated with colourless multizetas, happen to have
lower indices v; that are all = 0 as elements of Q/Z. We shall take advantage
of the above property of cut to identify these bimoulds with their cuttees, i.e.
to view them as w-constant.

Central corrections.

For structures with a twisted double symmetry, instead of demanding that
the exact swappee should display the second symmetry, we often relax the
condition and simply demand that the swappee corrected®® by a suitable
central element should display that symmetry. Thus, under these relaxed

55 additively in the case of algebras; multiplicatively in the case of groups.
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conditions:

A® € AR o {A® € alternal;  swap(A® + C%) € alternil}
S* € GARIZY o {S* € symmetral; swap(gari(A®, C8)) € symmetril}

with C% € Center(ARI) and Cg € Center(GARI).

The sets thus defined are still algebras or groups, albeit larger ones. In
the case of the v-constant family ALIL, ASIS, ALIIL, ASIIS, we shall always
assume this relaxed definition for without the central corrections these set
would be empty.%® Besides, the bimoulds Zag® associated with the (coloured
or uncoloured) multizetas also require a central correction to display their
double symmetry.

4 Singulators, singulands, singulates.

At this point, we already have a valuable tool at our disposal, namely the op-
erator adari(pal®), which acts as an algebra isomorphism and respects double
symmetries. What it doesn’t do, though, is respect entireness: when applied
to entire bimoulds of type, say, al/al, it produces bimoulds that have the
right type, in this case al/il, but with singularities at the origin. To remove
these without destroying the double symmetry al/il, we require a universal
machinery capable, roughly speaking, of producing all possible singularities
of type al/il. Such a machinery is at hand. It consists of singulators, sin-
gulands, and singulates. The singulators are quite complex linear operators.
The singulands are arbitrary entire bimoulds subject only to simple parity
constraints. Lastly, when acting on singulands, the singulators turn them
into singulates, which are bimoulds of type al/il and with singularities at
the origin that are, so to speak, ‘made to order’, and capable of neutralising,
by subtraction, any given, unwanted singularity of type al/il.

After some heuristics (destined to divest our construction of its ‘contrived’
character), we shall examine the singulators, first in universal mode, then in
the relevant polar specialisation.

4.1 Some heuristics. Double symmetries and imparity.

Analytical definition of sen.
Let us first introduce a mapping sen : (A®,S®) — B*® that is:

56For the structures ALAL and ASAS, on the other hand, central corrections are not
required. In fact, allowing such corrections makes no difference at all, which again shows
that the pairs ALAL//ASAS and ALIL// ASIS cannot be isomorphic.
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— linear in S* € BIMU,

— quadrilinear in A®* € BIMU*

— which turns group-like properties of A® into algebra-like properties of B®
— whose action strongly depends on the parity properties of A®, S°.

Here goes the definition:

B* =sen(A).5" & 2B = Y AP AYISIAM ARt (41)
wiwlwzijaw‘ld:rcw*
with w* = augment(w) and
A} = anti.A®, A5 = A®, A = pari.anti.A®, A} = pari.A®

with the augment w* defined in the usual way:

UL, U . (luo] un .o up
w = ( ) = wr = )
Vi, ..., Up [vo] , v1 4.0, U
with the redundant additional component wy:
Ug i= —U] — U+ — Uy , vy =0

and with the circular summation rule amounting to the double summation

> > (4.2)

0<i<r wiwlwzij3w4:wiwi+1...wrwowl...wi_l

Main properties of sen.

Let B® := sen(A*®).S°*.

P, : If r is even and S~ = S then BY%r = ().
P, : If ris odd and S™% = —5%! then BYt%r = ().

Ps : If neg.A®* = pari.A®, then sen essentially commutes with swap:

swap.sen(A°®).S®* = —pari.sen(swap.A®).swap.S* (4.3)
= +sen(pari.swap.A®).swap.S*® (4.4)

P, : If A® is gantar-invariant, then B® is mantar-invariant.5
Pj : If A® is symmetral, then B*® is alternal.
Pg : If neg.A®* = pari.A® and A°® is bisymmetral, then B*® is bialternal.

6"We recall that mantar := —pari.anti and gantar := invmu.pari.anti with invmu
denoting inversion with respect to the mould product mu.
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Compact definition of sen.
Lastly, we may note that, for A®* symmetral, the analytical definition (4.1)
of sen(A*®).S*® can be rewritten in compact form as:

2sen(A*®).S*® = pushinvar.mut(pari.A®).garit(A®).S* (VA®* € as) (4.5)
— with the linear mapping pushinvar of @, BIMU, onto @, BIMU,P*":

pushinvar.M*® := Z push®.M* if M* e BIMU,

0<k<r
— with the anti-action mut(A®) of MU on BIMU.:
mut(A®).M*® := mu(A;, M* A®) with A= invmu(A®) (4.6)

— with the anti-action garit(A®) of GARI on BIMU, which is given by 2.37
but simplifies when M?* is of length 1:

(garit(A®).M)* = Y AWIMITAlMT f M* € BIMU;  (4.7)

wlwsw3=w

(Pay attention to the position of AJ on the left in the definition of mut(A®)
and on the right in that of garit(A®). Nonetheless, we have anti-actions in
both cases.)

4.2 Universal singulators senk(ess®) and seng(es®).

Let & be the universal (exact) flexion unit, and let es® (resp. ess®) be the
primary (resp. secondary) bimould attached to €. Further, let us set:

neginvar := id + neg (4.8)
pushinvar := Z (id + push + push® + ... push”).leng, (4.9)
o<r

(with leng, denoting the projector from BIMU onto BIMU,) and let us define
mut as in (4.6) above, and ganit, garit, adari®® as in §2.2.

One can then prove that the following two identities define one and the
same operator senk(ess®):

2senk(ess®).S* = neginvar.(adari(ess®)) '.mut(es®).S* (4.10)
2senk(ess®).S* := pushinvar.mut(neg.ess®).ganit(ess®).S* (4.11)

68 adari alone is an action; all the others are anti actions.
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and, likewise, that the following two identities define one and the same op-
erator seng(es®):

2seng(es®).S* := (id + neg.adari(es®)).mut(es*).S* (4.12)
2seng(es®).S® = mut(es®).S* + garit(es®).neg.S*
—arit(garit(es®).neg.S®).logari(es®) (4.13)

The next identity shows how the two basic singulators senk(ess®) and seng(es®)
are related; and the other two describe their near-commutation with the basic
involution swap.

seng(es®) = adari(ess®).senk(ess®) (4.14)

swap.senk(ess®) = senk(neg.swap.ess®).swap (4.15)
swap.seng(es®) = ganit(syap.e3®).seng(syap.es®).neg.swap (4.16)

Thus, basically, under the impact of the involution swap, the inner argument
of the singulators also undergoes an involution, namely neg.swap in the case
of senk, and syap in the case of seng.

Without going into tedious details, let us point out that most of the
properties listed above follow:
(i) from the the properties of sen (see §4.1)
(ii) from the fact that senk(ess®).S®, as defined by (4.11), is none other than
sen(ess®).S®, as defined by (4.1) or (4.5).9
(iii) from the following identity, valid for any push-invariant bimould M?*:

swap.adari(ess®).M*® = ganit(syap.e3®).adari(swap.ess®).swap.M*  (4.17)

4.3 Properties of the universal singulators.

The singulators senk(ess®) and seng(es®) do not yield remarkable results
when acting on general bimoulds of BIMU, but they turn bimoulds of BIM U,
into dimorphic bimoulds of type al/al and al/ol respectively. Thus:

senk(ess®).S* € AR/ VS® € BIMU, (4.18)
seng(es®).S* € AR/ VS*® € BIMU, (4.19)

For senk(ess®), this follows from senk(ess®) = sen(ess®) (because ess® is
symmetral, indeed bisymmetral) and then from (4.15). For seng(es®), this
follows from (4.14) or (4.16), on choice.

69Hint: use the fact that ess® is on the one hand invariant under pari.neg and on the
other of alternal (even bialternal) type, so that invmu.ess® = pari.anti.ess®.
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These two operators, however, are in a sense too ‘global’. To really gen-
erate all possible ‘dimorphic derivatives’ of bimoulds S® in BIMU,, we need

to split senk(ess®) and seng(es®) into separate components with the help of
the projectors leng, of BIMU onto BIMU,.

senk(ess®) = Zsenkr(ess') (4.20)
1<r
seng(es®) = Zsengr(ess') (mark : first es® | then ess®!)  (4.21)
1<r
with
senk, (ess®) := leng,.senk(ess®) (4.22)
seng, (ess®) := adari(ess®).senk, (ess®) (4.23)

= adari(ess®).leng, .adari(ess®) '.seng(es®) (4.24)

Although the decomposition runs on different lines™ in both cases, the re-
sulting components share the same dimorphy-inducing properties:

senk,(ess®).S* € ARIZ/2NBIMU,  VS® e BIMU, (4.25)
seng, (ess*).S* € ARIZ/?NBIMU,. VS*® e BIMU; (4.26)

with
BIMU, < := &,<» BIMU,, (4.27)

But beware: the r-indexation is slightly confusing since, as an operator acting
on BIMU,, senk,(ess®) is (r—1)-linear in €. Moreover, "' is odd in wy.
As a consequence, senk, (ess*).S® and therefore seng, (ess®).5® automatically
vanish in exactly two cases: when S™! and r are both even or both odd.™

Dimorphic elements in the monogenous algebra Flez(€).

The above results also apply, of course, within Flez (&), but since the only
singuland in Flez,(€) is, up to scalar multiplication, the unit &*, which is
odd, we only get bialternal singulates in Flexs,(€). Moreover, the singulate
in Flexo(€) vanishes, because it essentially reduces to oddari(€®, €®) (see
2.78). To sum up:

senko, (ess®).E* = 0 Vr ; senko(ess®).€* = 0 (4.28)
senks,(ess®).¢* € ARIZ2 N Flexy, (€) and #0 if r>2 (4.29)

The components seng, (ess®) fully depend on ess® whereas the global operator
seng(es®) only depends on es® = slash.ess®.
“In the obvious sense: i.e. H*! as a function of wi, and r as an integer.
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4.4 Polar singulators: description and properties.

There is little point in considering the unit specialisation & — Pi, since it
leads to the symmetry types al/ul and as/us which, as already pointed out,
are not compatible with entireness. That leaves the specialisation € — Pa
and the symmetry types al/il and as/is that go with it. For the bisym-
metral bimould, it induces the straightforward specialisation ess® — par®,
but instead of par® we may also consider pal®, which in fact turns out to be
more convenient. This, however, has no impact on the specialisation sang
of seng(es®) = seng(slash.ess®) since slash.par® = slash.pal® = paj®. The
definitions of §4.2 become:

2sang.S* := (id + neg.adari(paj®)).mut(paj®).S* (4.30)
= mut(paj®).S® + garit(paj®).neg.S*
—arit(garit(paj®).neg.S5*) logari(paj®) (4.31)

and the equivalence between these two definitions is relatively easy to check,
based on the fact that the bimoulds vipaj® and vimupajs® thus defined:

vipaj® := adari(paj®).paj® , vimupaj®:= adari(paj®).mupaj®
admit the following expressions:

vipaj“tvr = (—1)""'mupaj“ttnt Plug 4 ...+ u,)

FW1yee, Wr

vimupaj = (—=1)" paj**»" Plu; + ... + u,)

This in turn enables us to recast definition (4.31) in more direct form:

2 (sang.9)"¥ = + Z mupaj® S* paj®

aw;b=w

+ Z paj (neg.S) ™ mupajl®

aw;b=w

+ > paj (neg.$)" mupajl® P(|ul)

aw;bw,=w

— > paj* (neg.5)"" ! mupajl® P(|ul)

wiaw;b=w
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For the singulator senk(ess®), however, we get two distinct specialisations
slank and srank, based respectively on pal® and par®:

2slank.S® := neginvar.(adari(pal®))”!.mut(pal®).S* (4.32)
pushinvar.mut(neg.pal®).ganit(pal®).S* (4.33)
2srank.S* = neginvar.(adari(par®))”!.mut(par®).S* (4.34)
= pushinvar.mut(neg.par®).ganit(par®).S* (4.35)

Both slank and srank relate to sang under the predictable formulas:
sang = adari(pal®).slank = adari(par®).srank (4.36)

and both slank and srank (resp. sang) turn arbitrary singulands S* € BIM U,
into dimorphic singulates of type al/al (resp. al/il).

4.5 Simple polar singulators.

The polar singulators, like their universal models, have to be broken down
into their constituent parts. For slank and srank, the formulas are straight-
forward:

slank, := leng,.slank (4.37)

srank, := leng,.srank (4.38)

For sang, the decomposition is more roundabout, and depends on the choice
of either pal® or par®:

slang, := adari(pal').lengr.(adari(pal'))_l.sang (4.39)
= adari(pal®).slank, # leng,.sang (4.40)
srang, = adari(par').lengr.(adari(par'))_l.sang (4.41)
= adari(par®).srank, # leng,.sang (4.42)

Thus, despite the similar-looking identities

slank = Z slank, , srank = Z srank, , sang = Z slang, = Z srang,

r>1 r>1 r>1 r>1

there is no way we can avoid secondary bimoulds (in this case, the bisymme-
tral pal® or par®) even in the decomposition of the ‘primary-looking’ singu-
lator sang.
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4.6 Composite polar singulators.

To produce all possible dimorphic singularities, we require not just the singu-
lator components, but also their Lie brackets. For reasons that shall be spelt
out in §4.7, we settle for the choice pal® and the corresponding singulators,
and we set, for any arguments S, ..., 57 in BIMU;:

slankp, ;. mu(S7,...,S;) = ari(slank, .57, ... slank, .57) € AR2/al
slang(,, ,.mu(S7,..., ) := ari(slang, .S7,...,slang, .S7) € ARL%/ﬂ

with 7 := r{+...4+r; and of course:
ARIZ/2 .= AR/ A BIMU, ; AREY" := AR (@, BIMU,.)

and with the multiple ari-braket defined from left to right. By multilinearity,
the above actions extend to mappings:

slanky, ] @ S*+—X* ; BIMU, — AR/ (4.43)
slang;,, . : S*+—3* ; BIMU, — ARE/Y (4.44)

It is sometimes convenient, nay indispensable,” to consider also the pre-Lie
brackets of the singulator components. The formulas read:

slank,, ., .mu(S},...,S]) = preari(slank,,.S7, ..., slank,,.5}) (4.45)

slang,, . .mu(S},...,S') = preari(slang, .S7,... slang, .S7) (4.46)

with the multiple pre-ari-braket defined again from left to right, as in (2.49).
By multilinearity, the above actions extend to mappings:

slank,, ., : S*+%* : BIMU, — ARI¥ (4.47)

slang, . : S*—X* ; BIMU, — ARI? (4.48)

Here, the resulting singulates 3° are of course alternal, but their swappees
exhibit no distinctive symmetry. In practical applications, however, these
multiple singulators based on preari always occur in sums Y Q°®slank, or
> Q%slang,, with scalar moulds @Q°® that are alternal (resp. symmetral), and
these new composite operators do produce dimorphy: they turn arbitrary
singulands S* into singulates 3* of type al/al or al/il (resp. as/as or as/is).

"2for example in perinomal algebra: see §6 and §8.
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4.7 From al/al to al/il. Nature of the singularities.

The reason for preferring the singulator slank (built from pal®) to the singu-
lator srank (built from par®) is that it leads to simpler denominators. Indeed,
for a singuland S*! regular at the origin and ‘random’, although the bial-
ternal singulates slank,.S* and srank,.S™, as functions of w = (wy, ..., w,),
have both multipoles of order r—1 at the origin, the total number of factors
differs sharply. After common denominator reduction, slank,.S™ has only
r+1 factors on its denominator, whereas srank,.S™ has r(r+1)/2. More
precisely:

denom(slank,.SY) = wouy...uqu, with ug:= —(us + -+ +u,)

denom(srank,.S%) = H Z (7

1<i<j<r  i<k<j

The results are slightly more complex for the singulates of type al/il, namely
slang,.S® and srang,.S®, since these, as a rule, possess non-vanishing com-
ponents of any length " > r, but here again the first choice leads to simpler
denominators.

Another reason for preferring the pal®-based choice to the par®-based one
is that pal® possesses a trigonometric counterpart tall whereas par® doesn’t.

5 A natural basis for ALIL C AR[ﬂ/ﬂ.

5.1 Singulation-desingulation: the general scheme.

This sections is devoted to the construction of bimoulds lgma® in ALIL. In
other words:

— lpma" should be w-entire, i.e. in Cl[uy,...,u,]].

— lgma" should be v-constant.

— lgma® should be alternall.

— lpmi® := swap.lpma® should be alternil modulo Center(ALIL)

But we also add two key conditions:

(i) lgma®™ should be in Q[[uy,...,u,]], i.e. carry rational Taylor coefficients.
(ii) the first component should be of the form:

loma™ = w3 (1 —ud)? = v +uf +ul +ud+ ... (5.1)
Condition (ii) is there to ensure that in the iso-weight decomposition:

lgma® = lgma3 + lgma; + lomas + lgmag + . .. (5.2)
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w1 __

the part lgma? of weight s be non-zero™ and start with lgma® = uj ", with

the ultimate objective of getting a basis {lgmal ;s odd > 3} of ALIL.
The ‘central correction’ formula reads:

lomi} = swap(loma; + Ca?) ; Ca? € Center(ALIL) (5.3)

with a central bimould Ca? which, due to condition (5.1), can be shown to
be of the form:

1
Cartoe == (Ywy) ; Cal™m =0 if res (Yw) o (54)

»

Expanding lgma® into series of singulates.
Before decomposing loma? weight-by-weight, we must construct it as a series
of singulates. There are actually two variants:

r<2 r<4 r<6
~~ P A~
loma® = 3y + X7, 5 + Ef g + Xl + Bhis T B T Ehiag T-(6.5)
r<2 r<4 r<6
[ ] A < [ ] 5 [ ] o < [ ] [ ] 5 [ ] [ ] o
loma® = X7 + X7, +30, + X7, + X5, + 255+ 23,
r<6
+ Z1,1,3 + Z1,3,1 + E::,,1,1 + E5,2,1 + E5,1,2 + E1,2,2
r<6
+ E5,1,1,2 + ZJ1,1,2,1 + Z1,2,1,1 + E5,1,1,1 +. (5.6)
with
[.7"17__,77‘1] = Sla’ng[rl,...,’r‘l}'S[:‘h...,?“l] (57)
E;l,...ﬂ’l = Slangrl,...,’r‘l'Sr.l,...,'rl (58)
al/il

The singulates A are going to be in ARI 2™ but the singulates 337,

Ly Tl]
only in ARI?1<. As for the singulands Sy, ) and S, ., they are merely
in BIMU,, but with a definite parity in each z;, which is exactly opposite
to the parity of r;. Moreover, we can without loss of generality assume that
they vanish as soon as one of the x;’s vanishes. Then again, they may be

yeens Tl

s is odd > 3. lgma? (vesp.lgmi?) carries exactly s—1 (resp. s) nonzero components
of length r € [1,s—1] (resp. r € [1, s]) and degree d = s — r. Indeed, the last components
are lomay " = 0 and lgmiy " = 1/s.
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sought either in the form of power series or of meromorphic functions of a
quite specific type:

. € xt. al' Cl[a%, ..., a7 (power series) (5.9)
S[?lif] S Rﬁlllv.'-'-’;;]P(nl%—xl) ... P(ny+x;)  (merom. funct.}5.10)

with v; = 1 (resp. 2) if 7; is even (resp. odd).

Both expansions (5.5) and (5.6) lead to the same results. The first ex-
pansion (5.5) relies on ari-brackets and has the advantage of involving fewer
summands. The downside is that it forces us to choose a basis in the Lie
algebra generated by the simple singulates %7 and that there exist no clear
canonical choices for such bases. This arbitrariness, though, manifests only
during the construction and doesn’t show in the final result.

The second expansion (5.6) relies on pre-ari-brackets, and here the posi-
tion is exactly the reverse: we have unicity and canonicity at every construc-
tion step, but more numerous summands.

Altogether, the ari-expansion is to be preferred in calculations, whereas
the pre-ari-expansion is theoretically more appealing. In perinomal algebra,
its use will even become mandatory (see §8). In any case, the conversion
rules for changing from the one to the other are simple enough. Thus, up to
length r = 5, we find:

T1,L2 __ T1,T2 T1,T2 . Qx2,T1
S12 " =450y 1 S =5
x1,T2 __ T1,T2 T1,T2 __ _ QT2,T1
51’4 - +S[174] ! 5471 - 5[174]
1,2 __ T1,r2 T1,2 __ _ Q¥2,T1
5273 - +S[2,3] ) 53,2 - 5[3,2]
L1,L2,T3 __ T1,22,23 T1,22,3 __ _ Q%1,T3,2 __ QT3,T1,T2 T1,22,T3 __ T3,L2,T1
51,1,3 +S[1,1,3] ) 51,3,1 - 5[1,1,3} 5[1,1,3} ) 53,171 =+5
T1,22,3 __ _ QT1,T3,T2 T1,L2,23 __ T1,22,23 r3,22,1 T1,22,X3 __ _ QT3,T1,%2
2,2,1 - 5[27172] ) 2,1,2 =+ [2,1,2] + 5[2,1,2] ) 1,2,2 - [2,1,2]
le ,L2,T3,T4 — +S$1 sX2,T3,T4
1,1,1,2 [1,1,1,2]
T1,T2,T3,04  __  _ QT1,T2,T4,T3 __ QT1,T4,T2,L3 _  QT4,T1,L2,%3
31’1’2’1 - 5[1717172] 5[1717172] 5[1717172}
XT1,T2,L3,L4 _ XT1,T4,T3,T2 T4,T1,L3,T2 L4,T3,L1,L2
S1727171 - +S[1,1,1,2] + 5[1,1,1,2] + 5[1,1,1,2]
Sw1,m2,353,964 _ _S$47$37127I1

2,1,1,1 = [1,1,1,2]

In the above table, as indeed throughout the sequel, we write down only
the upper indices of the singulands (since, in the colourless case with which
we are concerned here, the lower indices don’t matter). Moreover, we write
these upper indices of the singulands as “z;” rather than “u;”, the better
to bring out their independence from the u;’s that serve as upper indices
for the singulates. Indeed, when expressing the entireness condition for the
sums of singulates (see §5.3, §5.4 below), we may work either with ©7 itself
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or swap.O;_, and the distinct but equivalent constraints on the singulands
which both approaches yield look much the same — all of which suggests that
the singulands that go into the making of l¢ma® stand, in a sense, halfway
between that bimould and its swappee lgmi®.

Singulation-desingulation.™

In keeping with the above remarks, we may (and shall), without loss of
generality, limit ourselves to singulands S[f}lfj] and S7!" that are even
(resp. odd) in each x; if the corresponding index r; is odd (resp. even). We
may also (and shall), again without loss of generality, impose divisibility by
xI1...27. &

The construction of l[gma® is by induction, and goes like this.

Fix any odd integer r, and assume we have already found singulates 20

or X3 of total index |r| := Y r; odd and < r,, such that the truncated

expansion:
O == > Nh= ) % (5.11)

r|<r. <.

has only entire components for all lengths » < r,. One can then show the
following;:

(i) the component of O of (even) length 14, is automatically entire.

(ii) the component of ©F of (odd) length 24, is not entire, but possesses
mulipoles of order r, at the origin.

(iii) it is always possible to pick singulands S o or Sy of total index 7| = 24,
and such that the corresponding singulates E[‘ﬂ or Yy exactly compensate the
multipoles mentioned in (ii), so that the truncated sum ©3,, will coincide
with O3, for all its components of length r < 1+r, but will have a singularity-
free component of length r = 2+r,.

(iv) the constraints on the newly added singulates are found by writing down,
successively, the conditions for multipoles of order r,,r, —1,r,—2 etc to be
absent from the component O, .

(v) these constraints do not exactly determine the new singulates, but very
nearly so'%, and in any case there exist two (closely related) privileged choices,
leading to two closely related, canonical choices lama®, loma® for loma™.
(vi) there is also a third choice, luma®, whose components aren’t sought in the
ring of power series in w but rather in the space of meromorphic functions

" We prefer this pair to the unwieldy singularisation-desingularisation not just for rea-
sons of euphony, but also to keep close to the coinages: singulator, singuland, singulate.

">The reason being that to a constant singuland Syt =1 there always answers a van-
ishing singulate Sy = 0.

“6In the sense that the wandering bialternals, which are ultimately responsible for this
indeterminacy, are “few and far between”. See §5.9 and the concluding comments in §8.1.
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of w, with multipoles located at the multiintegers m, and with essentially
bounded behaviour at infinity:"”

Spim Y Ryt P(xy4na) .. Pa+m) (5.12)
n; EL*

S =S Rmem Playtny) . Plotw)  (5.13)
n; EL*

Here, the solution [uma® turns out to be unique, its search essentially re-
ducing to that of the multiresidues R[’;} or R carried by the multipoles of
the singulands.” These multiresidues are uniquely determined rational num-
bers, and perinomal functions™ of their argument n. So the difficulty here is
not the search for a canonical solution, but the elucidation of the arithmeti-
cal nature of the Taylor coefficients at the origin of the various components
luma®, at least for lengths r(w) > 5, since for lesser lengths the answer is
elementary.

5.2 Singulation-desingulation up to length 2.

As usual, we set 1/t =: P(t) =: P' throughout, and favour the third variant
inside mould equations, for greater visual coherence. At lengths r < 2,
one singuland only contributes to lema®. At length 1, both singuland and
singulate coincide. At length 2, the formula for the singulate involves poles
of order 1, but these cancel out, duly yielding an entire lgma"*"2.

lgma"* = lgma;? Zwl = ,5"“ =u?+uf+ul+uf+ .
lpma™** = lgpmay™™* = X" =
1

Ul u (% 1 U U1 u 1 U2 U Ul
o P (Sp* = Spj) + 5 P (Spj — Sp*) + 5 P2 (5] — 5p)

5.3 Singulation-desingulation up to length 4.

The condition expressing that lgma™""*"* has no poles of order 1 at the

origin involves only the singulands and singulates of indices [1] and [1,2].

7T Away from the multipoles, of course. Exactly what this means shall become clear in
in the sequel: see §5.7 and §8. As for the warning essentially stacked over the = sign in
the identities (5.12), (5.13), it means that we neglect simple corrective terms (with lower
order multiples) that ensure convergence on the right-hand side.

"These multiresidues R[T ''''''''' " l] have to be even (resp. odd) in n; when r; is even (resp.
odd) to ensure that the singulate S b m’] be odd (resp. even) when 7; is even (resp. odd).

™See §5.7 and §8.
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For power series singulands, it reads:

0 = +112 (sz 5112 Pri2 S[rz P2 5[313]1 + pri2 5[317]1)
S+ S S Sy (5.14)

For meromorphic singulands (of type (5.12)), it translates into a condition
on the multiresidues R[:], which reads:

0 = 1/12 (5" Ry 0" )+Rﬁ1’2”2—Rﬁ1’2’]”2 (5.15)
0 = 1/12 (8" BRIy — 6" RIy —0™2 RI2)+ RY52+ B2y — Ri%™ - (5.16)

When fulfilled, the above conditions ensure the entireness not just of lgma**"*
but also of lgma™* ",

5.4 Singulation-desingulation up to length 6.

At this stage of the construction, we are dealing with a component lgma** ">
that may have multipoles of order 3, 2, 1 at the origin. Expressing that there
are no such multipoles of order 3 leads to a single equation:

Sm + 3[174} + 3[174} =0 (5.17)

with contributions:

1

Sy o=+ (P 85> — P Si)
Spa) = ST ST
8[273} = _|_2 S$12 » L2 _|_ 5[313332 82313}3312 8[2323}3312

We may note that the singulate S}; o) remains, somewhat surprisingly, unin-
volved at this stage.

Next, must write down the condition for lgma 5 to have no multipoles
of order 2 at the origin. This again leads to a single equation®® that involves
all singulands save the last one (i.e. Sp1,1.9)):

Pt Rat]

WL yeeey

S[*l] + S[*LQ] + S[*174] + S[*273] + S[*Ll’g} + S[*Q,LZ] - 0 (518)

80This new condition, of course, makes sense, only modulo the earlier one, i.e. assuming
the removal of order 3 multipoles.
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with contributions:

720 Sy

‘— _PT2 pT3 §Ti23 _ pT1 DT S[T}Q 4+ pT prs %3

(1] [1]
+4 PCCQ Pﬂ?23 5[313]123 _ 4P$2 Pl'23 S[il _ 4P1?1 PZ'123 S[ﬂlff

+11PT P G 1] Pz PTG 1] PT PTG
+14 P™2 P ST — 14 P PTG — 14 P P2 S

1
—15 P P S5 — 15 P PTGz 4 5 P P 5
+15 P P S5 — 15 P™ P S 4+ 15 P2 P S

4115 P* pTizs 5[516]12 1L 15 Pp¥ pT3 5[916’1123 1+ 15 P2 prs S[ﬂlﬁ]u
—15 P%2 pTizs S[{ffa‘ + 25 P®3 priz 5[316]23 _ 95 P¥3 p¥23 S[iﬁ%
—25 P P13 Gt 425 P P S

+2 legg S[TSQ,TQS _ 2 Px123 S[x23ax3 + 2 legg S[$2yx3 _ 2 P.Z123 31275523

1,2] 1,2] [1,2]
_2 ng S[T22:a>],x123 + 2P$3 S[T12213J23 + 2Px3 S[le,]zms . 2 Pﬂca 8[1137127}3323
3PS R B P ST H PSP S
+3 PG — 3 P g 3 pr gRasin 4 g pa g

+3 P:pg S[iléj’tzs _'_ 3P962 S[:il;]g,zg + 3P{Ez S[alv’z;},xms _ 3Px2 5[316712,]36123

—3 PTG 3 PR SIS 3 P GIAT g paa g

—Q P G |9 prim G g poin G 49 peiz G Enr

(1.4]
—2 PSP — 2P ST 4 2 P SEP 2 P S
F2 P ST — 2 Pt GTLTS g P s g pas gt
TIPS = 3PS + 3PS = 3 PR S
S3 P ST L3 PRSI 3 P G g 3 pr g ana

SBPTST 3P ST £ 8 PR S L PR S
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128h 1= P52 S + PR Sp" + PR Sy = PR Sy

+2 PN G | g P Gt _ 3 poim GELTS |3 pain Gaaes

£3 PRSI 3PS 43P ST 3 P S

_3 Px1 5[3‘7237]1‘3 o 3Px1 Sé};},xs + 3Pa:1 8[2}32]71‘123 + 3Pa?1 8[37723?123

+3 P SEE £ 3P ST +3 P SE — 3P™ S

_3 Pa?g S[;j’,?;]ﬂ?m?, o 3PI2 8[15715}733123 + 3P$2 5[2571;%7333 _ 3Pa}2 5[3?1755123

+3 P:pg Séiﬁxms + 3P:v3 S[:;:’zés],xms + 3P:)323 S[‘;?éjfms _ 3Px23 S[g’léj’m

_5 PZ‘123 S[;J??:]ZC% _ 5Px3 5[3’132}3@23 _ 6Pa:1 S[g?é}x% _ 6Px1 5[5573?;]:8123

“1_6 ng [;':l;]S,xS + 6 P:Bz [3’132]3>-T23

2Sfaay 5= HSEE ™~ SEE S S - S
RS ST ST SR ST
BT ST ST - S - s
ST S S S S
S S+ ST S

* P T3,T1,223 _ QT123,T2,T3 __ QT3,%1,T123 123,722,223 T123,723,23
Sz = M1y Spa19) T I T R E

. 123,T3,T23 o 3,123,123 x3,r23,r123
Sia1) Spia T 501

Lastly, we must write down the condition for lgma™ "> to have no poles
of order 1 at the origin. This once again leads to a single equation, but one
that now involves all seven relevant singulands:

S + Siita) + St + Sy + S g T Sz + Sy =0 (5.19)

Though easy to compute, the various contributions S[*;j are too unwieldy for
us to write down. So we simply mention their number #(S[*T’j) of summands.
Here is the list:

(ST =126, #(Siy) =299 #(St) =176 #(Spy) = 314
H(Si1g) =288, #(Spo) =324, (ST 1) = 192

If we now look for meromorphic singulands of type (5.12), the absence of
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multipoles of order 3 at the origin is equivalent to a system of two independent
identities of the form R + Ry 4 + Rpz,3 = 0, namely :

1 n n n1,n ni,n ni,n
0= 120 0™ Rpy — Ryjy® + Ry y” — R 3™ (5.20)
1
0= 35 (07 R —0™ Ri) — R+ Ry By — R +2 Ry

The absence of multipoles of order 2 at the origin is also equivalent to a sys-
tem of two independent identities, with effective involvement of all singulands
except the last one:

Ekl] + RFLZ] + REA] _|_ RF273] _|_ RE?LS] _|_ RE’LQ] — O (521)
T T T T T T _

360 R}y = —6™ 0" B2 — 48™ 6™ R — 116™ 6™ Rz — 115™2 6™ R
+146™2 5™ Rt — 1467 6™ Ry +150™ 0™ Ri% +156™ 0™ R}
—150™ 6™ Rpl2 +156™ ™ Ry

B60R]y = +6™ 0" Rt — 6™ 6" RN — 14467 6™ Rp) — 140™2 6™ RJ2

+150" 9™ Rfﬁ +156™ 0" Rﬁf —156™ 0" Rmi" +156™ o™= R’[ﬁ’

+256"2 67 Ril + 2507 0™ Rz — 2567 § Ry
273?1’2] — _|_5n1 R[Tﬁg]ls —§m Rﬁ%g]l% — M RELII,’QT}LQS + 52 Rﬁ{,;]zm?s
_5n1 Rﬁl,éjm + 5711 Rﬁlé],nlzs

GRL 2] = _|_2 5n3 Rﬁl,;]ms _ 25n123 an,n3 _ 25n123 Rn3,n23 + 2 5n123 Rn23,n3

[1,2] [1,2] [1,2]
-9 5713 Rﬁt;}g,n% + 25713 Rﬁ%;jn123 + 35711 Rﬁ%g}m + 35712 Rﬁ{;jm%
—30™ R +30™ Ry +36™ Ry — 36" Ry3™

272?174] = §m2 Rnl,ng —§m2 Rﬁlﬁs —§m2 Rnl,n23 + sm Rn2’n23

[1,4] [1,4] [1,4]
M2 R7[7b117217]l123 L om Rﬁ%zﬁl%
T o n 72,1 n 1,1 n 71,7 n 72,1
ORfq = 207 Ry ™ — 207 Fyly" +20™ Ry ™ — 20 Ry gy
n nz,n n Nn123,M. n n3,n n Nn123,N
£207 B 207 B - 207 R 257 R
B8 R~ B8N R 35 R 430 B
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27—\){2 3] = 5n2 Rn1,n3 . 5n1 Rn2,n3 + 577,12 R’m,ng . 5712 Rn11n123

[2,3] (2,3] [2,3] [2,3]
+§n1 Rgzg]lms _ 5n1 RE;{;)],HS _ (5”12 R{;é?]lms + 6711 R[T;{?g]’nms

T _<n n3,n n 7123,7 n 123,70 n n3,n
6 R[273] — 6 23 R[;j?)} ! - (5 3 R[Qt;jg 2 + 2 (5 23 R[217§]3 3 + 2 5 23 R[2%3] 123
$36™ RN — 3§78 RS 3§ RN 35Mz Ry

[2,3] [2,3] [2,3] [2,3]

+3 5712 RF;’;”?’ + 3 5711 R'[n;,g],ns + 35713 RT[QQ%:’;]“% _ 35712 R{;:?:é’f}llw

+3 §5ns R7[122,§jn123 + 3§ ™23 Rﬁg],n:a — 5 §nes R[T;?:E,EQS

-5 577,3 RE;;T,TL%‘ _ 66711 R'[f;?:g]ma + 65”2 R?z%?,'rm

* _ pni,M2,n3 _ pnine,nes n1,m12,1123 _ pN1,N12,n3 n2,n1,M123 _ N2,n1,n23
nig = Hpisl — Bpisl o+ R Ryyg Ry Ry

T _ pninzng n2,n12,n3 _ PN1,N23,n3 n3,n1,n23 n1,m3,n23
Rins = Bpig +Bily REVS™ + Bl + Bty
_ pnNi23,n2,n3 _ pN2,n123,n3 n2,M3,1123 _ pN123,M3,M23
Rty Ryis + iy Rty

. n3,n123,123 mn123,123,N3 n3,n23,1123
Ry + By ™ + Ry g

F2,1,2] =0

T — ( n3,11,M23__ N123,12,13 13,123,123 __ N123,13,123__ N3,M123,123 n123,123,13
Ripnz =2(Hpho)  —Hpig iy Ry 1) Rgra T Hp1

Lastly, the condition for lgma™* "> to have no poles of order 1 at the ori-
gin can be expressed by a single equation, that involves all seven relevant
singulands :

)+ Rty + Rity + Rzg) + Ritng + Rz + Ritnag =0 (5.23)

Once again the RF:] are too unwieldy for us to write down, and we merely
mention their number #( ’[kj}) of summands:

#(Ri) =34, #Riy) =58 , #R[7y) =40 | #(Rj,) =74
#(Rilig) =48 #(Riz) =64, #(Ri19) =24

5.5 The basis lama®/lami®.

As already pointed out, the desingulation conditions listed above admit mul-
tiple solutions when the singulands are sought in the space of power series,
even after imposing the proper parity in each variable. To ensure unicity,
many additional constraints are theoretically possible, but two stand out as
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clearly privileged, in the sense that they, and they alone, guarantee coeffi-
cients with arithmetically simple denominators.

We mention here the first constraint, leading to the bimould lama®, for
the first non-trivial singulands Sfj 5y = 57 ,. For the coefficients of weight s,
the equation (5.14) admits exactly one solution of the form:

T1,r2 20 .s—2-20
Sajs * = E ass xy° (5.24)

1<é<ent( Sgl )—ent( Sgl )

This is, moreover, the choice for which the prime factors in the denominator
admit the best universal bound p < Cst s. In fact, for this choice, the bound
isp< s

5.6 The basis loma®/lom:®.

Now, let us move on to the second type of constraints, leading to the bi-
mould loma®, again for the first non-trivial singulands Sl g = 57, For the
coefficients of weight s, the equation (5.14) admits exactly one solution of
the form:

1,82 2 246 —5-2¢ —5—-26 .26
SOLQ = T T2 E azs (l‘l £L‘§ +"L‘i Ty ) (525)

0§5§ent(%)

which entails far fewer coefficients. This is basically the only other choice®!
for which the prime factors in the denominator admit a universal bound
p < Csts. In this case the bound is p < %

5.7 The basis luma®/lumi®.

Here, we may deal at once with all length-2 singulands:

SFLT2 . GT1,T2 es_ily Z RIn2 P(:L,1+n1) P(x2_|-n2) (526)

[r1,72] 71,72 71,72
n; EL*

The multiresidues are simple enough:%?

n1,me __ no—l _nij—1

RiV™ = er,rz = Vri,ra M(nhn?) nq N9 (527)

[r1,72]

81 eaving aside, of course, simple averages of the first and second choice.
82They cease to be simple for singulands of length I > 3. Here, we get full-blown
‘perinomalness’. See §8.5.
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with 7,, », a simple rational constant, and with u(ny,ns) being 1 (resp. 0)
if ny, ny are co-prime (resp. otherwise). The Taylor coefficients of the singu-
lates, however, are less simple: they carry Bernoulli numbers in their denom-
inators, and sometimes very large prime factors, that can exceed any given
bound of the form Cst s:

S1H02=s1+2
BTl‘H”Q 1 B51 TlB52 79 62 2 51 2

Surtz(s) = (=1)™ (5.28)
o 7“1—{-’/“2—1 51>m1 B61+62 r1—T2
dp279
B, _
with B, = — , By = Bernoulli number (By=1, B, =0 for n odd or < 0)
n!

Pay attention to the exponents: it is 6o —2 on top of u; and d; —2 on top
of uy. In fact, since both s and r;+ry are always odd, the summation rule
produces only positive powers of uy, us (one even, the other odd), except for
the pairs (r1,72) = (1,2) resp. (2,1) where constant monomials in wu; resp.
uy do appear — but these may be neglected, since they contribute nothing to
the singulate. Of course, the usual identity Su*!'""? + Su?*>"' = ( holds.

71,72 2,71

5.8 Arithmetical vs analytic smoothness.

To show how the three choices compare, arithmetically speaking, we list
the weight-s component S} ,(s) of the first non-trivial singuland in all three
variants Saj »(s), S0 5(s), Suj o(s), up to the weight s = 17:

Sa7s™(5) = S0y (5) = Sujs™(5) = —— 2] o
' 12
xT1,T2 ZT1,T2 T1,T2 7 7
Say’s"(7) = Soy37*(7) = Suy5™*(7) = —ﬁxffﬁg - ﬁff@
Sa75"(9) = Soy5"(9) = Suis™(9) = —ix2x5 T 1 E966:15
187172 367172 181
s 11 55 11
Sajs ™ (11) = -3 — g o1 T as — El’(f s
. 1 11 1 1
So7s™(11) = o riah — @x%xg - @x({'xg 0 R
Suys™(11) = So75™(11)
R 91 65 91
Sa7™(13) = —Ex‘fm;—i- 54 29 25 @xsfxg,
oo 65 143 143 65
2275 1001 715 1001 2275
Sul™(13) = — 2.9 4.7 6.5 8.3 10
W (18) = — 5505 T1%2 T Seg M1 T a6 1T T prog T1%2 T gogp 1 2
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691

665 2933 209 21
Saih"*(15) = ~360 41 Tyt + T r]a) — 60 28l + s x5 ah — 0 7 7
. 691 13 143 143 13
So15™(15) = ~gpp 7172 73 4193~ ggg 1T T gyg U1 Ty M 4
691 o,
——— 7" X
2520 "1

Suis™*(15) = So75™(15)

442 4 45 1105 , 0 1666 o o 187 . 153 o o

Says"(17) = — 15 %1% + o Nit2 T T Uity + E R
o 17 17 9291 221 17
So75™(17) = ~%0 riad? — mx%xél — ﬁox({' T) — %xioxg — me s
_1_7361436

601 2

2975 11747 5525 2431
QUL (17) = — 2 13 4,11 6.9 8.7
w7 = = 108517172 ~ 55106 172~ 32553 7172 Taa68 1 2

5525 Lo . LITAT ., 5 2075
32553 71 27 5106 7t 2T 10851 1 2

5.9 Singulator kernels and “wandering” bialternals.

Let BIMU;] be the space of all bimoulds M*® whose only non-vanishing com-
ponent M™*t" is constant in the v;-variables, and homogeneous polynomial
of total degree d = s — [ in the u;-variables.®3

Likewise, let BIMU; . be the subspace of BIMUj consisting of all
bimoulds M*® whose only non-vanishing component M™%t :
— is divisible by each w;
—is even in u; if r; is odd, and wvice versa.

For each pair r and s large enough (s > s,.), there always exist non-trivial
collections of special singulands S;:

{sy o l<i<r, 4+ +r =1} (5.29)

.....

such that the corresponding bialternal singulates X3 combine to form a O
that is singularity-free, i.e. polynomial, with the predictable total degree s—r
and an unchanged ‘weight’ s:

Op:= ) > slank,,.,.S,, € ALALNBIMU; (5.30)

-----

I<l<r ri+..4r=r

8350 that s may be called the ‘weight’ of M?®.
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instead of presenting at the origin multipoles of order 7:

Ti=7 —lpin with 2 <l = inf(l) for S} #0° (5.31)
as would be the case for randomly chosen singulands S;. The result holds
even if we impose that there be a least one nonzero singuland S7, ;. of minimal
length [ = 2.

These paradoxical non-singular singulates ©F are known as wandering
bialternals. They span a subspace of BIMU which is in fact a (small) sub-
algebra ALALyunger of ALAL C ARIY4  On top of the natural gradation
by r (the length), ALALyander admits a natural filtration by 7 (the ‘avoided
polar order’).

Their presence of these wandering bialternals is responsible for the very
slight indeterminacy that exists in the construction by singulation-desingulation
of a basis of ALIL C ART®™™. As we saw, to remove that indeterminacy, ad-
ditional criteria (arithmetical or functional) are called for, leading to the
three (distinct yet closely related) bases of §5.5, §5.6, §5.7.

.....

6 A conjectural basis for ALAL Cc ARIY%/Y,
The three series of bialternals.

6.1 Basic bialternals: the enumeration problem.

We shall have to handle three series of bialternals, each with a single non-zero
component, of length 1, 2, 4 respectively. Here they are, with their names
and natural indexation:

ekmaj/ekmi; € BIMU; , d even >2
domag,/domiz, € BIMU; , d even >6,1<b<03(d)
carmag . /carmiy, € BIMU; , d even >8, 1< c<7(d)

As usual, the vocalic alternation a <« i is indicative of the basic involution
swap. The integers a(d), f(d), v(d) are given by the generating functions:

Za(d) z?:
Zﬁ(d) z?:
Zv(d) z?:

and clearly verify a(d) = B(d) + v(d—2).

2% (1 -2t (1 —at) =088 4241012412431 (6.1)
25 (1 —22)7' (1 — 2% =080 2121241 (6.2)

28 (1 — )™ (1 — 287t = 32 M 101418 1 24%0..(6.3)
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6.2 The regular bialternals: ekma, doma.

The ekma bialternals are utterly elementary
ekma¥' = uf ; ekmi¥" := v{ (6.4)

since, for length 1, bialternality reduces to neg-invariance. If the ekmas
freely generated a subalgebra EKMA of ALAL, the dimension of EKMAs 4
(length 2, degree d) would be exactly «(d). This, however, is not the case.
Indeed, since the bialternality constraints for length 2 are finitary®, Hilbert’s
invariant theory applies, and it is a simple matter to verify that ALALy

(i) is spanned by ekma brackets,

(ii) admits the following domas as a canonical basis:

domagy}™ = fa(uy, up) (ga(ur, us))"™" (ha(uy, ug))¥/*3
domii})’w2 = fi(vy,vs) (gi(vy,v2))"" (hi(vl,vg))d/Q_gb (6.6)
with
fa(uy, ug) = wqug(ug —ug)(ug+ug)(2us +usz)(2us+uq) (6.7)
ga(ur,us) = (ui+uo)’ujus ; ha(ur,us) := ui+ujust+us (6.8)
fi(vy,v2) = v1ve(vy—va)(v14v2) (201 —v2) (209 —v1) (6.9)
gi(vy,v2) = (vi—v2)*vivs ; hi(vy,vs) == vi—vvetvs  (6.10)

Therefore dim(EKMAy ) = dim(ALALy ) = ((d) < «(d) and, for each
even degree d+2, the ekma-brackets verify exactly v(d) independent relations
of the form:

Z Q¥ ®ari(ekmay ,ekmaj ) = 0° (1 < c < y(d), Q" € Q)

di+do=d+2
(6.11)
easily derivable from the decompositions:
: . . _ b . b
ari(ekmay , ekmaj ) = Z K3, 4, domag , ,  (Kg 4 € Q) (6.12)

1<b<3(d1+d2)

6.3 The irregular bialternals: carma.

Not all bialternals of length r = 4 may be obtained as superpositions of
ekma brackets. Thus, there exists (up to scalar multiplication) exactly one

84j.e. correspond to invariance under a finite subgroup of Gly(C), which in the present

instance is isomorphic to G3. Finitariness ceases from length 3 onwards.
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bialternal of length » = 4 and degree d = 8, which clearly cannot be generated
by ekmas, since the first ekma has degree 2, and self-bracketting it four times
yields nothing.

One of our conjectures (for which there is compelling theoretical and
numerical evidence®) is that the number of these independent exceptional
or irregular bialternals — we call them carma bialternals — is exactly v(d) as
given by (6.3), and that these bialternals carmag,. (1 < ¢ < 7(d)) are in
one-to-one, constructive correspondence (see §6.7) with the elements (6.11)
of length 2 and degree d+2 in the ekma ideal, under a transparent and quite
universal restoration mechanism (see §6.9).

6.4 Main differences between regular and irregular bial
ternals.

For one thing, the algebra FEKMA C ALAL generated by the ekmas is intrin-
sical, while the algebra CARMA C ALAL generated by the carmas depends,
as we shall see in §7.5, on the choice of a basis for ALIL. (That said, there
exist clearly canonical bases of ALIL, and therefore canonical choices for
CARMA as well.)

Then, the definition of the ekmaj is as elementary as the construction
of the carmay . is complex. Unsurprisingly, this difference finds its reflection
in the arithmetical properties (divisibility etc) and sheer size of their coef-
ficients.®® For instance, if we consider the first cell ALAL, 4 where carmas
and ekma-brackets coexist, namely the cell (r,d) = (4,12), and compare the
simplest elements of EKMA4 1o with those of CARMA, ;2 (in any of their
realisations), we find that the second are strikingly more complex.

6.5 The pre-doma potentials.

Rectifying o1 to o7 ;.
The mapping (A*, B*) € BIMU; x BIMU; — C* := ari(A°®, B*) € BIMU,
induces by bilinearity a mapping oy, : S* € BIMU;y — ¥°* € BIMU, with:

Uy, u2 > U2 u2, u12 u12, U1 )

E(”lv Uz) = _{_S(:i, v2) + S(vz;l, vy ) + S( v2, v1:2
_glim) _ g ) gy )

85see §6.9, §7.5, §.10.
86This applies equally to the ekmay, carmay . and their swappees ekmiy, carmig .
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For arguments S**2 that are even in both w; and ws, 011 coincides with
the simpler mapping o7, : 5* € BIMU, — %% € BIMU, with:

s () glur) | gl ) | gl )

Colmn) g gl )

Ll gl o) gl x)

_gl ’,)

Ul() U2 )
ug, U uq
'U20 UIO) (”0:1’”2:1) —_ (U12 v0:2
which in the “long notation” (i.e. under adjunction of uy := —u;y and
vo = ‘free’) takes on the pleasant form:

ELwo],wl,wz — +S[wo],w1,w2+S[w1],w2,wo+5[w2],wo,w1

_S[wo},w2,w1 _ S[wﬂ,wo,m _ S[wz],whwo

In this form, the ‘finitariness’ of o7 ; is conspicuous, since the right-hand side
involves exactly all six permutations of the sequence (wy,w;, wz). But o7,
has another merit: it turns not just all bi-even, but also all bi-odd alternals
Sz into bialternals X2 (whereas oy ; only turns bi-even alternals into
bialternals). When acting on bi-even (resp. bi-odd) alternals, o7 ; bilinearly
extends the action of ari (resp. that of oddari: see (2.78)). The mappings
011 and o7, are of course reminiscent of the mappings from singulands S*
to singulates X* which we studied at length in §5, except that now neither
2* nor X} carries poles.

The bi-even pre-doma potentials.
Before turning to our proper object — the kernel of o ; — let us look for pre-
doma-potentials, i.e. for (alternal, bi-even) pre-images of the domag, under
o7,. If we impose the a priori form:

d
predomay; ™ = Z Caps (27023 203’ 21?%) (d even ,1 <b < ent(g))
lgéent(g)

the solution is unique, and this is essentially the only choice that yields
arithmetical smoothness, i.e. that ensures for the prime factors p in the de-
nominators of the coefficients ¢4 4,5 universal bounds of type p < C'd. In fact,
the bound here is p < d — 3.

The bi-odd pre-doma potentials.
Here again, there is only one (alternal, bi-odd) a priori form (analogous to
the above) that ensures arithmetical smoothness.

88



Arithmetical smoothness.

So, even in the case of the atypical, singularity-free singulator oy, we en-
counter anew the phenomenon which, in the preceding section, led us to the
privileged bases lama; and loma?, namely the existence of very specific con-
ditions on the singulates that ensure unicity and simple ‘factorial’ bounds
for the coefficients’ denominators.

6.6 The pre-carma potentials.

Natural basis for ker(o7 ;).

On the space of alternal bimoulds that are independent of (v, v,) and poly-
nomial in (u;,uy) of even (total) degree d, the dimension of ker(o7,) is
sq == ent(%). Let us look for a convenient basis. Reverting to the (z1,z)
variables favoured for singulands, we see that the alternal bimoulds

Tl T2
Hc(l; o) (21+29)° (25 2§ 2% — x5 272%) (6.13)

clearly belong to ker(o7 ;). Consider now the sequences:
Hd;81782 = {Hé,sl’ Hé,sﬁ-l? S H(;,SQ—I’ H;@} (6'14)

The main facts here are these:

(i) The elements of Hg, s, constitute a basis of ker(o7 ;).

(ii) The same holds for the shifted sets Hg. 115, +-

(iii) But it is only the first basis Hg1 s, that leads to arithmetically smooth
expansions.

Natural basis for the pre-carma space.

The pre-carmas (so-called because they are the raw material from which
the carmas shall be built) are the elements of ker(o7 ;) which are bi-even (i.e.
even separately in z; and x5) and divisible by 22 22.57 The main result here®®
is that there exists a complete system of arithmetically smooth pre-carmas
of the form:

precarmaﬁ},;” = Qr(d)(ﬂfl, Iz) Rg(ﬂﬁl, IL"Q)k 54(901, $2)H(d)_k Td,k(xla $2)
(6.15)
with 1 < k < k(d) = v(d — 2) and v as in (6.3) or, equivalently:

k(d) = ent(%2) if d#10 mod 12 (ent = entire part)
)

12
k(d) = ent(%2)+1 if d=10 mod 12

12

87We add this last condition for the reason that one-variable elements of ker(o7 ;) would
contribute no carmas: see the construction in §6.7.

88arrived at by expanding the bi-even solutions of o7 ;.57 ; = 0 in the ‘good’ basis
Hd;l,sd-
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The first factor depends on 7(d) := ged(d, 12). It is of degree 7%(d) := 7(d)
except when 12|d, in which case 7*(d) := 8. It is given for the four possible
values of 7(d) by :

Q1 Qs

QQ::x%—ttg,Q4::$11—.’L'421,QG::.Z'?—I'S,QH:_ Q
2

The second factor, of degree 8, is given by:

Ry = Y3 (27 — 23)°

and the reason for its spontaneous occurrence is that the six following poly-
nomials are divisible by 22 23 (z1+x2)?:

Rg({L’i,Ij) s Rg({L‘i,CL’Z‘—f—l‘j) y Rg(l‘i‘l—l’j,x]‘) with Z,j C {1,2}

The third factor, of degree 4, can be chosen arbitrarily, provided it is sym-
metric in (21, x2), even in each variable, and co-prime with Rg. The following
choices:

2
Sy = g—g =(2?+23)? ; 8= %
are natural candidates to the extent that they introduce no new factors, but
there seems to exist no really privileged choice, i.e. no choice that would
render the last factor 7} indisputably simplest.

That last factor, symmetric in z, x9 and with the right degree 6(d, k)%
is then fully determined by the condition o7 ;.precarma,, = 0. It is thus
simplest for k maximal, i.e. k = k. The corresponding precarma,, is also

the only fully canonical precarma,, since it does not depend on the choice
of S4.

4 2 2 4
=T+ T 75 + Ty

6.7 Construction of the carma bialternals.

The idea behind the construction.
Fix a polynomial basis {lgmal, s = 3,5,7...} of ALIL C ARI®19 and
consider a pre-carma polynomial precar of total degree d+2 (recall that d has
to be even and either = 8 or > 12) with coeflicients ¢y, 25,

5;>1

precar®*? = E 25,25, T3 & 5 %2 (6.16)
2 (81+82)=d+2

%i.e. to ensure degree d for precarmag ;. Thus 6(d, k) = d — 7%(d) — 4k — 4 k(d).
90 Asusual, ALIL and ALAL are short-hand for ARI@%@%CS ,and ARI Z%‘/llcs ;- Constructing
a basis of ALIL is of course no easy matter, as we saw in §5, but what we require here is

only a basis up to length 3, which is quite simple to construct: see §5.3.
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Next, form the bimould cgr® by bracketting the lgma? with the coefficients
C26, 25, as weights:

5;>1
cor® = Z 25,25, Preari(lgmal,,s ,lomal,,s,) € ALIL (6.17)
2(51+(52):d+2
5;>1

1 : [ ] L]
= Z 25125 ari(lomal,y s, , lomal,ys,) € ALIL  (6.18)
2(51+(52):d+2

and consider the projection corma® of cor® on BIMU,. By construction, cgr®
is of type al/il and its first non-vanishing component is therefore, on its own,
of type al/al, i.e. bialternal. That first component cannot have length r = 2,
because precar is a pre-carma. It cannot have length » = 3 either, because
the component of length 3 is a polynomial of odd degree 1+4d and for that
reason cannot possibly be bialternal. This implies, therefore, that corma®,
i.e. the component of length 4, is either = 0 or a non-trivial bialternal of
degree d. Based on extensive computational and theoretical evidence, we
conjecture that the latter is always the case, and more precisely, that when
precar runs through a basis of the precarma space, the corresponding cgrma®
span a space CORMA, such that

CORMA, @ EKMA, = ALAL, C ARIZ/2 (6.19)

In simpler words: the cgrma® provide all the missing bialternals of length
r = 4 and put them in one-to-one correspondance with the precarma®, i.e.
with the “unproductive” brackets of ekma®.

The construction works for any basis {lgmal} of ALIL. Specialising it
to the three canonical bases {lama?}, {lomal}, {lumal}, we get three se-
ries of ‘exceptional’ bialternals {carma?}, {corma?}, {curmal}, spanning
spaces CARMA,, CORMA,, CURMA,4 which, though distinct, each verify
the complementarity relation (6.19).

6.8 Alternative approach.

In the expansion 5.5 for {lgma?}, let us retain only the first two singulates
(those namely that contribute to the components of length r < 4) and then
let us restrict everything to the homogeneous parts of weight s. We get:

If we now plug this into (6.17) for pairs (sq,s2) = (1+261,14+235), we get

four contributions Py (p2], consisting of the terms linear in 2[.7«1],1 125, and
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E['sz 26, The contribution Py 1,21 begins with a non-zero component of
length 6 and therefore vanishes modulo BIMUs<. The contribution Py
vanishes ezactly, for the reason that, adari(pal®) being an algebra isomor-
phism, Ppyj ) is necessarily of the form adari(pal®).leng,.Pnyp), with leng,
denoting as usual the projector of BIMU onto BIMU,. But leng,. Py =0
since we have assumed precar® of (6.16) to be a pre-carma. Thus Py 1) = 0.
That leaves only the two contributions Py 1,91 + Pp,2),;1), whose component
of length 4 is clearly a singulate of type EE[.LIQ] = slank[l,l,Q].S['Ll’z]. It can
in fact be shown to be of the form:

Zzﬁﬁfﬁ’w?’ﬂw = (slank[mg} .5[17172] )wl,wg,wg,w4 (621)

X plyg) 4 Y Py o)
XU P(y) 4 YRS Py 4y
XU P(qy) Y US04 yg)
X0 P(yg) Y RO Py 4uy)
XU P(y) YOS Py 4ury)

with polynomials X*® and Y*® given by:

XA = GBI S Gl | Gl g g
L S S S S S S
_1_‘5’[“1'%;[721]7“34 S[l:’fll iu§ ,U34 81131132]7“34 Sﬁ?ilfgf 7“4 SUlfQiu;]S 7“4 Sﬁ?i’lf;]s ,Ul Sﬁ4iu234 ,U1
S S S — S S Sty

u27u47u34_ u17U127U4_ U3,u23,’lL4_ U37u233u1_ u37u347u1+ u2,u3,U123 +Su2,ulyu123
(1,1,2] [1,1,2] [1,1,2] [1,1,2] (1,1,2] [1,1,2]
Su27u47u234 SU47'U/27U234 SU17U37u123 _ u3,u1,u123 _Su37u4au234 _ U3, u2,U234
[1,1,2] [1,1,2] [1,1,2] [1,1,2] [1,1,2] [1,1,2]
_|_SEJ11iu21]27U123 +Sii31u22]37U123 +Slisiu22]37u234 +Sﬁ3iu234,u234 [ulz,izf;]&m%
Sﬁ?iii212ﬂﬁ123 Sﬁ?i'lf;]37u234 Sliéfi'lj347u234
2yt = G R Gu L gu g g
S SR S SR S - S S
_|_‘S'E1i4iu23]7U123 +Sliliu213]yu234 SﬁSiu217UZS4 Sﬁéfizf;]237u3 +Sliliu22]34,u3 Sﬁfilfs}aUIQS
e S — S — S S S
_|_Sﬁ2,i171421]2347u1+ ﬁ1i324]7u43u3 +Sﬁ1i3§]7u2,u4+ ﬁf%?§]7U27UI+ [Uili[i;];ul/u{i_ ﬁ37UI}2347UI
e S S S S S
_"_ ﬁ?ilf;]2347U234 +Sﬁ1i3;’U27UI23 +511153§]7u27u234_"_Sﬁli3§]”u123au2 +Su12347u2347u2

U3,U1234,U4123 U3,U1234,U234_ QU1234,U3,U123_ QU1234,U3,U234 u12347u1237u3 U1234,U234,U3
—S —5

(1,1,2] (1,1,2] (1,1,2] (1,1,2] (1,1,2] (1,1,2]
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and with a singuland S[.1,1,2] that has to be a homogeneous polynomial of
total degree 1 + d subject to three types of constraints.
First, it must be even in x1, x2, odd in x3, and divisible by xy x5 x3.
Second, it must verify the identity:

Sﬂflﬂf%af’i +S371737273723 +Sx27x17x23 _I_S-Tlal'23ax3 _|_S$17x127$3 S$17$37x23

[1,1,2] [1,1,2] [1,1,2] [1,1,2] [1,1,2] [1,1,2]
— [91631,221],9623 _ 591621,96212,963 + S:faﬂ;ri,wns + 5[91631,9621,90123 + 5[916’21,79621]237903 + S[ff11232,]962,23
S[T,Ql,:gl},xlzd 54916721,2:’],96123 5[91011,3521]23@3 +S[3132£33223,x123 + 5[916721779{:21]2706123 _{_Sﬂlc:sl,,xmswzs
_|_S[:i112732,]$37x23 _ 5[31:,117,3621]2’“23 _ 5[916?1,79022]3,:2123 _ S[élrizlfs,xzs _ S[ﬂlﬁ}fg]m,w% _ 5[3167112732,1123,1163

which ensures the absence of poles at the origin and therefore, in the termi-
nology of §5.9, makes ZE[.LL?} into a wandering bialternal.

Lastly, it must verify a third, similar-looking identity, which reflects the
fact that precar® is a pre-carma and, by so doing, guarantees that the bial-
ternal EZ[.I,IQ] won’t be in FKMA.

Caveat: for each d, there is exactly one carma bialternal that is not
captured by the above formula (6.21) but by a slight modification of the
same.”! This, however, is a minor technicality.

6.9 The global bialternal ideal and the universal ‘restora-
tion’ mechanism.

Suppose that, contrary to all evidence (see §7.5) the ideal IDEKMA is not
generated by IDEKMA,, i.e. by the sole pre-carmas. There would then exist
at least one r > 2 and one identity of the form:

6;>1

g C25,,..25, x%‘sl...xz‘s’" ari(ekmag , ...,ekmas; ) =0 (6.22)
2 (61 4. 4+0,)=24

corresponding to a prime element of IDEKMA,. We might then form the
polynomial prehar:

5;>1

prehar " = g 26,25, L2002 (6.23)
2 (814..46,)=25

91Due to the presence of the corrective term Ca$/Ci$ in the formula linking the com-
ponents of length 3 and weight 3 of lgma®/lgmi®. See (5.3), (5.3).
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as an analogue of precar (see §6.7) and then use the coefficients of prehar to
construct a bimould hgr®:

5;>1
hor® = Z C2s,,..25, preari(lomal,ys, , ..., lomai s ) € ALIL (6.24)
2 (814..+0,)=26
5;>1

1 : [ L]
= Z C2s,,..25, — ari(lomal,ys, , ..., lomal,y; )€ ALIL (6.25)
2(614...40-)=24 "

exactly analogous to cgr®. By arguing on the same lines as in §6.7, we would
see that the first non-vanishing component hgrma® of her®, necessarily of
even degree 20 —2k and therefore of length r+2k with k£ > 1, would au-
tomatically provide an ‘exceptional’ bialternal that would ‘make up’ for the
missing element of FKMA corresponding to (6.22). Although, in keeping
with our general conjectures, the existence of prime relations (6.22) is most
unlikely, it is reasonable to speculate that, if perchance they exist, the cor-
responding hgrma® must then have length r+2 and degree 2 §—2, although
they might conceivably have length r+2 k and degree 2 —2 k for some k > 2.
In any case, we have here a transparent stop-gap mechanism which automat-
ically associates one exceptional bialternal to any ‘missing’ reqular bialternal.

7 The enumeration of bialternals. Conjec-
tures and computational evidence.

7.1 Primary, sesquary, secondary algebras.

Before addressing the enumeration of bialternals, let us return to the main
subalgebras A of ARI listed in §2.5, but in the special case of bimoulds that
are polynomial in w and constant in v. For each such subalgebra A, we
tabulate the dimension dim(A, 4) of the cells of length » > 3 and of total
u-degree d. The reason for neglecting the length » = 1 resp. 2 is that the
results there are trivial resp. elementary.”?> As in §2.5, we reserve bold-face
for the secondary subalgebras.

92since for r = 2 the constraints that define A are always finitary.
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ARIA! /* | |
ARImantar/* ||
ARIpuSnu/* | ’
ARTIRD. |
ARI2/al I
ARIal/push ||

ARJPUsh I
ARJPSIY/PSIT

mantar/.

ARJPUSH/PUSTE |

ARIal /* | |
ARImantar/* ||
ARJPusnu /* | |
AR,
ARI2/2! [
ARIal /push | ’

ARIpush ”
ARIPESY/PEIL

mantar /s

ARIm/pusnu ||

N R — O QO N W N~
= N kR ©O O B g ot NN

O NN R O N R R NN

o= Do O

3 4 5 06 7 8 9

357 912
6 912 16 20
610 14 18 24
35 7 912
000 0
2 1 3
5 48
02 0
5 7 8

=N NN e = O

12

14
28
25 42 62
14 24 34
0 0 0

20
10 40

15

16

16
15
40

IS I e o)

10 15 28

95

15
25
30
15
1
5
13
1
15

6 7
20 30 40
60 80
90 122
50 66
1
7
24 33
20 28
60 79

18
30
36

18

12

17

8

10
22
36
44

22

18

22

9

55
110 140
165 213

11
26
42
52
2

18

26

10

70

90 114

0
11
44

35

1
13
o8
48

110 140

12
30
49
60
30

25

29

11
91
182
273
147

18
72
56
182

13
35
56
70
35

14
40
64
80
40

7 12

24

35

12
112
224
339
180

21
91
74
223

32

40

13
140
280
420
224

28
112
84
280

14
168
336
508
268

32
136
109
336



r=5 \ d=1 28 4 5 6 7 8 9 10 11 12 13 14

ARIV* | 1 3 714 25 42 66 99 143 200 273 364 476 612
ART™mtar/* |13 9 19 38 66 110 170 255 365 511 693 924 1204 1548
ARTPUS™/* || 4 12 28 56 100 168 264 396 572 800 1092 1456 1904 2448
ARI;‘;S;‘;{’;* | 2 614 28 50 84 132 198 286 400 546 728 9521224
ARJ2/a J]oooo o o o0 0O O 1 0 2 0 5
ARIVPsh g 1 1 03 3 9 9 19 22 36 42 66 74 108
ARTPUh | 1 5 612 20 38 52 85 118 169 224 310

ARIPEIVPIID 9 3 g 14 26 42 69 99 200 364 612

mantar /*

ARJPUSTI/pUst | 2 6 14 28 50 84 132 198 286 400 546 728 9521224

Let us now tabulate the corresponding generating functions. These are al-
ways rational. For brevity, we set X" = (1—z™)~".

r= I generating function > dim(d) z¢
ARV r X? X}
ARImamtar/e | x (2—22°+2%) X7 X}
ARIPUs/* | 220 X? X}
ARIRSVD | v X2 X]
ARJ/al [ 28 (1+2?—2) X3 X} X§
ARIal/push || 2 X22 X31
ARIP™ I 2 (2+a% = —at+2%) X] X3 X
ARIﬁiﬁ I r(1+a"+2%+21%—2M) X7 X} X}
AR[PTS/pusta x(l—x+2%) (1+x—2%) X? X!

143
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ARI? /*
ARImantar /%
ARJPusnu /*
ARI;E,
ARIV/2l
ARIal/puSh

ARTP
AR/ pusm

mantar /*

ARJPTSOT/pusna

ARIal/ *
ARImantar/*
ARIpusnu/*
AR
ARIV2!
ARIal/push

ARIpush
ARJPSTY/pusmu

mantar/*

ARJPrSm/pusn

I generating function Y dim(d) z¢

I r X7 X3
I 20 X2 X2
I z (3+z+a®+2°) X7 Xy X]
I r(2+2?) X2 X1 X}
| 2 (1422 4204 a® +2 2"+ 2 —21%) XJ X Xg X,
I 7’ X1 X3 X3
| & (142 —42?+32°+22* =52’ +42® + 27— 22% — 2% +210) X3 X}
I r(14+z+2°—2%) XT X2 X}
I v (24222 -3 4224 —2254+27) X2 X X}

[ generating function > dim(d) x4

[ r(1+2%) X3 X5 X}
I r(3—-522+5 23+t -3 2° + 2°) X3 X2
I 4x(1+23) X3 X3 X}
[ 2 (1+2%) X3 X} X}
| 20 (14222 +3 2 +325+22%) X7 X2 X{,
| 2?2 (1+z+2%+32 +22° + 25+ 27+ 228) X7 X1 X3 X}
I 777
I 277

[ 2z (14+2%) X3 X3 X}

7.2 The factor algebra FKMA and its subalgebra DOMA.

Of these two subalgebras of ALAL, generated respectively by the ekmas and
domas, the first is obviously far from free (though all relations between the
ekmas are conjectured to be generated by the sole bilinear relations) but the
second is conjectured to be free, with the domag,, of length 2, as canonical

generators.

The main unresolved point, even at the conjectural level, is this: how
much of FKMA must one ‘add’ to DOMA to recover (ideally, with unique

decomposition)

the whole of EKMA? While the inclusion
DOMA @ ari(DOMA, EKMA,) C EKMA
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is strict, the (rather small) gap between the two spaces would seem to be
bridgeable, but exactly how is unclear at the moment.

7.3 The factor algebra CARMA.

Like DOMA, CARMA is conjectured to be free (the theoretical case as well
as the computational evidence here are even more overwhelming) but, un-
like DOMA, it is not intrinsically defined: it exists in various isomorphic
realisations (some canonical), all of which are conjectured to verify:

EKMA @ CARMA = ALAL

7.4 The total algebra of bialternals ALAL and the orig-
inal BK-conjecture.

How many multizeta irreducibles of weight s and length r must one retain
to freely generate the Q-ring Zeta of formal (uncoloured) multizetas? How
many independent bialternals of weight s and length r are there in ALAL?
It is easy to show that the answer to both questions is the same number D; .,
but harder to find these numbers. Based on their numerical investigation
of genuine rather that formal multizetas, and on the assumptions that both
rings are actually “the same”, Broadhurst and Kreimer conjectured in [BK]
that the D, are deducible, after Mobius inversion, from the formula:

3 12,,2 2
Dy, 22y 22y (1 = y7)
1—2%¢y")""" " =1— 7.1
I[ 0==v) =2 T T 241 =25 (7.1)
2<d,1<r

7.5 The factor algebras and our sharper conjectures.

C1 : Under the ari-bracket, the factor algebras EKMA and CARMA freely
generate the total algebra ALAL of all polynomial bialternals. Freely means:
without other relations than those internal to each factor algebra.

C5 : Only the factor FKMA has internal relations, and all of these are gen-
erated by the bilinear relations between the {ekmay; d = 2,4,6...}. We
recall®® that for each even degree d there are exactly [22] — [¢] such rela-

_ 6
tions.

Cj; : The {domajs; d=6,8...,6 < [2]} freely generate DOMA.

93See §6.2.
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Cy : The {carmal 5; d=8,12,14 ..., 0 < [4]—[42]} freely generate CARMA.

If we now denote Dy, D%, D{%, D% the dimensions of the cells of ALAL,
EKMA, DOMA, CARMA of degree d and length r, the above conjectures
translate into the following formulas:

Cr: Ilhcus, (1 =2 yr)Dd’T =1- 1$_2 i2 + (f??f)zl__y?a) (7.2)
Cr+ Thenrer (1= aty)P =1- 133_2 S+ = ;1)0&2_ w19
Cyt loeqier (1—27 ?JT)Dg’OT =1- = :;E; ?12 e (7.4)
Ci: Ils<aier (1—a yr)Dé?: =1- (1- ;E;Ef_ 9) (7.5)

Formula C7 merely restates of the classical BK-conjecture in the (d,r)-
parameters, but C5, C3, C} are sharp improvements. Above all, they
provide a convincing explanation for the complicated y*-term in C7 and
completely divest it of its mysterious character.

For explicitness, we shall now list the partial generating functions D}(x) =
> Dj .x? for each algebra and the first lengths 7.
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7.6 Cell dimensions for ALAL.

D,

D,

Ds

2

(1—a?)
(1 —a?) (1 =)
28 (14 2% — 2)

(1—22)(1 —2%) (1 — )

a® (14 22" + 2% +2°% + 2210 4 2™ — 219)
(1 =) (1 =% (1 —2%) (1 —2')

2 (14222 +32% + 3%+ 228)
(1— 242 (1 — 25)2 (1 — 219

ZE12(1+ZE8—2$10+ZL‘14—4I‘16+4I18—2ZE20—ZL’22+2ZE24—2I26

4228 — 2% 4 323 — 3% + %) (1 —2?) 3 (1 —2?) ! x
(1 o ZBG)_l(l . (L’8)_1(1 o $12>—1(1 - x18)—1

o (1 +42® +82* +82° 4+ 6% + 420 + 522 + 62 43210 — 228

_3m20 _ 1’22 + 1'24 + {L‘%)(l _ ZE4)_3(1 _ {L‘G)_3(1 _ 1‘14)_1

201+ 3% + 72" +82° +132° + 142" + 152" + 162 + 8 2'°

+10x18 +4$22 - 31,24 +$26 - 21,28 4 x30 "‘3734) %
(1 - .1'2)_2(1 . $6>—2(1 o $8)_2<1 o [L’12)_2
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7.7
Dy
D3t
Dgt
D

ek
D5

ek
DG

ek
D7

ek
D8

Cell dimensions for FKMA.

12

)

(1 —22) (1 — 25)
8 (1 + 2% — %)
(1—a?) (1~ x“) (1 —af)
(1 +a*+22" +2°4 228 + 210 — 2')
(1 —a?) (1 =29 (1 —2%) (1 - 2®?)
(1— 22 (1 — 25)2 (1 — 219)
_ x14(1+x4_x6+x8_2x10_x14+x16_x18_x20+x
—ZC26 =+ 2:628 + 1‘34 o 1‘36)<1 o 332)_3(1 o £E4)_1(1 o 1‘8)_1 %
(1— xﬁ)—1(1 _ x12)—1(1 _ x18)—1
= 21 +42>+ 82" +102° +82° + 620 + 622 + 62 +22'°
—3.1’18 o 5$20 o 35622 + £C26)(1 o 174)73(1 o 176)73(1 o x14)71
= 2P (1 422" 472" +82° +172° +14 2% 4232 41321 4172
+6:L_18_’_3x20_x22_5$24_2x26_5$28_$30_$32+x36) %
(1 _ ZE2)_2(1 _ 1‘6)_2(1 _ 1‘8)_2(1 _ 1'12)_2

22

101



7.8 Cell dimensions for DOMA.

D = D = Dl =0
6
T
Ddo —
L (T-a?)(1-af)
DZO — "L‘14 (1 +1’4>

(1 —22) (1 —2*) (1 —a8) (1 — 21?)

Ddo —
O T @22 (- ah) (1 - 292 (1 - ah)

pio — w142 (1 +2%) (1 +2%
S (1 —2)(1— 23 (1 —28)2 (1 — 212)2

pio _ T (L4a 20542004 a2 a4 da B4 o 4o 4 20204 207 4 0 4 0)
10 —

(1 —22)3 (1 —a*) (1 —a6)3 (1 —210) (1 — 212) (1 — 239)
7.9 Cell dimensions for CARMA.

Df(l'f' — D2Ca7' — Dé:a'r — 0

.1'8

= (=)
D& = D@ = per —

220
(1 —22) (1 —a8) (1 —28) (1 — z1?)
D¢ — D = D =0

car  __
D" =

car  __
D¢ =

228 (1 + 21?)
(1—22) (1 —a2%) (1 —25) (1 — 28) (1 — 212) (1 — 218)

car  __
D12 -

Predictably, for the two free subalgebras of ALAL, i.e. DOMA and CARMA,
the generating functions verify self-symmetry relations:

(@) D) = ()7 D) (7.
(@)D = () D) (7.7



7.10 Computational checks (Sarah Carr).

We checked conjecture Cj (which of course is not independent of C3) for
r < 8 and d < 100, by using the following, highly efficient method:
(i) form the domi-generating functions (see notations fi, hi, gi in §6.2):

t? fi(vy,v9)

domi/17"? 1= '
gedomi,. ' (1 —tQahi(Ul,Uz))(l —t6bgi(v1,1}2)) (7 8)

(ii) form the ari-brackets of several copies of gedomiy?, , ; keep the variables
v1, V9 and parameters a;, b; provisionally unassigned; and studiously refrain
from simplifying the rational functions obtained in the process;

(iii) assign random entire values to the vy, vy and a;, b; and reduce everything
modulo some moderately large prime number p (8 or 9 digits);

(iv) expand everything into power series of ¢ and, for each d, study the di-
mensions of the spaces generated by the coefficient in front of ¢¢.

We then requested Sarah Carr, during her 2010 stay at Orsay, to compu-
tationally check the other conjectures C7, C3, Cy for lengths r up to 8 and
degrees d up to 100. To that end, we supplied her with a complete system of
independent carma/carmi-polynomials® of degree d < 40 (there are exactly
44 such polynomials). Here is her own account of the method she used and

the scope of her verifications.

Checking the conjectures C; about FKMA.

Checking C3 is equivalent to checking conjecture C5*, according to which
all ari-relations between the ekmaj are generated by the sole bilinear relations
(whose exact number is known from the theory). To test C3*, I created the
generators in the lengths and degrees given in Table A infra. To slightly
reduce the complexity of the calculations, I opted for working with the ekmi}
rather than the ekmay, so as to deal with pair-wise differences of vi’s rather
than multiple sums of u;’s.

For each length v and degree d, I calculated and stored all elements of
the form ari(fy v, fa—a r—v) where 1 <1t/ <[r/2] and 27" +2 < d' < d, and
where fy v (resp. fa_a - ) is a basis element of the length v’ (resp. r—1')
degree d' (resp. d — d’) graded part of the Lie algebra. Let the number of such
generators be denoted by Gg‘; and let the elements in the set of generators be

denoted by (™)} ;1 <i < G

9they are those constructed from the lama/lami-basis of ALIL (see§5 and §6).
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Since we know that the integers Dg{; are upper bounds for the dimensions,
we need to verify that we have at least Dfilfr linearly independent elements. To
check this, I created the generating series ZlSiSGZkT ai(gd“)é’r. The polyno-
maals have many terms with large coefficients. ]ﬁr:st zeroed out some of the
terms in this series by setting a number of variables (between none and 5, de-
pending on the length and degree) equal to zero. Then I defined for randomly
generated vectors from the series, by substituting a randomly chosen number
(using the Linear Algebra [Random Vector| Maple function) between 1 and
20 for each of the variables, and repeating the process Gﬁlfr times. Lastly,
I reduced these vectors modulo either 101 or 100003. Now, given the linear
system defined by these matrices, there are a number of options for solving it.
Since we expect this system to have some relations coming from the universal
Jacobi identity and from the bilinear relations special to our problem, I tested
the efficiency of the Maple commands linalg[rank] linalg[ker] and solve. The
solve command proved to be the most efficient. I then used the solution of
the linear system to find a basis for the length r, degree d part.

The tests confirmed the conjecture C3* to lengths and degrees given in
Table A. More precisely, the dimensions of all degrees between 242 X length
and the highest degree entered in the table were verified.

Table A.

Length || Highest degree generators || Dimension highest degree
1 100 100

2 100 100

3 100 100

4 100 58

) 50 40

6 38 32

7 32 28

8 26 24

Checking the conjectures C; about CARMA.

The calculations were done with the same method as for EKMA. The
scope of the verification is indicated in the following Table.

Table B.
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Length || Highest degree generators | Range of degrees verifying C}

4 | 46 | 8 ——46
8 | 54 | 20 — — 54
12 | 58 | 28 ——58

Checking the conjectures C} about EKMA® CARMA.

Here again I used the same method as for the two previous conjectures.
The results are consigned in in the following Table.

Table C.
Length | Highest degree generators || Rangeof degrees verifying Cy
4 | 46 | 8 ——46
8 | 54 | 20 — —54
12 | 58 | 28 — — 58

Acknowledgments. My computations were done on the calculation servers
at the Max Planck Institut fiir Math. in Bonn, the Medicis servers at the
Ecole Polytechnique and the calculation servers at the Math. Dept. of Orsay
University. I would like to thank these institutions for their permission and
trust, and warmly thank the system administrators for their indispensable
and patient guidance. (Sarah Carr).

8 Canonical irreducibles and perinomal alge-
bra.

8.1 The general scheme.

The trifactorisation of Zag®.

Let Zag® denote the generating functions of the (uncoloured) multizetas,
defined as in (1.9), but with all ¢, = 0 and all ¢, = 1. This generating
function Zag® admits a remarkable trifactorisation in GARI, with a first
factor Zag? which in turn splits into three subfactors:

1.1’ Zagl.n)

= gari(tal', invgari.pal®, R@ma')

Zag® = gari(ZagI', Zag
Zag®

I
Zag® = gari(tal', invgari.pal®, expari.r@ma')
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Here is where the three factors or sub-factors belong:

tal® , pal® € GARI™/®
invgari.pal® , Zag®, Zag® € GARI®/®

(8.4)
: (8.5)
Roma® , Zag® , Zag® € GARI2/E (8.6)

(8.7)

rgma® , logari.Zag® , logari.Zag® € AR/1

IIT

and here is their real meaning in terms of multizeta irreducibles:
(4) The factor Zag® carries only powers of the special irreducibe ((2) = 7% /6,
of weight 2.
(i) The factor Zag® carries only irreducibles of even weight s > 4 and their
products.
(#ii) The factor Zag?  carries only irreducibles of odd weight s > 3 and their
products.

Now, since weight, length, and degree are related by s = r+d, it is obvious
that under the involution neg.pari:
(j) elements of ARI or GARI that carry only even weights remain unchanged
(77) elements of ARI that carry only odd weights change sign, and their ex-
ponentials in GARI change into their gari-inverses.

With respect to our three factors, this yields:

neg.pari.Zag’ = Zag' (8.8)
neg.pari.Zag? = Zag} (8.9)
neg.pari.Zag® = invgari.Zag® (8.10)
gari(Zag® ,Zag® ) = gari(neg.pari.invgari.Zag®, Zag®) (8.11)

Since all elements of GARI have one well-defined square-root,” the last iden-
tity (8.11) readily yields Zag’, . Separating the last factor from the first two
is thus an easy matter (assuming the flexion machinery). But separating
Zag? from Zag® is much trickier, and requires the construction of a bimould
réma® rather analogous to [gma® but not quite. More precisely, the sought-
after rgma®

— must (like lgma®) be of type al/il

— must (unlike lgma®) carry multipoles at the origin that are so chosen as to
cancel those of tal® and pal® in the trifactorisation (8.3).

The auxiliary bimoulds lgma®, réma®.
The building blocks are the elementary singulands saj, € BIMU; and the

corresponding elementary singulates 3GES1) e AR/,
1

wip . ,,81—1 °

sag! = u) ; sa

) = slang, .sa; (8.12)

—~

1

% Apply expari. % .logari.
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The singulates sa('sl) are # 0 iff sy+ry is even and sy > 2.
1

We then define lgma® and r¢ma® as sums of their homogeneous compo-
nents of weight s:

loma® := Z lomal ; roma® := Z remas (8.13)

sodd>3 sodd>2

and proceed to construct these homogeneous components by bracketting the
singulates, in PREARI rather than ARI (- because that is by far the theo-
retically cleaner way -), with the multibrackets always defined from left to
right, as in (2.49).

AR

lgma; = Z Z lgmr ) preari(safs,), . ..,safs)) (Vs odd) (8.14)
T‘l T‘l

1< { 1<s;,1<r; }

S -H”i even

—~

s+ ts;=s
{7‘13~~+ rlleven}

o _ Gromeh (an® .
rgma; = Z Z T@ImM "1 T prean(sa(:}), SR )) (Vs even(B.15)
1<l { 1<s;,1<r; 1
si+7‘i even
As for Rgma®, it may be sought either in the form expari.réma® or, equiva-
lently but more directly, in the form:

{ S;+-+sp even }
T1+ -+ 1 even

Rgma®=1°+ R@m(i} ) preari safsiy,...,sars Vs even
; {815%25} b ( GH (”)) ( )

Of course, in the above expansions, all summands must be true singu-
lates,”® with a least a pole of order 1 at the origin, so that at least one of
their indices r; must be > 2.

Due to the condition ) s; = s, the right-hand sides of (8.14) and (8.15)
carry only finitely many summands. Each summand that goes into the mak-
ing of lgma? or regma? is of type al/il and is shortest component is of even
degree d = > (s; — r;), which is compatible with its being of type al/al.

The moulds lgm® or rem?® (resp. Rgm®) must be alternal (resp. symme-
tral) and one goes from rom® to Rem® = expmu(rem?®) by the straightfor-
ward mould exponential.

At this stage (i.e. provisionally setting aside all considerations of canon-
icity) the only additional constraints on the alternal moulds lgm®, rom®, and

9with the sole exception of the first summand in the expansion (8.14) for lgma, which
is of the form lom (1) sals) with lom(1) = 1.

s
1
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the symmetral mould Rgm® are these:
(k) lgm® must make lpma? singularity-free;
(kk) rom® (or Rgm®) must, within the gari-product:

Zag; := gari(tal®, invgari.pal®, Roma®) (8.16)
;= gari(tal®, invgari.pal®, expari. Z roma) (8.17)

S

eliminate all the singularities present in gari(tal®, invgari.pal®);
(kkk) the moulds lom® or rom® must be rational-valued.

Explicit decomposition of multizetas into irreducibles.

Anticipating on the construction of lgma® and its iso-weight parts loma?,
the preari-product gives us an extremely elegant and explicit representation
of the multizetas in terms of irreducibles:

Zag® = 1°+ Z Z Irrg **'preari(lgmay ,...,lgmag ) (8.18)

oo
1<l 3<s;
Leven s; odd

Zag® 1° + Z Z Irrg -~ preari(loma; , ..., lgmag )  (8.19)

m
1<l 3<s;
L free s; odd

logari.Zag® = 1°+ Z Z irrg®! "' preari(lgma’, , ..., lomag ) (8.20)

1<l 3<s;
leven s; odd

logari.Zag® = 1'+Z Z irrg > preari(lgma , ..., lgmag ) (8.21)

1<l 3<s;
lodd s; odd

The irreducible carriers Irrg® , Irrg® (resp. drrg’, irrg? ) are scalar moulds
of symmetral (resp. alternal) type. They are related under ordinary mould

exponentiation:

Irrg? = expmu.irrg; (8.22)

Irrg® = expmu.irrgs, (8.23)

The pair irrg’ , Irrg® has only (non-vanishing) components of even length. In
the pair irrg’ , Irrg;. , however, irrg? has only (non-vanishing) components
of odd length, but Irr¢® has of course components of any length, even or
odd.

There are two ways of looking at the expansions (8.18)-(8.21).

If we are dealing with formal multizetas, then our four moulds (8.22)-

(8.23) are subject to no other constraints than the above, i.e. symmetrality
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or alternality, and a definite length parity. They subsume all multizeta ir-
reducibles other than 72 in the theoretically most satisfactory manner, i.e.
without introducing any artificial dissymmetry.®”

In practice, to decompose formal multizetas into irreducibles, one may:
— calculate Zag?® according to (8.2) or (8.3);

— calculate Zag® and Zag® according to (8.18) and (8.19);
— calculate Zag® according to the trifactorisation (8.1);

— calculate the swappee Zig® of Zag®;

— harvest the Taylor coefficients of Zig®.

Since any given multizeta appears once and only once as Taylor coefficient
of Zig®, it can thus be expressed in purely algorithmic manner, via the flexion
machinery, in terms of irrg® and irrg? , or Irrg’ and Irrg’ .

When dealing with the genuine multizetas, on the other hand, the irre-
ducibles are well-defined numbers and the five-step procedure works in both
directions: it also enables one to express irre®, irres and Irrg;, Irrg;  in
terms of the multizetas. This ‘reverse expression’, however, is not unique.
To get a unique, privileged expression of the irreducibles — not in terms of
multizetas, but of perinomal numbers — there is no (known) alternative to
the approach sketched in §8.4 infra.

Explicit decomposition of multizetas into canonical irreducibles.
To qualify as canonical, the irreducible carriers irrg;®, irrg;® or Irrey®,
Irre® just defined must correspond to a compellingly natural solution
(loma?, roma?). The constraints (k),(kk),(kkk), however, do not quite suf-
fice to uniquely determine the solution — due to the existence of wandering
bialternals, which was pointed out in §5.9.

One cannot stress enough that this residual indeterminacy, compared
with the huge a priori indeterminacy inherent in all other approaches, is
quite negligible, and that too in a precise and measurable sense. Indeed, let
Zrr(r,s) be the space of prime irreducibles of length r and total weight s.
Next, let Wander(r, s) be the indeterminacy (i.e. number of free parameters)
in the definition of the irreducibles in Zrr(r, s) that comes from the existence
of wandering bialternals. Lastly, let Naive(r, s) be the indeterminacy that
we would be stuck with in the naive approach, i.e. if we had no criteria for

97If one wishes for a basis of scalar irreducibles totally free of constraints, one can readily
produce one by picking any minimal system of components of, say, irre; and irrg;, , that
is large enough to determine all other components by alternality. That essentially amounts
to selecting a basis in the Lie algebra freely generated by the symbols €s, €5, €7.... Many
such bases exist (Lyndon’s etc) but none is truly canonical. Thus, while in calculations it
may often be convenient to opt for free i.e. unconstrained systems of irreducibles, from a
theoretical viewpoint it is far preferable to stick with the constrained systems implicit in

irrgy, and irrg; or their symmetral counterparts Irrg;, and Irro? .
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privileging any given irreducible p, s in Zrr(r,s) over all its variants of the
form:

1>2
T1,.05T1 ; T1yeees L8] . . .
/07",5+ E Csl,l..,sl H pm,si with Csl,...,sl < Q y Priys; € ITT(TZ’ Sl) (824)
s1+...+s;=s 1<4i<1

One shows that, for each r fixed and s — oo, we have:
Wander(r, s)/ Naive(r, s) = O(s™ 1) (8.25)

So this small residual indeterminacy due to the wandering bialternals is
something we could live with. We can remove it, however, and ensure both
unicity and canonicity, by imposing additional conditions — of arithmetical or
function-theoretical nature. As we shall see, there are three basic choices (two
arithmetical options and a function-theoretical one) but we go with relative
ease from the one to the others, so that we are still justified in speaking, in
the singular, of the canonical choice.

8.2 Arithmetical criteria.

One way of lifting the residual indeterminacy in the construction of the pair
(loma?, roma?) is to impose additional linear constraints on the Taylor coeffi-
cients of the singulates S¢ being used in the successive”® inductive steps. As it
happens, there are two natural systems of linear constraints that do the trick.
We mentioned them in §5.5 and §5.6 in the case of lama? and only at the first
occurence (i.e. for r=3) but they extend to all lengths, and have their exact
counterparts for rgma?. They lead to two distinct pairs (lama?, rama?) and
(loma?, roma?), which stand out on account of their arithmetical properties.
Very roughly speaking: with the first pair, both singulators and singulates
possess “more” independent Taylor coefficients but these have “smaller” de-
nominators, whereas with the second pair the position is exactly reversed.
In both cases, however, the denominators of the Taylor coefficients are al-
ways divisors of simple factorials that depend only on length and degree.
That changes completely with the third pair (luma?, ruma?), which we shall
examine next and which is characterised by its functional properties.

8.3 Functional criteria.

To transport entire multipoles, we require dilation operators 6":
(i) that define a group action: §™ §"2 = §™"2 Vn, € QT;

9%For odd lengths r in the case of lgma? and even lengths in the case of rgma?.
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(ii) that act as flexion automorphisms;
(iii) that commute with the singulators (simple or composite);
(iv) that conserve multiresidues.

This imposes the definition:

(67 A) ) = ACHTED (VneZ)  (8.26)

which ensures the required properties:
§" i AR[VA TR ARpa/al AR/ Appal/il (g 07)
d"slank,, ., S* = slank, _, 0" S* (8.28)
0"slang, . S* = slang, . 0" S° (8.29)

Next, to reflect the change from power series to meromorphic functions, we

must replace .

— the monomial singulands sa$, € BIMU, of singulates sazsl) € ARI %/él
T1 _.

— by monopolar singulands ta; € BIMU; of singulates taznl) € ARI %i/f
7‘1 -

Concretely, we set:

ta¥ = (1 —wu)™' , ta""r =0 if r#1 (8.30)
tap = 0" .ta® | taZ?ll) ;= slang, .0".ta® = ¢" slang, .ta®  (8.31)

We may now look for bimoulds luma® and ruma® given by expansions of the
form:

n; coprime

{r1+---+rl odd}
T yeens n
luma® = Z Z Tum 1 ) preari(tazrrzll), SN Y, (8.32)
1<t 1<n;,1<r;

n; anything

{ r1t+--+ rp even }

ruma’® = Z Z rum!nt ) preari(tafn ), ..., taln)  (8.33)
1 Tl

1<i 1<n;,1<r;

—~

that run exactly parallel to (8.14) and (8.15), and may also be rewritten as:

n; coprime
{7‘1+~~+rl odd} N
1 seees ny
luma® = E g lum ) slang,, . .mu(6"'ta®, ..., 0"ta®) (8.34)
1<l 1<n;,1<r;

{ n; anything }
7‘1+~-~+ T even

ruma’® = Z Z rum! ) slang,, . .mu(d"'ta®, ..., 0"ta®)(8.35)

1<t 1<n;,1<r;
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The remarkable fact is that if we impose:*°

lum) = 1 , lum ™) =0 Vn, > 2
and
=0 Vi>2, Vn, (8.36)
=0 Vi>2, Vn, (8.37)

then there one is only one mould lum® (resp. rum?®) such that luma® be
free of singularities at the origin (resp that ruma® carry exactly the right
singularities'® there). So the problem now is no longer that of determining
a canonical solution, but of ascertaining the arithmetical nature of the Taylor
coefficients at the origin of the unique luma® and the unique ruma®. With
luma® the problem arises only for lengths » > 5, and with ruma® only for
lengths r > 4. This, however, is not a matter for this Survey.

But even without addressing this question, we may note that the pair
luma®, ruma® leads to a trifactorisation (8.1) of Zag® exactly as the pair
loma®, roma® did at the end of §8.1. Explicitly:

Zag® := gari <tal° , invgari(pal®) , expari(z 5"ruma')> (8.38)
1<n
Zag® = 1°+ Z Z Urr?t"preari(6" luma®, ..., 6" luma®) (8.39)
1<r 1<n;
Zagh = 1°+ Z Z Urr?t™preari(6™ luma®, . .., 6" luma®) (8.40)
1<r 1<n;

logari.Zag® = 1'+Z Z urr; " preari(0™ luma®, .. ., 0" luma®)(8.41)

1<r 1<n;

logari.Zag? = 1'+Z Z urr) " preari(0™ luma®, .. . 0™ luma®)(8.42)
1<r 1<n;

Instead of the symmetral pair of irreducible carriers Irrg® , Irre? —and the
alternal pair drrg? , irrg$ , we now have the symmetral pair Irru? , Irru’
and the alternal pair srru? , 4rru’, , with indices no longer running through
{3,5,7...} but through N*. Moreover, when dealing with the genuine (rather
than formal) multizetas, these four new moulds are well-determined, rational-
valued, and, for any given length r, perinomal functions of their indices n;.
So it is about time to explain what perinomal functions are, and what they
can accomplish.

99No such condition is requires for rum® since it automatically vanishes when the sum
r14+...47; is odd, and in particular when it reduces to r; = 1.
100j e, singularities capable of compensating those of tal® and pal® and of ensuring the

regularity of Zag$ at the origin.

112



8.4 Notions of perinomal algebra.

A function p € C(Z",C) is said to be perinomal (of arity r and rank r*) iff:
(i) there exist S,...,S+ € SI,.(Z) such that the functions poSi,..., poS,:
be linearly independent

(i) for any r** > r* and any Sy, ..., Sm € SI,.(Z), the poSy, ..., poS.— are
linearly dependent.

We set Sp := poS, which defines an anti-action of Si,.(Z) on C(Z",C).
IfT e Sl(Z), S :=[S,...,5] € (5(2)" and n € Z", we also set:
Sp = [Sip. .., gl — [poSh,...,poS,]

TSp = [TSip,...,TSup) = [poSioT, ..., poS,-oT]
TSp(n) = [TSip(n),...,TS-p(n)] = [(poSioT)(n),...,(poSmoT)(n)]

If the S; are now chosen so as to make Sip,...,S«p linearly independent,
for each T' there must exist scalars M (Sp;T) such that

TSip(n) = Z S;p(n) M) (Sp;T) (Vi,Yn) i.e.in matriz notation :
1<j<d
TSp(n) = (Sp(n)).M(S.p;T) (8.43)

But changing S into another choice S’ would simply subject M to some
T-independent matrix conjugation M — M’ :

M'(8'p;T) = C(S'p; Sp) M(Sp;T)C(Sp; S'p) (8.44)
Moreover, we clearly have:
M(Sp;ThTy) = M(Sp; T1)M(Sp; T3) (8.45)

The upshot is that the identity (8.43) defines a linear representation of SI,.(Z)
into Gl,«(Z) or rather Sl,«(Z):

SL.(Z) — Sl«(Z) (8.46)

T — M(Sp;T) ~ My(T) (8.47)

This representation M, in turn splits into irreducible factor representations
Mpﬂﬂ;ﬂ :

My=Mp,: @@ Mp,.  with ri+...15=1" (8.48)

s

Analogy with polynomials and action of sl.(Z).
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Let p be perinomal of type (r,r*). For T' € SI,.(Z) of the form id + nilpotent
and with logarithm ¢ = log(T) € sl.(Z), the image M,(T) of T in T €
Sly(Z) is also of the form id + nilpotent. For any mn fixed in Z" the sequence
{T*p(n),k = Z} is therefore polynomial in k and it makes sense to set:

tp(n) == [0, T* p(n)],_, (Vn, T=exp(t)) (8.49)

as if k were a continuous variable. This defines a coherent anti-action on
Peri, (the ring of perinomal functions of arity r), first of the nilpotent part
of sl.(Z), and then, by composition, of si.(Z) in its entirety. This applies in
particular for the elementary operators:

eij €sl.(Z) “=" n;0,,
Eij €SL(Z) Eij : ne—n' with ng:=ni+n; and ny=ny if k#i

But despite this analogy with polynomial functions, perinomal functions as a
rule do not admit sensible extensions beyond Z": they are essentially discrete
creatures.

Perinomal continuation.

Even for functions p defined only on a “full-measure” cone of Z", e.g. on
N, the above definitions of perinomalness still applies, but under restriction
to the subgroup of I' C SI,(Z) that sends that cone into itself. When these
conditions of “partial perinomalness” are fulfilled, on can then pick in I’
elements of the form id + nilpotent and take advantage of the polynomial
dependence of T*p(n) in k for k € N to extend, in unique and coherent
manner, the function p to the whole of Z", and then define, on this extended
function, the anti-action not just of I' but of the whole of SI,(Z) D T

Stability properties of perinomal functions.
Perinomal functions are stable under most common operations, such as:
(i) ordinary addition and multiplication (assuming a common arity r);
(i) concatenation or, what amounts to the same, mould mutiplication;
(iii) the whole range of flexion operations, and notably ari/gari.
The latter means that bimoulds A* whose indices w; = (i) assume
only entire values and whose dependence on the sequences u and/or v is
perinomal, are stable under ari, gari etc.

Basic transforms p < p* < p”.
The definitions read:

P (S1,...,8) = Z p(ny,...,n.)ny™ ...n % (s; € C or N)Y8.50)
n; EN*
Py, z) =Y plr, - my) (z;€C) (8.51)

ot (ng —xq)...(ny — )
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For s; € C and R(s;) > C; with C; large enough, the sum (8.50) converges
to an analytic function p* which may or may not possess a meromorphic
continuation to the whole of C". But one usually considers entire arguments
s;. The corresponding perinomal numbers p*(s) constitute a remarkable Q-
ring that not only extends the Q-ring of multizetas, but is also the proper
framework for studying the “/mpartial” multizeta irreducibles.

As for the sum (8.51), it usually converges only if we subtract from the
generic summand suitable corrective monomials (of bounded degrees) in the
x;. Hence the caveat “dom.” ie. “dominant” over the sign = . The re-
sulting meromorphic function p#(x) is known as a perinomal carrier. Its
Taylor coefficients are clearly related to the perinomal numbers p*(s) and its
multiresidues p(n) are perinomal functions of n.

8.5 The all-encoding perinomal mould per:®.

Definition of per:®.
For any [ > 1 and any integers n;, r; > 1 we set:

pelri(zl1 s :ll)::urrgll"“’”l if T, =1Vi and > r; =1 isodd
r=urr e if 1, =1Vi and Y. r; =1 iseven

if max;(r;) > 1 and > r; isodd

if max;(r;) > 1 and > r; iseven

The following table recalls the origin and role of the four parts of per:®,

depending on [ and 7 :

peri® | > r; odd | > r; even
ri=1 Yi || constructs Zag}y; from luma® || constructs Zag} from luma®
max(r;) > 1 || constructs luma® from ta® || constructs ruma® from ta®

In view of its definition, this holds-all mould per:®* may seem a hopelessly
heterogeneous and ramshackle construct. However, upon closer examination,
its four parts turn out to be so closely interrelated that they cannot be
described or understood in isolation. This amply justifies our welding them
together into a unique mould peri® which, far from being composite, is almost
“seamless” .

Properties of peri®.
(i) As a mould ! with indices ("), peri® is alternal.'*?

101Despite having two-layered indices ("), peri® should be viewed as a mould rather
than a bimould, since it would be meaningless to subject the r;-part (as opposed to the
n;-part) to the flexion operations.

102A5 a consequence, is is enough to know a rather small subset of all numbers
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. (M Yy . .
i1) For any fixed sequence (rq,...,r; eri'™ "m0 ) is a perinomal function
) ) )

of (ny,...,my).

(iii) Although the above formulas define peri(+) only for an upper sequence
n in N', perinomal continuation ensures a unique extension to Z!.

(iv) There is another natural way of extending peri® for n € Z!, namely by
parity continuation, according to the formula:

("Ll ..... ng )

peri 7117 = (sign(ng))™ ... (sign(n;))™ peri m o (8.52)

(v) Whether the perinomal and parity continuations coincide — wholly, par-
tially, or not at all — depends on the sequence r via simple criteria.

(vi) The perinomal numbers associated with urrf;, and urrf; generate a Q-
ring that contains the Q-ring of multizetas.

(vii) The perinomal numbers associated with lum® resp. rum® “tend” to be
in Q resp. Q[n?] (they are definitely there for very small sequence lengths 1)
but it is still a moot point whether this holds true for all /.

8.6 A glimpse of perinomal splendour.

As an illustration, we shall mention the remarkable perinomal equations in-
volving the elementary transformations F; ; and e; ; relative to neighbouring
indices 7, j. So let us set:

Ez—’_ = Ei,i-i-l S Sll(Z) ) 6;-’— ‘=" nm@m € Sll(Z)
Ez_ = L S Sh(Z) ) ei_ ‘=" nH@ni € Sh(Z)
E and E; clearly commute, and so do e; and e; .
Given a sequence r = (ry,...,r;) and 1 <i <[, we set
r = Z r; ;o T = Z r; (8.53)
i<j<i 1<j<i
(EF —id)™ (B —id)™ peri'n o) = 0 (vr, Vi) (8.54
(EF —id)" (BE7 —id)™ peri'i “n) = 0 (vr, Vi) (8.55)
In particular, for extreme values of 7 :
(Ef —id)"r=t peri™i ) = 0 (vr) 8.56
(B —id) "+ peritni 200 = 00 (vr) (8.57
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In the above identities, the discrete difference operators Ef—z’d may of course
be replaced by the derivations ezi. But the most interesting identities are
these:

N yeens nl)

(Ef —id)™++ peritn "on) = peri,? ) (Vr) (8.58)

M yeeny n (7“ T
(E; —id)"H-tm peri(Ti ----- n) = perip ' U (Vr) (8.59)

N eens n N2 e "
(ei&-)rg—l—“ﬁfrl peri( 7»11 ,,,,, ”l) = perii:f ----- Tll ) (V'T') (860)
( N eens ny ) ( :fl AAAAA :«Ll_l )
<el—)7‘1+---"r"‘l—1 peri T yeees ) = periR*l """ -1 (\V/’I") (861)

because they yield new, simpler perinomal fonctions peri}, peri}, (or their
infinitesimal variants peri,, periy,) that are themselves closely related to
the jump functions that measure the differences between the 2! perinomal

MY yeeey n LS n
(11 (nLe )

continuations C'V ‘U peri 1 - n) of PETE L starting from the ‘multioc-

tant’:
O = {L(ny,...,m) € Z" with en; €N* | ¢ € {+,—}} (8.62)

They are also related to the shorter components of per:®.

It is probably no exaggeration to say that this wondrous, double-layered
mould peri® is some sort of algebraic Mandelbrot set — its equal in terms
of complexity and richness of sub-structure at all scales, but much tidier,
because here the structure is algebraic in nature, consisting as it does of:

— the infinite series of perinomal fonctions encoded in per:®;

— their seemingly inexhaustible properties and relations;

— the degrees of the induced representions of Sl;(Z) for all [;

— the irreducible factor representations of these induced representations;
— the arithmetic properties of the corresponding perinomal numbers;
etc etc...

9 Provisional conclusion.

9.1 Arithmetical and functional dimorphy.

The word ‘dimorphy’ points to the parallel existence of two distinct multi-
plication rules, but the interpretation differs for functions and for numbers.
For functions, the two multiplication rules define distinct and independent
products. For numbers, they are merely distinct and independent expressions
of one and the same product.

e Dimorphy for functions rings.
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A function space F is said to be dimorphic if it is endowed with, and sta-
ble under, two distinct (bilinear) products — usually, pointwise multiplication
and some form or other of convolution. One often adds the requirement that
both products should have the same unit — usually, the constant function 1.
Moreover, dimorphic function rings often possess two sets of exotic deriva-
tions, i.e. linear operators irreducible to ordinary differentiation but acting
as abstract derivations respective to the first or second product. (It would be
tempting to attach to these dimorphic function rings the label “bialgebra”,
had it not long ago acquired a different connotation — namely, stability under
a product and a coproduct.)

e Dimorphy for numbers rings.

A countable Q-ring D C C is dimorphic if it has two countable prebases!®?
{an} and {f,}, with a simple conversion rule linking the two, and a multi-
plication rule!® attached to each prebasis:

O = > H [ ;B =K g (Hy,, K €Q)
Amy Oy = Z*Arngbimg Uy 5 By By = Z*Bgf,ng Bns (AZ?,nz ) Bgf,ng € @)

All sums X* have to be finite. Moreover, the two multiplication rules must be
“independent”, in the precise sense that neither should follow algebraically
from the other under the conversion rule. This in turn implies that neither
{ay} nor {B,} can be a Q-basis of D: there have to be non-trivial, linear Q-
relations between the «,,, and others between the (3,. The main challenges,
when studying a dimorphic Q-ring D C C, are therefore:

(i) ascertaining whether D is a polynomial algebra (generated by a countable
set of irreducibles) or the quotient of a polynomial algebra by some ideal;
(ii) pruning each prebasis {«a,,} and {3,} of redundant elements, so as to
turn them into true bases;

(iii) whenever possible, constructing an impartial or ‘non-aligned’ basis {~,},
positioned ‘halfway’ between {«,,} and {3,}.

(iv) whenever possible, finding for the impartial ,’s a direct expression that
is itself impartial and leans neither towards the «,,’s nor the (3,’s.

¢ Kinship and difference between the two types of dimorphy: func-
tional and numerical.

The two notions have much in common: indeed, most dimorphic number
rings are derived from dimorphic function rings either via function evalu-
ation at some special points, or via function integration, or again via the
application of exotic derivations to the functions and the harvesting of the

103gee definition at the beginning of §1.1.
104compatible with ID’s natural product, which is induced by that of C.
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constants produced in the process. And yet there is this striking difference:
whereas the notion of dimorphic ring is entirely objective (- the two products
are just there -), that of numerical dimorphy is embarrassingly subjective: on
any countable Q-ring D C C, one may always construct two prebases {a,,}
and {f,} with the required properties. So what makes a Q-ring D truly
dimorphic is the existence of genuinely natural prebases, and the — often
considerable difficulty — of solving the four problems (i), (ii), (iii), (iv) listed
above. The irony, withal, is that the notion of numerical dimorphy, despite
its conceptual shakiness, is much more interesting and basic than that of
functional dimorphy, and throws up much harder problems.

e Hyperlogarithmic functions: the dimorphic ring 7.
An interesting dimorphic space is the space H of hyperlogarithmic functions,
which is spanned by the H" thus defined:'%

dq,

Cr_ar

with HY(O) =1 (9.1)

—Qi,...,Qr q—al,...,a,,.,l
HO () = / H (¢

T is stable under pointwise multiplication and under the unit-preserving
convolution *:

¢ ¢
(Hy * H,)(0) = /0 TH(C) HolC — ) = /0 H(C—C) dHy(G)  (9.2)

Side by side with the a-encoding, it is convenient to consider an w-encoding
via the correspondence:

—w1,w1tw2,...,w1+...Fwp
P = T (9.3)

if all a; := wy + ... +w; are # 0, and by a slightly modified formula otherwise.

For this function ring 7, the basic dimorphic stability follows from the
fact that the moulds H~ and H* are both symmetral, the former under point-
wise multiplication, the latter under convolution. Moreover, there exist on
T two rich arrays of exotic derivations: the foreign derivations V,, and the
alien derivations A,,. These are linear operators that basically ‘analyse’ the
singularities ‘over’'% the points ag or wy, but in such a way as to make the
Vo, and A, act as derivations on T relative to, respectively, multiplication
and convolution.

e Hyperlogarithmic numbers: the dimorphic ring H.
If we now restrict ourselves to rational-complex sequences ¢ or w (i.e. with

105first for ¢ small, and then in the large by analytic continuation.
106Gince we are dealing here with highly ramified functions, we have to consider various
leaves over any given point.
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all indices a; or w; in Q 4+ ¢ Q) and evaluate the corresponding H or H* at
or over rational-complex points (, the space Q-spanned by these numbers is
in fact a Q-ring: the Q-ring H of so-called hyperlogarithmic numbers, which
is in fact dimorphic, since it possesses two natural prebases {H " } and { H*},
cach with its own, independent multiplication rule.'%7

Clearly, H contains the space of polylogarithms with singularities over
the unit roots. Likewise, H contains the dimorphic Q-ring of all (colourless or
coloured) multizetas, but it also contains much more: in fact, the structure
of H is still farther from a complete elucidation than that of the ring of
multizetas.

9.2 Moulds and bimoulds. The flexion structure.

e Moulds have their origin in alien calculus.
Alien calculus deals with the totally non-commutative derivations A, and
with the free Hopf algebra A generated by them. Let A be any commutative
algebra. Multiplying several elements B; € A ® A:

Bi=Y ArA =) D AN, LA, (9.4)

r>0 w;

reduces to multiplying the corresponding moulds Af, which in many contexts
(e.g. in formal computation) is much more convenient.
Alien calculus led straightaway to the four hyperlogarithmic moulds:

U*(z), V*(z) (resurgent-valued) ; U®, V* (scalar-valued) (9.5)

with their many properties and symmetries, and this is what really got the
whole subject of mould calculus started.
One way of looking at moulds is to think of them as permitting the
handling of non-commutative objects by means of commutative operations.
Another is to view them as permitting the explicit calculation of objects
(like the Taylor coefficients of the power series expansions of the solutions of
very complex, non-linear equation) that would otherwise resist explicitation.

e Moulds have found their second largest application in local dif-
ferential geometry.
Expansions of type (9.4) but with scalar- or function-valued moulds A? and

107Their origin, roughly, is as follows: when we subject some ‘monomial’ H® (resp.
H¥) to an exotic derivation V,, (resp. A,,), what we get is a linear combination of
simpler monomials H*  (resp. ﬂ“’l) with constant coefficients H~ (resp. H' “’”), which
are precisely the elements of our two prebases.
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with homogeneous (ordinary) differential operators in place of the A,, are
very useful in local differential geometry (especially when all data are ana-
lytic) for expressing and investigating normal forms, normalising transforma-
tions, fractional iterates etc. Here again, moulds make it possible to explicit
the seemingly inexplicitable — with all the advantages that accrue from trans-
parency.

e Mould operations and mould symmetries.

Moulds of natural origin usually come with a definite symmetry type — sym-
metral or symmetrel, alternal or alternel — and most mould operations either
preserve these symmetries or transmute them in a predictable manner.

e Moulds and arborification.

When natural mould-comould expansions such as (9.4) display normal di-
vergence and yet “ought to converge” (because they stand for really existing
function germs or ‘local’ geometric objects), a general and very effective rem-
edy is at hand: the transform known as arborification-coarborification nearly
always suffices to restore normal convergenge. Roughly speaking, the trans-
form in question replaces, dually in A®* and A,, the totally ordered sequences
w by sequences carrying a weaker, arborescent order, and it does so in such
a way as to leave the global series formally unchanged, while effecting the
proper internal reordering that restores convergence.

e Bimoulds.

There is much more to being a bimould than just carrying double-layered
indices w; := (;'). On top of being subject to the usual mould operations,
like mu and lu, and being eligible for the four basic mould symmetries (see
above), bimoulds can also display new symmetries sui generis, and can be
subjected to numerous (unary or binary) operations without ‘classical’ equiv-
alents. These are the so-called flexion operations, under which the u; get
added bunch-wise, and the v; subtracted pair-wise, in such a way as to pre-

serve Y w;v; and Y du; A dv;.

e The flexion structure.

A non-pedantic, if slightly cavalier, way of defining the flexion structure is
to characterise it as the collection of all interesting objects (unary or binary
operations, symmetry types, algebras, groups etc) that may be constructed
on bimoulds from the sole flexions. It turns out that, up to isomorphy, the
flexion structure consists of exactly:

(i) seven algebras, notably ARI and ALL

(ii) seven groups, notably GARI and GALL

(iii) five super-algebras, notably SUARI and SUALIL

e Recovering most classical moulds from bimoulds.
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Many classical moulds (especially when, as is often the case, their analytical
expression involves partial sums or pairwise differences of their indices w;)
can be recovered, and their properties better understood, when viewed as
special bimoulds with one vanishing row of indices (either v = 0 or u = 0)

e Monogenous substructures.

These are the spaces Flex(€) = @<, Flex, (&) generated by a single length-
one bimould €°® under all flexion operations. The most natural monogenous
structures correspond to the case when E"! is totally ‘random’ (i.e. when
there are no unexpected relations in its flexion offspring) or possesses a given
parity in u; and vy (four possibilities).

e Flexion units and their offspring.

In terms of applications the most important monogenous structures Flez(&)
correspond to special generators &® that verify the so-called tripartite iden-
tity (3.9). These &* are known as flexion units and admit various realisations
as concrete functions of wy: polar, trigonometric, ‘flat’ etc.

e Algebraisation of the substructures.

Each type of abstract generator €® subject to a given set of constraints
may admit several realisations (as a function or distribution etc), or just one,
or none at all. But in all cases the flexion structure Flex(€) = @o<, Flez,(€)
generated by €* is a well-defined algebraic object, with an integer sequence
d, = dim(Flex,(€)) that reflects the strength of the constraints on €°*. More-
over, in most cases, the length-r component Flez,(€) of Flex(&) possesses
one (or several) natural bases {e}} = {e;""*"}, with basis elements naturally
indexed by r-node trees t of a well-defined sort — like for instance binary trees
if &* is a flewion unit or ternary trees if €* is ‘random’.!" This automatically
endows the abstract space spanned by those trees with the full flexion struc-
ture and all its wealth of operations, opening the way for fascinating (and as
yet largely unexplored) developments in combinatorics.

108

e Origins of the flexion structure.
The flexion structure arose in the early 1990s in an analysis context, as a tool
for describing a very specific type of resurgence, variously known as quantic

resurgence’® or parametric resurgence!! or co-equational resurgence.!'?

108]ike (3.9) or (3.22) or (3.23) etc.

109%ut with a given parity in u; and v;.

H0hecause often encountered in the ‘semi-classical’ mechanics — i.e. when expanding
formal solutions of the Schrodinger equation in power series of the Planck constant h. See
§10.1, §10.2, §10.3 infra.

Hlgsince it is typically encountered in power series of a (singular perturbation) parameter.

H2hecause it is loosely dual to ‘equational resurgence’, that is to say, to the type of
resurgence encountered in power series of the equation’s proper variable.
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e Present and future of the flexion structure.

In the early 2000s, the flexion structure began to be used, to great effect,
in the investigation of multizeta arithmetics and numerical dimorphy, and
this is likely to remain the theory’s main area of application for quite some
time to come. However, the algebraisation of monogenous (resp. polygenous)
structures like Flez (&) (resp. Flex(€,, ..., €,)) also suggests promising ap-
plications in algebra and combinatorics. We can even discern the outlines
of a future ‘flexion Galois theory’ that would concern itself with the way in
which a given type of constraints on &* or on the &} impacts the structure,
dimensions, etc, of such objects as Flez,(€) or Flex,(€,, ..., &,).

9.3 ARI/GARI and the handling of double symmetries.

e Simple symmetries or subsymmetries at home in LU/MU.

The uninflected mould bracket lu preserves alternality and its two subsym-
metries: mantar-invariance and pus-neutrality.’!® Similarly, the uninflected
mould product mu preserves symmetrality and its two subsymmetries: gantar-
invariance and gus-neutrality.''* And that’s about all. Even when lu or mu
are made to act on bimoulds, they preserve none of the double symmetries!'!®
and none of the induced subsymmetries''® — not even the so crucial push- or
gush-invariance.

e Double symmetries or subsymmetries at home in ARI/GARI.
Things change when we go over to the inflected operations, or rather to the
right ones, since of all seven pairs consisting of a flexion Lie algebra and its
group, only ARI//GARI and ALI//GALI are capable of preserving double
symmetries and subsymmetries. In the case of ARI (resp. GARI) the full
picture has been summarised on the table of §2.5 (resp. §2.6). Things differ
slightly with ALI (resp. GALI), but we need not bother with these differ-
ences since, when restricted to bimoulds of type al/al (resp. as/as), the Lie
brackets ari and ali (resp. the group laws gari and gali) exactly coincide.

All the above, it should be noted, applies to straight (i.e. uninflected)
double symmetries, but similar results hold for the twisted''” double symme-
tries that really matter, beginning with al/il and as/is.

13 As defined in §2.4.
14 As defined in §2.4.
115] e. symmetries affecting simultaneously a bimould M*® and its swappee swap.M*®.
H6meaning of course the strictly double subsymmetries —i.e. those that don’t follow from
a single symmetry.

W76y, should we say, half-twisted, since it is not the bimould M® itself, but only its
swappee swap.M*®, that may display a twisted symmetry. No other combination would be

stable under the flexion operations.
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e Ubiquity of poles at the origin: associator.

In the canonical trifactorisation of Zag®, the leftmost factor Zagj] which, we
recall, encodes all the information about the canonical-rational associator,
admits in its turn a trifactorisation of the form

Zag] = gari(tal®, invgari.pal®, roma®) (9.6)

and the strange thing is that, although Zag;, as a function of the u; variables,
is of course free of poles at the origin, all three factors are replete with them.
(i) The (polar) mid-factor pal® contains nothing but multipoles at the origin,
and so does its gari-inverse.

(i) The (trigonometric) first factor tal®, which is a periodised variant of pal®,
carries multipoles at and off the origin, and those at the origin are roughly
the same as those of pal®.

(iii) Since the multipoles of pal® and tal® very nearly, but not exactly, cancel
out at the origine, a (highly transcendental) third factor roma® is called for
to remove the remaining singularities, and the construction of that third fac-
tor involves at every step special operators, the so-called singulators, whose
function it is to introduce, in a systematic and controlled way, all the required
corrective singularities at the origin.

e Ubiquity of poles at the origin: singulators and generation of
ALIL C ART/2,

To construct any of the three alternative bases {lumat}, {loma?}, {lama?} of
ALIL, we start from the arch-elementary bimoulds ekmas, purely of length-
1 and trivially of type al/al, and then apply adari(pal®) to produce new
bimoulds, this time of the right type al/il but ridden with unwanted sin-
gularities at the origin. To remove these without losing the property al/il,
we must then engage in a double process of singularity destruction and sin-
gularity re-introduction (at higher lengths), which is painstakingly described
in §5. The operators behind the construction, the so-called singulators, are
themselves built from the purely singular, polar bimould pal®. Poles, there-
fore, completely dominate the process — first as obstacles, then as remedies.

e Ubiquity of poles at the origin: singulators and generation of
ALAL C ARI9, The exceptional bialternals.

That the construction of pole-free bases for ALIL should involve poles at
all intermediary steps, is surprising enough, but still halfway understand-
able, since the very definition of alternility involves (mutually cancelling)
polar terms. But the really weird thing is that poles should also be required
to construct bases of ALAL, since the double symmetry here is completely
straight. Nevertheless, such is the case: to the elementary ekma bialternals,
one must adjoin the exceptional and very complex carma bialternals, whose
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construction cannot bypass the introduction of poles, since it requires the
prior knowledge of an ALIL-basis up to length » = 3 (but, thankfully, no
farther), as shown in §6.

e Ubiquity of poles away from the origin: perinomal analysis.
Perinomal analysis deals with meromorphic functions that possess multipoles
all over the place: their location admits a natural indexation over Z", their
multiresidues are also defined on Z" and are of perinomal nature. So, here
again, multipoles have a way of inviting themselves into all calculations.

e ARI and the Ihara algebra.

The fact that the Ihara algebra is isomorphic to a twee tiny little subalgebra
of ARI'® — namely, the subalgebra of bimoulds of type al/il, polynomial in
u and constant in v — is no excuse for ‘equating’ the two structures, or even
their Lie bracket, as some folks who ought to know better insist on doing
against all reason and logic and justice.

(i) To begin with, none of the dozens of pole-carrying bimoulds such as pal®
or tal® or rema®, which are key to the understanding of Zag®, possess any
counterpart in the Thara algebra. As a consequence, neither can the carma
bialternals be constructed in that framework, nor can the reason behind their
presence be understood, nor can anything even remotely resembling léma®
be constructed.

(ii) Second, unlike the Thara algebra, the ARI approach puts both symme-
tries — alternal and alternil — on exactly the same footing and does full justice
to the duality that underpins multizeta (and general arithmetical) dimorphy.
Indeed, with its involution swap, its built-in duality between upper and lower
indices, and all the main bimoulds like pal®/pil®, tal®/til® etc that always oc-
cur in pairs, ARI is itself ‘dimorphic’ to the marrow.

(iii) Third, the whole subject of perinomal algebra and of canonical irre-
ducibles is beyond not just the computational reach of the Ihara algebra, but
even its means of conception.

(iv) Fourth, unlike the Thara algebra, ARI, with its double row of indices,
lends itself effortlessly to the passage from uncoloured to coloured multizetas.
(v) Lastly, ARI arose independently of the Thara algebra, in direct answer to
a problem of analysis and resurgence. In fact, unlike the Thara algebra, ARI
is serviceable in analysis no less than in algebra.

U8Jequing which is a precondition for progress, right from the outset.
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9.4 What has already been achieved.

Finding the proper setting was the first and arguably main step. The rest
followed rather naturally.

e Correction formula.

Moving from the scalar multizetas Wa®/Ze®* to the generating functions
Zag®/ Zig® makes it much easier to understand the reason for the correc-
tive terms Mana®/Mini® in (1.27), (1.28). As meromorphic functions, Zag®
and Zig® are both given by semi-convergent series of multipoles. Formally,
the involution swap exchanges both series ezactly, but alters their summation
order, leading to simple corrective terms constructed from monozetas.

e Meromorphic continuation of multizetas and arithmetical nature
at negative points.

When taken in the Ze encoding, the scalar multizetas Zels ) possess a
meromorphic extension to the whole of C", with all their multipoles on Z".
(i) the density of multipoles decreases with the ‘coloration’ of the multizetas,
i.e. with the number of non-vanishing ¢;’s.

(ii) the values (resp. residues) found at the regular (resp. irregular) places
s € Z" — N are themselves rational combinations of simpler multizetas.'™
(iii) the symmetrelity relations verified by Ze®, which hold for positive s;’s,
extend by meromorphic continuation to the whole of C", including to the
points of Z" where, in view of (ii), they might — but in fact do not — generate
new multizeta relations.!?

e Unit-cleansing.

,,,,,

Any ‘uncoloured” multizeta Zelor o) with s; € (N*)" can in fact be ex-
pressed (in non-unique manner) as a rational-linear combinations of anal-
ogous but wnit-free multizetas (i.e. with s; > 2). The proof rests on a
reformulation of the problem in terms of bialternals, and then on the so-

called redistribution identities (of rich combinatorial content) which make it

0 .., 0
possible to recover any bialternal polynomial Mi‘ o) from its essential

part, i.e. from the collection of its constituant monomials that are divisible
by v1...v,.
e Parity reduction.

.....

0 0
Any ‘uncoloured’” multizeta Zelsi o) with s; € (N*)" can in fact be ex-
pressed as a rational-linear combinations of analogous multizetas of even

119 e. of multizetas of length r’ < . The more ‘negative’ s;’s there are, the smaller the

number 7’ becomes.
120for details, see [E2].
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degree.!?' While this follows from the general result on the decomposition
of multizetas into irreducibles (these correspond here to uncoloured bialter-
nal polynomials, which are necessarily of even degree d), there exists a more
elementary derivation, based on the properties of the symmetrel bimould
Tig®*(z), or “multitangent bimould”, thus defined:'?

Tigla Z:)(z) = Z Tels i Z:)(z) R Th (9.7)
s;>1
Tels ) (z) o= 3 &M e (n+2) L (n,42)*(9.8)

+oo>n1>... >N >—00
and on the two different ways of expressing each uncoloured multitangent
0
Tz'g((s))(z) as sums of uncoloured monotangents Tig's1’(z) with uncoloured
multizeta coefficients.

e The senary relation and palindromy formula.
The senary relations on bimoulds of type al/il are the only double subsym-
metries of finite arity — they involve exactly six terms. In polar (resp. univer-
sal) mode, they assume the form (3.58) (resp. (3.52)). They result from the
double symmetry al/il of a bimould M?®, more precisely from the mantar-
invariance of M* (consequence of its alternality) and the mantir-invariance
of swap.M?* (consequence of its alternility).

The palindromy relations, on the other hand, apply to homogeneous ele-
ments C' € IHARA C Q[xg, x1] of the Thara algebra (zy and z; don’t com-
mute), or more precisely to their left or right decompositions:

C=Ayxo+ A1z =20 By + 21 B1  (Ai, B € Qlg, 21]) (9.9)

and state that the sums Ay + A; and By + B, are invariant under the palin-
dromic involution:

Tey Tey oo Tey V> (—1)° Ty oo Ty Ty (9.10)

S

The palindromy relations'?®, which according to the above involve four
clusters of terms, can easily be shown to be equivalent to a special case of
the senary relations'?4, which involve siz.

121recall that d := s —r: the degree d of a scalar multizeta (in the Ze encoding) is equal

to its total weight s minus its length r.

122In the second sum, e; := exp(2mic;) as usual, and we apply standard symmetrel
renormalisation to get a finite result when either s; or s, is = 1.

123They were empirically observed by followers of the Ihara approach, and pointed out
to me, as conjectures, by L. Schneps in March 2010.

124Namely for w-polynomial and v-constant bimoulds. The senary relations first ap-
peared, among many similar consequences of double symmetries, in a 2002 paper by us
and were mentioned, the next year, during a series of Orsay lectures.
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e Coloured multizetas. Bicolours and tricolours.

The statement about the eliminability of unit weights'?® in uncoloured mul-
tizetas still applies in the coloured case, but here another, almost oppo-
site results holds: every bicoloured or tricoloured multizeta!?® with arbitrary
weights can be (in non-unique manner) expressed as a rational-linear combi-

nation of multizetas with unit-weights only.

e Canonical-rational associator and explicit decomposition into canon-
ical irreducibles.

We would rate this as the second-most encouraging result obtained so far with
the flexion apparatus. The existence of a truly canonical decomposition'?”
was by no means a foregone conclusion — in fact, it had gone completely un-
suspected. Moreover, since everything rests on the construction of an explicit
basis of ALIL C ARI*® which in turn requires the repeated introduction
and elimination of singularities at the origin,'*® the construction cannot be
duplicated in any other framework than the flexion structure.

e The impartial expression of irreducibles as perinomal numbers.
We would, in all humility, regard this as the crowning achievement of the
flexion method so far. The two circumstances which made it possible are:
the exact adequation of ARI//GARI to dimorphy; and the ‘vastness’ of the
structure, which accommodates not just polynomials in the w or v variables,
but also meromorphic functions (and much else).

e The first forays into perinomal territory.

Though we only stand at the beginning of what looks like an open-ended
exploration, we can already rely on two firm facts to guide the search: one
is the perinomal nature of the multiresidues ‘hidden’ in the constituent parts
of Zag®/Zig®; the other is the existence, attached to each integer sequence
r:=(ry,...,r), of a specific linear representation of Si;(Z).

9.5 Looking ahead: what is within reach and what
beckons from afar.

e Arithmetical and analytic properties of lama®/lami®.

Of all three ‘co-canonical’ pairs, this is the simplest, arithmetically speaking.
As power series of u or v, these bimoulds carry Taylor coefficients that have,
globally, the smallest possible denominators. But the series themselves are

125] e. of all indices s; that are equal to 1.

126 c. with ¢; € $Z/Z or €; € 37/

127The existence of three closely related variants (see §8.1 and §8.3) in no way detracts
from the canonicity.

128The infinite process is described in §5.
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divergent-resurgent — with a resurgence pattern that is still poorly under-
stood.?

e Arithmetical and analytic properties of loma®/lomi®.
Arithmetically, this second pair is less simple (the Taylor coefficients have
slightly larger denominators) but the associated power series are convergent,
with a finite multiradius of convergence. At the moment, however, it is
unclear whether the corresponding functions admit endless analytic contin-
uation and, if so, what the exact nature of their isolated singularities might
be.

e Arithmetical and analytic properties of luma®/lums®.
This last pair, being defined by semi-convergent series of multipoles, has a
completely transparent meromorphic structure. The difficulty, here, is with
the arithmetics of the Taylor coefficients: up to length » = 4, they are all
rational, but (for 3 < r < 4) with very irregular denominators.’*® Beyond
that ( for 5 > r), it is not even known whether the coefficients are rational.!3!
Needless to say, analogous questions arise for the three parallel pairs
rama®/rami®, roma®/romi®, and ruma®/rums®.

e Perinomal algebra. Ranks of SI.(Z) representations.

As repeatedly noted, to each integer sequence r := (rq,...,r;), our approach
to multizeta algebra attaches a perinomal function n — peri(+), which in
turn induces a linear representation R, of SI;(Z). The (clearly fast increas-
ing) ranks of these R, are unknown except in a few special cases, and their
structure (e.g. their decomposition into irreducible representations) is equally
unknown.

e Links between the four series of perinomal functions.

To each perinomal function carried by peri®, identities such as (8.58) or (8.59)
attach simpler but related perinomal functions, but a clear overall picture
is probably still a long way off. For aught we know, the two-layered mould
peri® may turn out to be as complex (though more tidy) than the Mandelbrot
set, with algebraic (rather than fractal-geometric) detail “as far as the sight
reaches”.

e Arithmetical nature of all perinomal numbers.

The Q-ring PERI of all perinomal numbers (see §8.4) exceeds the Q-ring
Zeta of multizetas (even if we allow colour) but the range and structure of
the difference remains unexplored.

129For any given length 7, the resulting resurgence algebra is probably finite dimensional,
which would be an additional incentive for unravelling its structure.

130Gee §5.7.

131See §8.3.
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e The quest for numerical derivations.
Does there exist on PERI an algebra DERI of direct numerical derivations,
that is to say, of linear operators D verifying:

D(zy) = Dzy+z.Dy (Va,y € PERI, VD € DERI) (9.11)
D.Q = {0} , {0} # D.PERI C PERI (VD € DERI)(9.12)

The emphasis here is on direct, meaning that the action of D on any x €
PERI ought to be defined in universal terms, i.e. based on a universal
expansion (decimal, continued fraction, etc) of z, and not on its mode of
construction. This at the moment is little more than a dream, but if it came
true, it would give us a key — possibly, the only workable key — to unlock the
exact, as opposed to formal, arithmetics!3? of PERI and its subring Zeta.
But this is purest terra incognita and, as it said on ancient maps where
unchartered territory began, ibi sunt leones. ..

10 Tables, index, references.

10.1 Complement 1: Origin of the flexion structure.

The flexion structure has its origin (ca 1990) in the investigation of para-
metric resurgence — typically, the sort of resurgence associated with formal
expansions in series of a singular perturbation parameter e. 33 Set v = 1
(x large, € small) and consider the standard system:

(urt. . Au) x4 8,) Wt 2050 (2, 2) = Wi 7o) (2, )

with W(g)(z, x) := 1 to start the induction.

We may fix z and expand the solutions as formal power series of z!.
These turn out to be divergent, Borel-summable, and resurgent, with a simple
resurgence locus'* consisting of the sums of u; indices.

We may also fix z and expand the solutions as formal power series of
27!, These are again divergent, Borel-summable, and resurgent, but with a
much more intricate resurgence locus generated (bi-linearly) by the two sets
of indices, the u; and v;, under ‘flexion operations’.

132No one would seriously expects the two arithmetics — exact and formal — to differ, but
proving their identity is another matter.

133Think for definiteness of a differential equation with a small € sitting in front of the
highest order derivative.

134The resurgence locus of a resurgent function f is the set Q C Co := (C—0) of all wy
that give rise to non-vanishing alien derivatives A, f or A, Ay, ... Ay, f.
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As functions of z, the W(s)(z, x) do not differ significantly®® from the
standard resurgence monomials V*(z) := W(o)(z,1) defined by the induc-
tion:

1
(Wit .. Fw, + 0,) VP0r(z) = Prm@ri(z) ~ with V%(z) =1 (10.2)

As functions of x, on the other hand, the W(Z)(z, x) can be expressed as
linear combinations!3® of standard resurgence monomials V¥ () = V<17 (z),
with indices w; that depend bilinearly on the indices u; and v; (to which one
must add z itself). Formally, the u;’s and v,’s contribute in much the same
way to the w;’s, although the natural way of expressing the w;’s is via sums of
(several consecutive) u;’s and differences of (two non-necessarily consecutive)
v;’s or of v;’s and z.

As to their origin, however, the u;’s and v;’s could not differ more. In all
natural problems, the u;’s depend only on the principal part of the differential
equation or system and tend to be generated by a finite number of scalars
(such as the system’s multipliers, i.e. the eigenvalues of its linear part).
There is thus considerable rigidity about the u;’s. With the v;’s, on the other
hand, we have complete flexibility: they reflect pre-existing singularities in
the (multiplicative) z-plane and can be anything.

10.2 Complement 2: From simple to double symme-
tries. The scramble transform.

Originally, the scramble transform arose during the search for a systematic
expression of the complex W?* of (10.1) in terms of the simpler V* of (10.2).
Our reason for mentioning it here is because the transform in question led:
(i) to the first systematic use of flexions;
(ii) to the first systematic production of double symmetries.

The scramble is a linear transform on BIMU:

M* — S* = scram.M*® with S = Ze(w, w*) M™" (10.3)

w*

which not only preserves simple symmetries (alternal or symmetral) but, in
the case of all-even bimoulds'®” M®*, turns simple into double symmetries

135in terms of their resurgence properties.

136The number of summands is exactly 7!! := 1.3.5...(27—1) and all coefficients are of
the form +1.

137j e. in the case of bimoulds M™ that are even separately in each double index w;.
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(alternal into bialternal and symmetral into bisymmetral).

scramble : M® +— S°
scramble : LU — AR | LU —  ARJIVal

all-even

scramble : MU® — GARI® | MU% — CARI2/as

all-even

To define the sums S* in (10.3) we have the choice between a forward and
backward induction, quite dissimilar in outward form but equivalent nonethe-
less. They involve respectively the ‘mutilation” operators cut and drop:

(CUtyy M )Wrvr = MW2er g wy = wy
0 if  wo # wy

(drop,, M )wewr = MWotrelgf g = w,
=0 if  woy # w,

We get each induction started by setting S*' := A"!' and then apply the
following rules.

Forward induction rule:
We set (cuty,.S)" := 0 unless wy be of the form [w;]| with respect to some
sequence factorisation w = aw;bc, in which case we set :

(Cutpy,1)™ = (—1)"® > s (if w =awbc) (10.4)

w’€Esha (aJ ,|b, c)
with b denoting the sequence b in reverse order. If A® is symmetral, so is S*

(see below). In that important case the forward induction rules assumes the
much simpler form :

(b)Y = S (invmu.S)® S° (if w = aw;bc) (10.5)

Backward induction rule:
We set (cuty,.S)" := 0 unless wy be of the form |w; or w;| with respect to
some sequence factorisation w = aw;b, in which case we set :

(cuty,,)V = —52IP (if w = aw;b) (10.6)
(cuty, )V = +52fP (if w = aw;b) (10.7)
Remark 1: mu is bilinear whereas gari is heavily non-linear in its second

argument. So how can the scramble inject MU® into GARI**? The answer
is that under the above algebra morphism, the non-linearity of gari gets
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“absorbed” by the bimoulds’ symmetrality. This is easy to check up to
length 3, on the formulas:

ul ul

St — MO
Gl 1v3) = o) ) Gl )
S wd) = e pGa v es) o MG ) — plen W s
M e v g eh )
PMOE IR R )
M gt Tese) — AU ey Tvas) - MU e g
R L) R )
(u%d »vz;l?, vZ?s) — M(ullfgd 11;11?3 71:;23) -+ M(u125 ) :2123 :vzilz)

The number of summands M™" in the expression of S”! % is exactly
rll:=135...(2r—1).

Remark 2: Extending the scramble to ordinary moulds.

We must often let the scramble act on moulds M*® by first ‘lifting’ these into
bimoulds M* according to the rule: M(Zi ) = Mevitetures - Of course,
the scramble of a mould is a bimould — not a mould. Thus, the bimould W*
of (10.1) is essentially the scramble of the mould V* of (10.2).

10.3 Complement 3: The bialternal tesselation bimould.

Let V* be the classical scalar mould produced under alien derivation from
the equally classical resurgent mould V*(z):

! =0
A V9(2)= Y V<Y (10.8)

w= w/w//

V*(2) is symmetral; V* is alternal.
If we now apply the scramble transform to the alternal mould V* (see

Remark 2 supra about the lift V* — V*® ) we get a bialternal bimould
tes®:138

tes® = scram.V® with tes” := Ze(w, w*) V" (10.9)

w*

which (surprisingly) turns out to be piecewise constant in each u; and v,
despite being a sum of hyperlogarithmic summands V*". This begs for

138Tts real place is in resurgence theory — in the description of the “geometry” of co-
equational resurgence.
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an alternative, simpler expression of tes®. The following induction formula
provides such an elementary alternative:

tes” = Z push” Z sigV ™" tes™ tes™ (10.10)

0<n<r(w) w'w=w

The notations are as follows.
We fix § € R/27Z and set Ry : z € C — R(e?2) € R. Then we define:

Y= < vi><u,v>Tl L gV = <ul, Ryv'><u, Ryv>T (10.11)
o= <u” vi><u,v>T1 gV = <u”, Ryv'><u, Ryv> Tt (10.12)

From these scalars we construct the crucial sign factor sig which takes its
values in {—1,0,1}. Here, the abbreviation si(.) stands for sign(3(.)).

. wlw! . ww! 1 < rw! w! oW w!!
s1g = 8518y ’ = g (Sl(fw _fw )_Sl<gw —Iw )) X

(1siChy /o) sitfy' =) x
(1+siCh" o) si =) (10.13)

Lastly, the pair (w*, w**) is constructed from the pair (w’, w”) according to:

*

u=u , vii=vo<u,va>T SV — Ry <u, vt Sgl10.14)

k3% ! k3%

ut=u" v =V <u, v Qg — Rev! <u, Rgv> Sg10.15)

Remark 1: The above induction for tes® is elementary in the sense of being
non-transcendental: it depends only on the sign function. But on the face of
it, it looks non-intrinsical. Indeed, the partial sum:

. 7 * Hok . i * ok
urtesy := E sig" "V tesV tesV = E sigy " tesVetes™e  (10.16)
w/'w!'=w w/'w!'=w
is polarised, i.e. f-dependent. However, its push-invariant offshoot :

tes® = Z push” urtesy (10.17)

0<n<r(w)

is duly unpolarised. We might of course remove the polarisation in wurtesy
itself by replacing it by this isotropic variant:

2

urtes,  := urtesy df (10.18)

150_2
™ Jo
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but at the cost of rendering it less elementary, since urtest,, would assume its
value in R rather than {—1,0, 1}. It would also depend hyperlogarithmically
on its indices, and thus take us back to something rather like formula (10.9),
which we wanted to get away from. So the alternative for tes® is: either
an intrinsical but heavily transcendental expression or an elementary but
heavily polarised one!

Remark 2: In the induction (10.10) we might exchange everywhere the role
of u and v and still get the correct answer tes®, but via a different polarised
intermediary urtesy. The natural setting for studying tes® is the biprojective
space P equal to C*" quotiented by the relation {w! ~ w?} & {u' =
Au? vl = pv? (A, p € C*)}. But rather than using biprojectivity to get rid
of two coordinates (u;, v;), it is often useful, on the contrary, to resort to the
augmented or long notation, by adding two redundant coordinates (ug, vp).
The long coordinates (u}, v}) relate to the short ones (u;, v;) under the rules:

w=ul o, v = — U (1<i<r) (10.19)

The long u; are constrained by uj + --- + u; = 0 while the long v are,
dually, regarded as defined up to a common additive constant. Thus we have
<u*,v*>=<u,v>.The indices 7 of the long coordinates are viewed as elements
of Zyy1 = Z/(r+1)Z with the natural circular ordering on triplets circ(i; <
iy < i3) that goes with it. Lastly, we require 72—1 basic “homographies” H, ;
on P™" defined by:

Hij(w) = Qi;(w)/Q;;(w) (i —J #05i,5 € Zpya) (10.20)

Qiy(w) = Y ul(v;—v)) (10.21)
cire(j<q<i)

Qiw) = Y up(vy—v) # Quu(w) (10.22)

cire(i<q<j)

Main properties of tes®.

P;: the bimould tes® is bialternal, i.e. alternal and of alternal swappee.

Ps: in fact swap tes® = tes®.

Pj: tes® is push-invariant.

Py: tes® is pus-variant, i.e. of zero pus-average.

Ps: tes® assumes the sole values -1,0,1.

Pg: for r fixed but large, the sets Sy C P™" where tes™ is £1, have positive
but incredibly small Lebesgue measure.

Py for r fixed, all three sets S_, Sy, S+ are path-connected.

Psg: for r fixed, the hypersurfaces S(H, ;(w)) = 0 limit'* but do not sepa-

139that is to say, the boundaries of these sets lie on the hypersurfaces.
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rate !0 the sets S_, Sy, S, .
Py: tesV = 0 whenever w is semi-real, i.e. whenever one of its two compo-
nents u or v is real. 4!

10.4 Complement 4: Polar, trigonometric, bitrigono-
metric symmetries.

The trigonometric symmetries 4l and uul coincide modulo ¢ with the polar

symmetries ¢l and ul, but their exact expression is much more complex. So

let us first restate the polar symmetries in terms that lend themselves to the
extension to the trigonometric case.

Polar symmetries: symmetril/alternil.

A bimould M?* is symmetril (resp. alternil) iff for all pairs w',w” # () the
identity holds:

Z MY H i = M™ MY (resp. =0) (10.23)

weshi(w’/,w'’) 1<k<r(w)

with a sum ranging over all sequences w that are order-compatible with
(w’,w”) and whose indices wy, are of the form:
(i) either w; or w}, in which case li** := 1

.. u;—i-u;.’ . . wp . I
(ii) or ("¢, ), in which case li'** := —P(v] — v})
(iii) or (ugj}',%), in which case li'** := —P(vj — v})

Polar symmetries: symmetrul/alternul.

A bimould M* is symmetrul (resp. alternul) iff for all pairs w’, w” # ) the
identity holds:

oo [ wr=MY MY (resp.=0) (10.24)

weshu(w/,w’’) 1<k<r(w)

with a sum ranging over all sequences w that are order-compatible with
(w’, w") and whose indices wy, are of the form
(i) either w; or w}, in which case lu"* :=1

(ii) or (";:,_";!), in which case lu"* := —P(uj)
K2

140that is to say, none of the three sets can be defined in terms of the sole signs
si(H; j(w)) = sign(S(H; ;(w))), at least for » > 3. For r =1, tes® = 1 and for r = 2,
tes® = +1 iff si(Ho,1(w)) = si(Hy2(w)) = si(Hz0(w)) = £ and 0 otherwise.

1416y purely imaginary, since under biprojectivity this amounts to the same. Of course,
tes™ vanishes in many more cases. In fact it vanishes most of the time: see Pg above.
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(iii) or (“7), in which case lu”* := —P(u)
! ) . i

Trigonometric symmetries: auxiliary functions.

To handle the trigonometric case, we require four series of rational coeffi-
cients:

(%) @iy, 2iipg, TUUpg, 2Ulp,

which are best defined as Taylor coefficients of the following functions:

(**) Xii(x,y), Zii(z,y), Xuu(z,y), Zuu(z,y).

Here are the definitions:

S pp—
x4yt a4yt
DT aw | MY R T R
Q) —y'Qy) ™' R(z) —y 'R(y)

Qz) + Q(y) R(z)+R(y)

Q(t) : (10.25)

. tan(t) arctan(t)

Xii(z,y) = (10.26)

10.27)

I Zuu(z,y):=

Zii(x,y):=
Thus:

1 1 4 1

X" -1 - .3 2,2 3

ii(z,y) +3xy+45y +45x Yy +45x Y
2 5 4 45 23 5 4 4 4 2 5

+945xy +315xy +945xy +315xy —1—94596 y+...

1 4 1 4

X - 1-= - 3 2,2 3

uu(z, y) FUY+ Y Y+ ety

4 . 4 L, 23 .. 4 4, 44
91577 3157 Y T s Y T 3157 Y

1 1 1 4 4 1
7ii S L i1 3 4 5 a2 9 13
ii(z,y)= =z Y 3$+3y 4533 45:E y—|—45$y +45y

o . 4 , 16 ., 16 ,, 4 , 2 .
0557 T35 Y oY TV Tan™ ToY T
1 1 4 1 1 4
1 —1 T T 3 o 2 el 2 - 3
AT T T T4
4‘4 5 4 4 1 3 2 1 2 3 4 4 44 5
ot Tt Y 180" Y T80V T35 TosY T

Zuu(z,y)= x~

Trigonometric symmetries: symmetriil/alterniil.

A bimould M* is symmetriil (resp. alterniil) iff for all pairs w', w” # () the
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identity holds:

ooy [ ™= MY MY (resp. =0) (10.28)

weshii(w’/ ,w') 1<k<r(w)

with a sum ranging over all sequences w that are order-compatible with
(w’, w") and whose indices wy, are of the form

(i) either w; or w}, in which case li"* :=1

(ii) or (* it u“?:ulur g #a) with p,q > 0, in which case

L := =P xiiy g Qo (v —v)) — P iy, (10.29)

(iii) or (u§+"'u;+?;/u;'/+"‘ug+q) with p, ¢ > 0, in which case
j
L := P xiip g Qu(v—vf) + P zily (10.30)

Trigonometric symmetries: symmetruul/alternuul.

A bimould M* is symmetruul (resp. alternuul) iff for all pairs w', w” # ()
the identity holds:

Z MY H ™ = MY MY (resp. = 0) (10.31)

weshuu(w’,w’’) 1<k<r(w)

with a sum ranging over all sequences w that are order-compatible with

(w’,w”) and whose indices wy, are of the form

(i) elther w; or wj, in which case luu"* :=1

(i) or (*7, it 7), in which case luu"* := —Q.(uj)

(iii) or (™ + H) in which case luu"* := —Q.(u})

(iv) or (* a8 u“‘f?j“ AR uﬁq) with p,¢ > 0 and p+q > 1, in which case

= — Y g, o Symy, (| Qo) Symy,, (| Qe(ul))
gzzigs 1<s<Hp I1<s<jtq

(v) or (* ittty U ) with p,q > 0 and p+q > 1, in which case

v
J

luu"*:= + Z M zuuy, o S U Q.(u})) Sym,_, U Q.(ul))
0<p1<p 1<s<t+p J<s<jtg
0<q1<q
with Sym(x1,...,z,) standing for the s-th symmetric function of the x; :
Symg(z1,...,x,) == Z Tiy . T, (10.32)

1< << <r
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However, to get the formula for luu™* right, we must observe the following
convention:

Symg(z1,...,2,.) = 1 (even if r=0)
Symy(zy,...,7,) = 0 if 1<r<s (but Sym, (@) :=1)

We may also note the complete absence, from the expression of luu"*, of the
four extreme terms Q.(u;), Qc(uiy,), Qc(uf), Qe(u},,).

Dimorphic transport.
As in the polar case, the adjoint action of the bisymmetrals tal> and ¢l
exchanges double symmetries, but without respecting entireness.

CARIz/es D o A ppas/iis
logari | T expari logari | T expari
ARpVal Dy el
GARIa/es O g A gras/s
logari |1 expari logari | T expari
ARpeVal D ARyl

Bitrigonometric symmetries.

As usual, the trigonometric case fully determines the bitrigonmetric exten-
sion.

Symmetries associated with other approximate units €°.

€* of course replaces (). in the expressions of "% and luu™* but the struc-
ture coefficients i, g, 214y 4, TUU, 4, 2UU, , dO DOt change, and must still be
calculated from @ and the related R (see (10.25)) even in the case of the flat
approximate units Sa® or Si® of (3.19).

Remark 1. While bimoulds polynomial or entire in the u; and v; variables
may be alternil or symmetril or alterniil or symmetriil, they can never be
alternul nor symmetrul nor alternuul nor symmetruul.

Remark 2. Of course, just as with the straight symmetries (see §2.4), when
expressing the new, twisted symmetries, one should take care to allow only
sequences w that are order-compatible with w’ and w”, i.e. that never carry
pairs uj, v; or uj,v] (whether in isolation or within sums or differences) in

an order that clashes with their relative position within the parent sequences
w’ or w”.

139



10.5 Table 1: basis for Flez(€&).

Here are the bases of the first cells of the free monogenous structure @ Flex,.(€)
generated by a general € subject only to one of the four possible parity con-
straints (3.1): it doesn’t matter which. By retaining only the first +1)),r,
elements, one also obtains bases for the eumonogenous structure & F lex ~(€)

generated by an exact flexion unit €.

)

€11 = En 1

e;ull,wz - @ulz Qf(v7112) ” 6121/%1112 - @(le)e(:g)

w1, w (02) @ (52)

€ = @ or /@ e |

275111 ,W2,W3 p— 6(“123) 6(32123) €(v1 P || eg’%’wQ W3 = @(“123)@(1}1;21 )6(1;;,31)

s @B @) @) | emenn o @Y eum )

w0 e @lal) @l || ey = @8 ¢l @l

e (1) ¢(2) w(12) | ewyuen = el @) @ly)

g = e R | i = e el
ey = @) elna) el

w1, wa,w G ¢G2) w32

| = et ) el

Here follows the graphic interpretation of the bases, with full lines for the
graphs gi and broken lines for the graphs ga (see §3.3).

Figure 1: Length r = 1,2 . Basis vectors {e};} and {e3,e5,} U {e33} .

e}fj w4:@(:11:2) 6(2523) (13;132;3) Qf(uIEEA) ” QZ)IS w4 Qf(vw QS(“1234) G(% ) 6(22%2)
e — ) @) @D @Y | ey — el Y € ¢l
vy — Uit @UD i) Y | e — g g2 ) @B
eZi‘M:@(uJﬁi) elo o) @(Zgi) @(”324) I eiﬂl wy Q( 1234) 03(1;534) G(vg ) @(uﬁ?)
21%"11}4:@(“@1123) @(253) Qf(”?r? ( 1534) e Qf( 1234) @(;;23) @(7?3311;) (1)
eyt = glon) @) @) @(5‘4“3) I ewl s _ @(M124) (U24) (1) o(420)
gorm = ¢l @) ¢BD Ul || enpyer = R @(BD @Y ¢l
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Figure 2: Length r = 3. Basis vectors {e3,...,e35} U {eSq, ..., €50} -

eyt =@l @) @) @Bl || e — el @l ¢ @l
e = ¢ U2 € €Ul | v = el @) @) &)

ez = ¢t @l @l @) evygr = @) @l gl @)

i = ¢ @) ) €Ul | erpm = @) @) @) et

e = U @) el @) | %Om:@("%fﬂ@(:;l) el @)
2210712-0’1114_@(1;11) e¢(%) elin) @Gy | et = el @B @(8) &)
evyior = ¢ @lld) gl @) | %szx:@(:ﬁQ e(2) @B G2
eyt =) @l @il @) | ewnpen = @ @CED @l @bl
eggm_@(ig) e(2) @(5339 e | 81241”4:@(”1”234)@(55?1’ e(i) @)
evyion—¢ln) @l @hd) @) || v = @0 @) @) @l
e — @) @) @) Ul || e — ¢ HD @U2) @l @D
et = eln) @lnd) @) @) || e = ¢ @) ey el
o — @) @) @) @) | e — e () @) @ity
92”128“’4 @(1;11) Qf(u%) @(5352) (’f( ) || €Z"Zgw4=(’3(:11:4) @(:22:4) @(5354) (“1234)
e = @) @l @GR @) || evnprn = @D @) @l @Y
e = @) @) @) ) | e — ey @Gl @) B
ey = ¢ gl @) @l | ey = el @Gl @l @)
22”19)2“’4_@(?1) e(u234)€(v32) @(U“ I e}f%Sw“:@(;ﬁQ @(:22:3) @(2?34) (“1234)
e =eln) @B () @l | e = el el @l Y
22%4104_@(” D el @) et | QZESMZQE(:;?) e(l2) @) @(12)
22”551”4—@(”12) 6(2523) (32 oY) I

We end with bases for the first cells of the structures @ Flez,(€) and
@ Flex,.(O) for an approximate flexion unit & verifying the same tripartite
equation (3.22) as Qa, and an approximate flexion unit O verifying the same
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tripartite equation (3.23) as Q...

w1
e0;

.wWq
.wyq

w1.. W4
€0

05~
ey
ey,
ey
e0q)
e
€05y~
ey
e
e
005"

Wy

wy

R

Wy

W4

w4

R

Here, 0 denotes the discrete dirac multiplied
by c. In other words: d* := ¢ d(t).

u
s

_ et

_ el et

_ et gl

— D’Ul D'UQ

L) ) g
e (129) (1)

el am g

_ e g

_ e an g

U g g

— el @ld) @)
S G 5 gl

_ el g g

_ el gl g

_ e gt gu

_ e ) o

_ el g2 g

_ e g2 qu

_ ) gl gu

— Qf(ugz) 6(533:4 oYt

_ e gt gu

= 6(%324) Qf(:llA) QY24

e g2 o

e g o

e () S

_ ) ) S

_ e GO g

— avl 'O’UZ 0U3
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00yt = = ol
oawl’w2 = 9(5112)
oouz — o)

ooy = lory)
0'025;; ws _ ("129)
oo = )
003 = )
ooyt = s
00y = o)
00y = oot
oa§v4 i _ (129
oot — o)
ovjy- = o)
0ot = 9l
ooyt = Oty
00} " = i)
005 " = )
ooyt = Olois)
ool = Ol
ooyt = 9oy
005, " = Ol
005 " = i)
ooyt = 9lisy)
Ubwl"w4 — 9(51112)
ool = i)
oot vt = 905
0041t = @

o)

(¢}



10.6 Table 2: the universal bimould e¢ss®.

e55Y! = -1 ¢l
eﬁﬁwl,wg — _f_% 6(;;12) 6(12122)
egﬁwl,w2,w3 — _ﬁ 6(1;112) (uvl;) QE(Z::;)
essrrmusin = 1 gli) @) () ¢
1 G(Zi) @(1,1;23) @(532‘1) QE(
240
_ 1 @(1:}12) @(;;21) 6(1:;?4) e(
240 u u uw 2
L gt gl gy gl
% @(%112) @(UZ?I) Qf(:g) Qf(
e55 W1 W2,W3,Wa,Ws ﬁ 03(5112)@(1;122) @(%4 @(
L gl @) gl g
+ﬁ @(&12) @(%53) Qf(”32 Qf(
1 elh) @(2) @)
T €< ii2)€<”21§3>€( . G(
—{—mevm ¢ v va32 Ei

u34 )

%)

u345 )

)

(G
¢
¢
(G
(G

u3zq

v4:5 )
“40
ug )
)

u1234 )

(%
3
("
(%
(o

For r = 6 or larger, the number of summands increases dramatically. How-
ever, one gets markedly simpler expressions when expanding ess® in the bases

{mep, o b ned oo Aver
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es3ot =

+o
eszwl,wz —
+50(1+20)
——0(1 o)

w1, w2, w3
6530.1’ 2, W3 —

+:0(1+20)(1+0)

—t0(1-0)

—35(1—0)0?
——0(1 o)
+¢0(1—0)

wwww_
e53127374

+300(1+20) (1+0) (3+20)

(1—0) (9420 —20?)
—s(1—0)0?

—%0(1 0)(9+20—20?)

+550(1—0) (9 —80 +80?)
—s(1—0)(1+20)0*

—l—% 0% (1—0)?

—s(1—0)0?

+5(1—0)0?

—0(1=0)(9+20—20?%)
+550(1—0) (9 —80 +80?)
+502 (1—0)?
+550(1—0) (9 —80 +80?)

—550(1=0) (9+20 —20?)

“‘1234 )
u1234 )
u1234)
u1234 )
u1234 )
“‘1234 )
“‘1234 )
u1234 )
u1234)
u1234 )
“1234 )
u1234 )

v1

u1234
)

u1234 )

X X X X X X X X X X X X X X
LOEECEEAALE0ES
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(on23)
(on23)
(22)
(223)
St
(vas
QE( 11)L1123
(ot
G,
)
(
(
(
(

)
)
)
@lon)

e
i
e
)

10.7 Table 3: the universal bimould esj;.

gl

eliz)
el
etz

u3

e( v3:2 )

e(i2)

v2:3

e(hi2)

v1:3

eliL)

v1:2
¢loas)
(523)
@(;;12)
6(1];21)
@(34342)
@(:fg"‘é)
(o23)
eloay)
@(1:223)
(p24)
(124)



10.8 Table 4: the bitrigonometric bimould taal®/tiil®.

For simplicity, we drop the ¢ in Qaa. and Qii..

Qaalt)

taal*t = —%

taal“t"? =

+12 Qaa )Qaa v
Qaa oy Qaa Coriy)
+? c? o 6w
taalwlyw%wis —
24 Qaa vz Qaa ) Qaa vs)
48 c Qaa v) §o2§vs
c Qaa vy) gur gus
24 c? Qaa v) gor §va

taglW W2 ws,ws

— 515 Qaa(”H Qaa v2is Qaa vas Qaa v4
+2}10 Qaa( )Qaa(vzs)Qaa v4:3 Qaa v3
+ﬁ Qaa( )Qaa( )Qaa(zg)Qaa v4
+m Qaa( V12 )Qaa( )Qaa(v2?4)Qaa V4

(L) (552)

720
-I—m c? Qaa v Qaa *) gvs gva
288 c? Qaa o Qaa vs 5”2 o
+m c? Qaa I Qaa va) oz §vs
480 c? Qaa v Qaa v 5“1 o
+T400 Qaau;&) Qaau:4 dur s

+288 ? Qaa w3) Qaalvt) §u1 §v2

1234) ( u1 ) o o
480 c Qaa v9 Qaa V1.9 6 2:4 5 2:3

(“1234 ug
288 C Qaa v1 ) Qaa(le) 6”1:4 5”1:3
+- 2 Qaa () Qaa(”?l) OV 12
1440

(“1234) (") cpia cor.
480 C Qaa vy Qaa vg:1/ HV1:3 HU1:2

e b 5 e g g
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7J'1234 )

u1234 )

u1234 )

71‘1234 )
v3

| tiil"* = -1 Qu( )

| tiileres =
I+ Qi) Qii( )
| +12 Qi ) Qi
|| 5“1 Hu2

Hmwwwwz

| — 24 Qu v 2) Qll Qu vs)
| 240 Qu via) §uaz §us
|+ 2 Qiil e g guzs
|+ 2Qiit) g gve

| tiilwl’w2’w3’w4 =

”123 (“1234)

|| _720 Qll U12 Qll v2: B)Qll v3.4 Q vy
~ i Qi1 Qi Qi Qi
240 o
(’Ul Qll 1;21)Q11 vgea Qll 5
u U
I +180 Q“( V12 Qll(”i’li Qll %3 Qn 4)
H ""120 Qll( Qll v2: 3)Q11 v3 Qll
H _720 Qll(v2l Qll 1/1 )Qll v3)Q11
|| 480 Qll ”l Qu v4 6u2 5u3
|| _480 Qll ”3 Qu v4 511,1 5u2
I _288 c? Q” ”23) Qll v 6“1 yuzs
|| +360 C Qll “54 Qll ’v4 5u1 Juz
I +1440 c? Qll " Qu vy) guz gus
H _288 C Qll ”1 Qu v34 511,2 Jusa
[ 1440 c? Qll " Qll “32) Su2s §u4
I +480 c* QH ki )Qll va:1 (Sus Jua
( uy ) ( u3) u .
I +1440 c? Qiit vz’ Qi vaa’ Juaz fusa
” +288 c? QH Ulil? Qll :2123 Hu123 Jua
|| - C Ql] v, 3) Qll v34 51,61 6u234
|| _— C4 JUL Huz jus Jua
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10.9 Complement 5: The separative algebras Inter(Qi.)
and Exter(Qi,.).

Introduction.

The subalgebra Ezter(Qi.) of Flex(Qi.) is the trigonometric equivalent of the
polar subalgebra ARI_,;~ of Flex(Pi) which itself is but the specialisation,
for & = Pi, of the subalgebra ARI _.~ of Flex(€) which was investigated in
§3.6. Both Exter(Qi.) and ARI_,;~ consist of u-constant, v-dependent, al-
ternal bimoulds, and both are indispensable to an in-depth understanding of
the fundamental bialternals pil® and #il} since they house their ari-logarithms
logari.pil® and logari.til?.

However, due to Pi® being an ezact flexion unit, the algebra ARI ;- has
a very simple structure: it is spanned by the bimoulds pi? (1 < r), which
self-reproduce under the ari-bracket: ari(piy, , piy,) = (r{—r2)pif 4,

Its trigonometric counterpart Ezter(Qi.), on the other hand, is vaster
and much more complex: it does indeed contain a series of bimoulds g
defined in the same way as the piy or the vel of (3.61), but these ¢i? no
longer self-reproduce under the ari-bracket: they do so only modulo ¢?.

Nonetheless, the structure of Exter(Qi.) is highly interesting, and can
be exhaustively described by decomposing Ezter(Qi.) into a direct sum of
subspaces g".Inter(Qi.) (0 < n) which are all derived from a subalgebra
Inter(Qi.) C Exter(Qi.) consisting of all alternals in Flex(Qi.) that depend
only on the differences v; —v;.!*? The algebra Inter(Qi.) and its elements
shall be called internal, whereas elements of Exter(Qi,) — Inter(Qi.) shall be
called ezternal. The internal algebra is quite elementary: on it, most flexion
operations reduce to non-inflected operations. Thus, the ari-bracket of two
internals coincides (up to a sign change) with their [u-bracket.

The external and internal algebras are also called separative, since under
the action of the operator separ, which is to ARI what the operator gepar of
63.5. was to GARL

separ.M® := ant.swap.M® -+ swap.M* (10.33)
gepar.M*® := mu(anti.swap.M*®, swap.M*) (10.34)

their bimoulds experience a separation of their variables'*® and assume the
elementary form:

{M* € Exter(Qi.)} = {(separ.M)“*"" € C[c*, Qc(w1), - - ., Qc(u,)]}

1424n the short notation, of course. In the long notation (with the additional variable vy),

this is automatic and implies no constraint at all.
143due to the swap which is implicit in the definition of separ and gepar, the new variables
are no longer u;’s but v;’s.
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Remark: strictly speaking, elements of Flez((Qi.) can involve only even
powers of ¢, but it is convenient to enlarge Exter(Qi.) and Inter(Qi.) with odd
powers of ¢, so as to make room for the bimoulds ¢in; and the operators b,
(defined infra). Ultimately, however, we shall end up with structure formulas
where these ¢in; and b, appear only in pairs, thus ensuring that there is no
violation of c-parity.

The external ¢i; and the internal gin;.
They are the first ingredients of the ‘separative’ structure. These alternal
bimoulds of BIMU, are defined by the induction:

G = QI = Qulon) = i | air = art(ai)al V(e > 2)
qin}* = ¢ | qin? := ari(qin},qi’_;)  V(r >2)

The auxiliary mould har®.
Our second ingredient is a scalar mould whose only non-vanishing compo-
nents have odd length. Here again, the definition is by induction:

har™t=" .= ( Vr even > (10.35)
1
har™ = — (10.36)
m
1
har™ " = T Z har™-"=Thar "+ Vr odd > 310.37)
1<i<r
Thus:
ni,na,n, 1
har"t"»m = ————— (10.38)
n1M3ni23
1 1 1
har™ memanans (——+-—) (10.39)
N1M3N5N12345 \1123  T345

The operators g, b,.
These linear operators of BIMU, into BIMU,.,, are our third ingredient. The
first are mere powers of a single operator g defined by:

g: A* — B° = arit(A°®) qi} = arit(A°*) Qif (10.40)

which, since Qi> € BIMU; , may be rewritten as:
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The operators b, on the other hand, must be defined singly:

1<s 1<n;
ni+..ng=n

Due to the imparity of har®, the b,, too are strictly odd in c.

The operators of & and ).
If we set:

G=id+ > g" ; H:=+)> b, (10.43)

1<n 1<n
the operators of & and $ so defined verify the identities:
®mu(A®, B*) = mu(® A*,&B*%)+&mu(HA*, HB°%) (10.44)
Hmu(A®, B*) = mu(H A% B*)+mu(A®, HB%) + Hmu(H A%, $H BYL0.45)

and of course analogous identities with [u in place of mu. The only restriction
is that in (10.44) the inputs A®, B®* must be internal.

If we now ‘iterate’ these identites so as to rid their right-hand sides of
all terms &.muf(...,...) and $H.mu(...,...), we find that & and $ verify the
co-products:

& - BR6+) 69 Q65 (10.46)
1<s
H - HR1+10H9+ > e +5 @9 (1047)
1<s

Again, the coproducts (10.44),(10.46) for $ hold on the full algebra of bi-
moulds, whereas the coproducts (10.45),(10.47) for & hold only on the alge-
bra of internals.

The rectified operators &, and $,.
As the above coproducts show, $ is an ‘approximate’ derivation and & an
‘approximate’ automorphism. However, if we set:

9, = arctan()) = H — %5‘33 + %565 . (10.48)
G, = Gid+H) 2 = 6— %@552 - 2654 . (10.49)
= Bcos(H,) = & — %@yﬁ + i%;‘ o (10.50)
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we get an operator $), that is an exact derivation and an operator &, that
is an exact automorphism.

The chain Inter(Qi.) C Exter(Qi.) C Flex(Qi.).
The space Inter((Qi.) is separative, and so is the space Ezter(Qi.) defined as
the (direct) sum of all the g-translates of Inter(Qi,).

Exter(Qi?) := @g”.lnter(Qi;) (10.51)

0<n

In fact, both spaces are stable under the ari-bracket, and we shall now give
a complete description of their structure with the help of our two series of
operators g" and b,,.

Full structure of the arialgebra Inter((Qi.).
The space Inter(Qi?) is obviously stable under the lu-bracket, and also under
the ari-bracket, due to the elementary identities:

ari(A*, B*) = —lu(A*, B*) VA*, B® € Inter(Qi.)  (10.52)
arit(A®).B* = +lu(A*, B*) VA®*, B* € Inter(Qi.)  (10.53)

Full structure of the ari-algebra Ezter((Qi.).

The space Exter(Qi.), though not closed under the lu-bracket, is stable under
the ari-bracket and the arit-operation. Its full structure is given by the three
following identities, where A®, B® stand for arbitrary elements of Inter(Qi.):

ari(g’A®,g?B*) = —g?arit(g’A®)B® + g? arit(g?B*)A*
+ gPt?1u(A*, B*)
_ Z ghtara lu(h,, A®, by, B*) (10.54)

1<p1<p
1<q1<¢q

arit(g’ A®) g?B* +g? arit(g’ A*) B*

_ Z 1u(gp+q—q1 A* g B*)
0<q1<g—1
— > gt lu(h,, A%, by, B®) (10.55)

1<q;<qg-1
p+1<p1 <p+q—q;

arit(gP A®) tin) = b, A° (10.56)

Since the above identities are linear in each internal argument A® or B® and
since any external bimould M*® uniquely decomposes into a sum g”.M(‘n)
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of g-tanslates of internal Mg, one readily sees that the above identities do

indeed encapsulate the whole structure of Exter(Qi.), provided one adds to
Inter(Qi.) a symbolic bimould (0* € BIMUj subject to the following rules:*44

qiv = +g"0O° (10.57)
qin;, = —h,0O° (10.58)
lu(A*,0°%) = —r(s) A® (10.59)
ari(A®,0°%) = 4r(e) A® (10.60)
arit(A*)O°* = —r(e) A° (10.61)
arit((0%) A® = +r(e) A® (10.62)
and of course
lu(d°,0°) = ari(°,0°) = arit(O0°*) O° = 0° (10.63)

10.10 Complement 6: Multizeta cleansing.

Main statement.
The present section is devoted to proving the following:
Py : (Unit cleansing)
Every uncoloured multizeta ((s1,...,S,) can be expressed as a finite sum,
with rational coefficients, of unit-free multizetas.'*> The result extends to all
coloured multizetas, but it is less relevant there.}*°

We shall provide an effective algorithm for achieving the unit-cleansing.
Along the way, we shall also come across some really fine combinatorics
about bialternals, and construct a new infinitary subalgebra of ARI larger

than ALAL.

Some heuristics.
As is natural with heuristics, we proceed backwards:

Step 4: restriction of the problem to bialternals.
Since scalar irreducibles accompany homogeneous bialternals, it will be both
necessary and sufficient to express the latter without recourse to unit weights.

1440One should beware of applying to [J® any other rules than these, and never forget
than [J°® is just a convenient symbol rather than a true bimould. Indeed, the only bona
fide bimould of BIMUj is (up to a scalar factor) the multiplication unit 1® with 19 .=1.

145i e. of multizetas ((s},...,s]. ) with partial weights s} > 2.

146for two reasons: first, because the removal of the unit-weights necessitates a remixing
of the colours; and second, because one may on the contrary play on the colours to express

everything in terms of multizetas with nothing but unit-weights!
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Step 3: the need for “reconstitution identities”.

Since in the v;-encoding, unit weights correspond to monomials not divisible
by vy...v,, the challenge it to reconstitute any homogeneous bialternal from
its “essential part”, i.e. the part that is divisible by v;...v,.

Step 2: the need for “redistribution identities”.

To do this, it is more or less clear beforehand that we shall have to find
a means of expressing any homogeneous bialternal M™ with one or several
vanishing v;’s as a superpositions of M*", with new v}’s formed from the
sole non-vanishing v;’s.

Step 1: the need for “pairing identities”.

To be able to extend the procedure to coloured multizetas (and also to respect
the spirit of dimorphy), we must find a way of restating the redistribution
identities for arbitrary bialternals that effectively depend on the u;’s as well
as on the v;’s.

Step 1: The pairing identities.
An endoflexion (of length r) is any self-mapping of BIMU, of the form

* * u u*
flex. M = MWL <wi = (vz) , Wy = ( i)> (10.64)
( i
with
circular (m1<k<n; )ZH_I
—_——

U= Uy e F Uy, = Z U

v = Uy, — Uy, and  p,€PT,q € P

Ui v; = U;V;

1<e<r 1<i<r

Here, all indices m;, n;, p;,q; are in the set {0,1,...,r} ~ Z,; and P =
(P*,P7) is any given (strict) partition of {0,1,...,7}. We say that flex
is P-compatible. Whereas flex determines P if we impose (as we shall do)
that 0 be in P~ there are usually many endoflexions flex compatible with a
given partition P.

P, : (Ezistence and unicity of the pairing identities.)

For any strict partition P of {0,1,...,r} into P* (“white indices”) and P~
( “black indices”) there exists a self-mapping flexp of BIMU, of the form:

flexp = > €, flex, (e, € {0,1,—1}) (10.65)

flexy, P-compatible

whose restriction to the bialternals is the identity:

flexp. M® = M*  VM*® e ARI2/2 (10.66)
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Furthermore, flexp is unique modulo the alternality (not bialternality!) rela-
tions on ARIZV/2

Let us now return to the graph pairs g = (ga, g¢) defined in §3.1 (see
also the examples and pictures infra). We say that such a pair g is P-
compatible if all edges of g¢ connect a “white” vertex S,, with a “black”
vertex S,,. Now, both g¢ and ga have r edges each, and every edge of gt
intersects exactly one edge of ga at exactly one point x, and there clearly
exists a (toplogically) unique graph ga¢ with those r intersection points x as
vertices, and with edges that intersect neither the unit circle nor the edges of
ga nor those of gi. To each vertex x, of gat there corresponds one unique
coherent orientation Og,, of the edges of gat or, what amounts to the same,
one coherent arborescent order, also noted Oy, , on the vertices z of gat,
with z, as the lowest vertex.

Next, for any g that is P-compatible and for any vertex x, of the corre-
sponding gazt, let «v be a total order on the vertices of gat that is compatible
with the arborescent order Og4,,. We write v € Og4,, to denote this com-
patibility and associate to 4 the following endoflexion:

B, Ao = A (o — (") iz = (7)) (106)

Vi ’ vf (Y
with
circular (m1<k<ni)z,
ui(y) = Um, Uy, = Z Ug,
vi(Y) = v, — v, and pi € Pt qi € P
Yowviy) = Y w
1<i<r 1<i<r

and with the following notations:
— x;(7y) is the i-th vertex of gat in the total order ~;
— ga,; (=) is the unique edge of ga passing through x;(7);
— gi;(7y) is the unique edge of gt passing through x;(~);
— u;(7y) is the sum of all uy with Si, on the ‘correct’ side of ga,(), i.e. on
the side that contains the “white” vertex Si,, of gi,(7y);
— vf(7) is the difference v,, — v,, with Si,, and Si,, being the “white” and
“black” vertices joined by gi;(7y).
Next, we set:

flexg,. = Z e flex, with (10.68)
7609,1*
€y = H e(gai,) € {1,—1} (10.69)
gai, €Edge(gai)
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with a product in (10.69) extending to all r—1 edges gai, of gai, and with
factor signs €(gai,) defined as follows. Each edge gai, of gai touches two
edges g1, and g¢i,. of g, which in turn meet at a vertex Sig« of gt. What
counts is the colour of that vertex Si-, and the position of the triangle
{gaiy, giy, giyn} respective to the oriented vertex gai x- Concretely, we set:
(i) e(gaiy) := +1 if gai, sees a white Si- to its right or a black Sig- to its
left.

(ii) €(gai,) := —1 if gai, sees a white Siy to its left or a black Sig- to its
right.

It is readily seen that the operator flex ., , when applied to alternal bi-
moulds, is independent of the choice of the base vertex: indeed, replacing x,
by a neighbouring vertex x,, simultaneously changes the signs of €(v) and
flex,.M?®, for any alternal M*®. We shall therefore drop z, and write simply
flex, whenever the operator flex, ., is made to act on alternals (or a fortiori
on bialternals).

Remark: each one of the graphs ga or gt completely determines the other
as well as gai. It also determines the only partition P of {0,1,...,r} with
which it is compatible, since 0 is automatically black, and so Siy is declared
black too, and the colouration then extends to all 5% by following gz. On
the other hand, the number of graph pairs g = {ga, gi} compatible with a
given partition P is on average equal to % and therefore tends to be
very large.

P, : (Explicit formula for the pairing identities.)
For each partition P of {0,1,...,r}, the pairing operator flexp of (10.65) is
explicitely given by:

flexp := Z flexg with €4 € {1,—1} (10.70)

g P-compatible

with a sum extending to all graph pairs g = (ga, gt) compatible with the
white-black partition P.

P; : (Unitary criterion for bialternality.)
A bimould M* € BIMU, s bialternal if and only if it verifies all pairing
identities flexp.M® = M?®, for all partitions P =P LUP~ of {0,1,...,r}.

This is the only known characterisation of bialternality that is unitary
— by which we mean that, unlike all the others, it does not split into two
distinct sets of conditions, one bearing on M*® and another on swap.M®.

Step 2: The redistribution identities.
P, : (Redistribution identity on ARI22 and swap.ALAL.)
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If we take a bialternal M* € ARIZ2 and a partition P = P U P~ of
{0,1,...,r} and then turn all w;’s into 0 and also turn all black v;’s (i.e. all
v; s with black indices) into 0 but leave all white v;’s unchanged, the pairing
identity of Proposition P becomes a redistribution identity:

{flexp.M* = M*} = {redisp.M* = M*} (10.71)

so-called because it has the effect of ‘spreading’ or ‘redistributing’ the total
multiplicity po of the vanishing black v; 's**” among the multiplicities p; of the
remaining white v;’s, with po—1 = > (u;—1). The redistribution identities
apply in particular to all bimoulds of swap.ALAL, since they are bialternal,

u-constant and polynomial in v.

Ps : (The infinitary redistribution algebra.)

The set of all “redistributive” bimoulds, i.e, of all bimoulds that are

— u-constant

— alternal

— and verify all redistribution identities

constitutes a subalgebra of ARI that is

— much larger than that of the w-constant bialternals

— not subject to neg-invariance (unlike the bialternals)

— and yet defined by an infinitary group of constraints (like the bialternals).
Although the redistribution identities have a more elementary appearance

than the pairing identities, they are in fact

— theoretically derivative,

— distinctly weaker (since they do not imply bialternality),

—and less transparent (since the terms on the right-hand side are composite

and preceded by general integers rather than by =+ signs.)

148

Step 3: The reconstitution identities.
For any bimould M*, we denote by essen.M*® the “essential part” of M*, i.e.
the “part” of M*® that is “divisible” by each v;. In precise terms:

(essen. M)\t o) = 3 (H(_nlw) M an)(10.72)

ce{0,1)  1<i<r

Likewise, to each partition P that makes 0 black, we associate the “slice” of

147in the augmented notation, i.e. considering {vo,vy,...,v,}, with vy automatically

regarded as black. When vy is the only black variable, i.e. when P~ = {0} and P =
{1,...,7}, then py = 1 and both flexp and redisp reduce to the identity, so that in this
case the pairing and redistribution identities become trivial.

148in the sense that they often conflate several contributions, which were clearly distinct

in the pairing identities.
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M?* that is “divisible” by all white v;’s and constant in all black v;’s:'4?

0eP~
UY 5 ene sy ur)

(sticep. )i o) = N (H <—1)1+6i) Mk ) (10.73)
{%6{0,1} if iePt iep+
;=0 if i€P—

M?* is clearly the sum of all its slices:
M*= Y slicep.M" (10.74)
P with 0P~

and if M*® happens to be bialternal, each slice may be separately recovered
from essen.M*® by means of the redistribution identites, since:

slicep. M*® = redisp . essen. M® (10.75)

as we can see by applying the P-related redistribution identity separately to
each summand on the right-hand side of (10.72). Therefore:

P; : (Reconstitution identity on ARI®®.)
For each bialternal bimould M*® (purely of length r), the identity holds:

M* = induc.essen.M*® (10.76)
with the linear operator
induc := Z redisp (10.77)
P with 0P~

This applies in particular to all elements of swap.ALAL, i.e. to all u-
constant, v-polynomial, and bialternal bimoulds. For such bialternals, the
possiblity of recovering M*® from essen.M® was by no means a foregone con-
clusion, since for a not too large ratio d/r := degree/length’" the essential
part essen.M® carries but a minute fraction of the total data of M?*.

P; : (Involutive nature of induc.)
While essen is (trivially) a projector, induc becomes (non-trivially) an invo-
lution when restricted to the space of w-constant bialternals.

Step 4: The unit-cleansing algorithm.
The algorithm applies to all multizetas, coloured or uncoloured, but let us
focus on the uncoloured case for simplicity.

M9Tf P+ = {1,...,r} and P~ := {0}, the slice slicep.M*® coincides with essen.M®.
150gay, for 2 < d/r < 3. (Recall that d/r can in no case be < 2).
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Fix any basis {loma?; s = 3,5,7...} of ALIL. That automatically fixes a
system of irreducibles {irrg? ,irrg® } and provides a way of expressing all
multizetas in terms of these.

Now, reason inductively. Assume that all irreducibles of length r < rg
have already been expressed in terms of unit-free multizetas ((sy, ..., s;).
The machinery of §5 makes it possible to exactly determine the contribu-
tion that these “earlier” irreducibles (including 7?) are going to make to
Zig® = swap.Zag®, at all higher lengths, including at length ro. Next, sub-
tract from leng,,.Zig® (i.e. from the length-ry component of Zig®) all these
contributions from the “earlier” irreducibles. What is left is a superposition
M? of independent bialternals M3 of length rq:

M® = irro; M} with M € swap.ALAL, and irrg; € C (10.78)

with scalar coefficients rrg; that are irreducibles of length 7. But, as we just
saw, M*, and therefore all M} and all irr¢;, can be recovered from essen.M*,
and as a consequence expressed in terms of unit-free multizetas ((sy, ..., S;).
By induction, this applies to all irreducibles subsumed in the moulds urrg? ,
irrg?, . and of course also to the exceptional irreducible 7> = 6 ((2).

But since every multizeta ((s1, ..., s,) can be (algorithmically) expressed
in terms of irreducibles, this means that every multizeta can be expressed
as a polynomial of unit-free multizetas ((sy, ..., s,), with rational coefficients.
After symmetrel linearisation, this polynomial becomes a linear combination
of multizetas, still unit-free and still with rational coefficients. [.

Example of pairing identities.
For r=5, P ={1,2,4}, P~ = {0, 3,5}, the pairing identity M* = flex,.M?*
takes the form:

(“11 U9, U3, Ug, u5,) .

/\4 v1, V2, V3, V4, V5,’ = (* k *)
('“5»«()7 U5 W1xd> U4%3s ""2*1) (US*O’ ULxBr Ulxd> U2x]1> u4*3) (“1*0’ UBx1> Udxb5> U2x4> u4*3)

—_ \/i v1:0» V1:5, V1:3» Y4:3, V2:3 —_ v1:0» V1:5, Y1:3» Y2:3> V4:3 —[\/2 v1:0, V2:0> Y2:5, Y2:3, V4:3
(u5*0, ULx5> Uqxl> U2x4> u4*3) (“4*57 U5%3> U3x1> U1x0> u2*3) (u4*5’ U5%3> W3x1> U2x3» ul*O)

—/\/i v1:0> V1:5, V2:5, V2:3, V4:3 —(\/'i V4:5, V4:0» v2:00 Y1:0> v2:3 —(‘/1 V4:5, V4:0» v2:0, Y2:3> V1:0
(“2*17 UL %3> U3x0> U5%3» “4*5) (“1*07 UDx1y U5x2> U4x5» “2*3) (“1*07 U2x]> U5x2s U2x%3> “4*5)

+M v2:3> V1:3» Y4:0> Y1:0> V4:5 —{‘/j V1:0> Y2:00 Y4:0> Y4:55 V4:3 —(‘/j V1:0> Y2:00 Y4:0> Y4:3> V4:5
(“‘2*1» Ulx3> Usx1s U1x0> 74'4*5) (“2*17 ULx3> Ubx1s U4x5> “‘1*0) (“2*17 ULx0> U0*3> U5x0> “4*5)

+ M vaizs vaizs vaos vio vas /N vaiss vazs vaos vass vio ) N vaiss v, vaiss vaos vas
(ul*O’ UBx1> U2x55 U553 ""4*5) (“4*57 U5%3> U1x55 U5x0> ""2*1) (“4*57 U5%3> U1x5s U2x1> u5*0)

— V1:0, Y2:05 V2:3> Y4:3> V4:5 +M V4:5, V4:35 V1:3> Y1:0> V2:3 —{—(\/_i V4:5, V4:35 V1:3> Y2:3> V1:0
(u5*07 ULx5r Udxlr U1x3» u2*1) (u1*0, UBxl> U2x5> Udx2» u2*3) (“2*1! U1x3) U355 U5x0> “4*3)

— V1:0» V1:5, Y4:5, Y4:3, V2:3 — ‘/i v1:0> V2:0> Y2:5, Y4:5, V4:3 —A/i v2:3, V1:3> Y1:5:> V1:0>0 Y4:5
(u2>t<1v ULx3> U3x5> U4%3» u5*0) (US*O’ ULx5) U2x1)> Uqx2» u2*3) (“1*0’ U5x1) U3*5> U4%3» u2*3)

—_ v2:3> V1:3>» V1:5, Y4:5, V1:0 —[\/i V1:0» V1:5, Y2:5, VY4:5, V4:3 —f—[\/i v1:0> V2:0> Y2:55 Y4:5, V2:3
(U1%0> USx1s U3k, U2x3s Udx3 ) (U505 Ulx5s U3x1s Udx3» U243 ) (U5%0> Ulx5> UBx1, U2x3s Udx3 )

+M v1:0> Y2:05 V2:5, V2:3, V4:5 —|—Z\4 v1:0> V1:5: Y2;5, Y4:5, V2:3 —|—Z\4 V1:05 Y1:5s V2:5, Y2:3> V4:5

with the usual convention wy : = —(uy + - +u,), vg := 0 and the convenient
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abbreviations:

Uy 1= SU; — Su;  with  sup = ug + Uy + ... + Uy = —Upp — Upg... — Uy

Ui:j = Ui—’Uj

To arrive at the pairing identity (x % %), we form all graph triples g =
{ga, gi,gai} compatible with the partition P. There exist exactly 16 such
triples. They are pictured on Figure 3, with split lines for the edges of ga,
plain lines for those of gz, and large plain lines for those of gat. Next, on
each gat, we pick a vertex z, so chosen as to minimise the number v(gat, x..)
of total orders v on gat compatible with the partial order induced by x,.
In each case, x, has to be at the extremity of the longest branch of gaz.
For eight graphs gat, this minimal number v,,;,(ga?) is 1; for the remaining
eight graphs, v, (gat) is 2. Altogether, this yields the 24 elementary flexions
flex, that contribute to the pairing identity (x * *).

Lastly, to show how to calculate each flex,, we focus on the first graph
triple (the one in top-left position on Figure 3) and reproduce it, enlarged,
in Figure 4. Applying the rules just after (10.67), we see that the flexion
indices w; = (Z) corresponding to the five vertices of gai are given by:

UT = U1,2,34,5 H Uf = U1 =0 = U1
uy; = g, = —ugzas || v3 = vi—wvs
U = Uss | v = vo— s
Uy = Ugs012 = —U3 | vi = vo—u3
ur = uy | vi = vy—vs

with the expected identity > | ,-uiv; = Y . ..su;v;. There are three
possible roots, wi, wj, ws, with three corresponding flexions:

W1, W2, W3, W4 ,W, wi Wy wi wi wk wiwh wE wk wk
(ﬂexg’wi‘.M) 1,W2,Ws,Wa,W5  — —|—M 1>%2,%3,Wg,%Ws +M 1 Wo, W3, Wg , Wy
- * * * * * * * * * * * * * * *
(ﬂexg w*‘M)w1,w2,w3,w4,w5 — MW W3ws, W wE ) WELWE,WE WEWT ) fW] W3, WE W W]
YWy

(ﬂeXg w*'M)”LU1,’LU2,w3,’LU4,w5 = —ng’wg’w;wf’wz — M’LU;,’LU;,’LU;,’LUZ,’LUI J— ngzwgsz;wg,’wf
yWg
which coincide modulo the alternality relations:

flexg s M*® = flexg r . M* = flexg 2. M*® VYM?® alternal

One might also take flezy,,.M* and ﬂexngg.M *, but here the number of
summands would be much larger: 8 and 12 respectively.

Example of redistribution identity.
For r=5, PT = {1,2,4} and P~ = {0,3,5}, we have a black multiplicity
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Figure 3: The 14 graph triads g = {ga, gi,gai} compatible with the parti-
tion P of {0,1,2,3,4,5} defined by P* = {1,2,4}, P~ = {0, 3,5}.

o = 3, and the redistribution identity M* = redisp.M® follows from the
preceding pairing identity M*® = flex,.M* by setting all black v;’s equal to
zero in (% % x). For simplicity, we write the redistribution identity only for
u-constant bilaternals, and since for them the wu;’s don’t matter, we don’t
mention them.

MV1:2,0,04,0 = __ |\ fv1,01,01,04,02 — MY1V1LUL,02,00 | [U4,04,02,01502 ]| [V4,04,02,02,01
L MV201,01,04,00 9 | [ULU2,04,04,04 | | [V2,04,04,01,04 | ]| [V2,V4,V4,V4,V1
L M[V201,04,04,04 9 | [ULU2,02,04,04 | | [V4,04,01,01,02 | | [V4,V4,V1,02,01

_MU17U17U47U47U2 _MU27U17U17'U17U4 — /\j v2,V1,V1,V4,V1 _ /\4 V1,V1,V2,04,V4

_'_MUI yU2,V2,V4,V2 _'_le yU1,V2,V4,V2

Examples of reconstitution identities.
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5i3 8i0=Si6

Sa3 5

Figure 4: Flexion associated flez, with a graph triad g = {ga, gi, gai}.
Up to length 2, the operator induc is trivial, but the number N, of terms
involved increases sharply thereafter. Thus:!%!

N1 = ]_,NQ = 2, N3 ~ 7, N4 ~ 38,N5 ~ 273,N6 ~ 1837, N7 ~ 15199, etc. ..

Here are the formulas up to length 4, for the case of u-constant bimoulds
(and after removal of the w;’s):

(induc.M)** := M* ; (induc.M)*»"? ;= M'"2

(induC.M)vl’vz’UB s L V[UTV2U3 L \fULULV2 4 ) TULU2,02 ) TULUS,UL
MBS g | fU2:02:08 | | [U2,U3503

151Recall that the expression of induc is unique only modulo the alternality relations.
Hence the sign ~ to caution that there is at least one expression of induc with the number
N, of summands mentioned. In any case, the minimal number N, cannot be significantly
less.
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(induc.M)vl’vz’v3’v4 - +MU1,U2,1}3,U4 + DN V1,V1,V2,U3 + M V1V2,V2:03 + MV1:V2,V3,V3
+MU17U47U17U2 + DN VL5V2,04,02 + V1504502504 +M”47U17U4»”2
+MU4,U1,U27”U4 + M”U3,'U4,'UL’U4 + M’U37”U1,'U3,U4 + MU17U3,U1,U4
_|_Mv3,v1,v4,v1 +MU1,v3,v4,vl +Mvz,v3,v4,v4 +Mvz,v3,v3,v4
_|_MU27U27’U37U4 +MU17v1,v1,vz +le7v1,v3,v1 _I_M'UI,'U47'U17'U1
_|_MU1,112,U27’U2 + M”U2,U2,U2,U3 + MU27”U2,U4,U2 + MU37’U1,U3,U3
_|_MU27v3,U3,U3 + N[ V3,V3,03,04 + N[ V4V4,01,04 +Mv4,v2,v4,v4
+MU37U47’U47”4 + N V1V1,02,02 + N V3:V3,01,01 +Mv1,v3,v1,v3
_|_MU1,U1,U47’U4 + M’U47U1,U4,U1 + MU27U2,U3,U3 + MU47’U47U2,U2
_|_Mv2,v4,v2,v4 + DN V3V3,04,04

10.11 Index of terms and notations.

Slight liberties have been taken with the alphabetical order, so as to regroup
similar objects or notions.

ALAL: §2.4, §4.7, §6, §7.4.

ASAS: §2.8.

al/al, al/al: §2.7.

as/as, as/as: §2.8.

ALIL: §3.11 §4.7.

ASIS: §3.11.

ALIIL, ASIIS: §3.11

al/il, al/il: §4.7.

as/is, as/is: §3.11.

alternal: §2.4, (2.70).

alternil: §3.4.

anti: §2.1, (2.6).

ami, amit, ani, anit, ari, arit: §2.2.
axi, axit: §2.1.

approxzimate flexion unit: §3.2 (towards the end).
bialternal: §2.7, §6, §7.
bisymmetral: §2.8, §8.1.
carma®/carmi®, corma®/cormi®, curma®/curmi®: §6.3, §6.7.
conjugate flexion units: §3.2.
dimorphy, dimorphic: §1.1, §2, §9.1.
doma®/domi®: §6.2.

ekma®/ekmi®: §6.3.

e §3.1, §3.2.
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¢*-alternal: §3.4.

¢*-symmetral: §3.4.

¢*-mantar: §3.4, (3.40).
¢*-gantar: §3.4, (3.43).

¢*-push: §3.4, (3.47), (3.48).
¢*-gush: §3.4, (3.54).

E* neg: §3.4, (3.46).

¢*-geg: §3.4, (3.53).

es®, e3*: §3.7, (3.91), (3.92).

es5s°®, es3°: §3.6, (3.73), (3.74).
expari: §2.2; (2.50).

Exter(Qi,): §10.9.

flexion: §2.1.

flexion unit: §3.2.

flexion structure: §2.

gami, gamit, gani, ganit, gari, garit: §2.2.
gantar, gantir: §2.3, (2.72), (2.73), §3.4.
gepar: §3.6, (3.66).

gegu, gegi: §3.5, (3.59).

gus: §2.4, (2.72), (2.73).

gusi, gusu: §3.4.

gush: §2.4, (2.74).

gushi, gushu: §3.4.

invmu: §2.1, (2.2).

invgami, invgani, invgari: §2.2, (2.56).
Inter(Qi,): §10.9.

lama®/lami®: §5.5.

loma®/lomi®: §5.6.

luma®/lumi®: §5.7.

9°: §3.2.

mer: §3.6.

ne’: §3.6.

mantar, mantir: §2.1, (2.7), §3.4.
minu: §2.1, (2.4).

neg: §2.1, (2.8).

negi, negu: §3.4, (3.55).

pari: §2.1, (2.5).

P: P(t):=1/t.

pac®/pic®, paj®/pij*: §3.7.
pal®/pil®, par®/pir®: §3.6 (last but one para).
perinomal: §8.4, §8.5, §8.6.
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preami, preani, preari: §2.2.

predoma: §6.5.

precarma: $6.6.

pus: §2.1, (2.10).

pusi, pusu: §3.4.

push: §2.1, (2.11), (2.12).

pushi, pushu: §3.4, (3.56), (3.57).

Q,Q.: Q(t) :=1/tan(t), Q.(t) := ¢/ tan(ct).
rer: §3.5.

sap, swap, syap: §2.2, (2.9), §3.3, (3.75), (3.76), (3.91), (3.92).
separ: §10.9.

ser: §3.6.

ssefy: §3.6.

slank, srank, sang: §4.4, §4.5.

sen: §4.1.

senk, seng: §4.3.

singulator, singuland, singulate etc: §4.
symmetral: §2.4 (2.70).

symmetril: §3.5.

symmetry types (straight): §2.4.

symmetry types (twisted): §3.5.
subsymmetries (simple or double, straight). §2.4.
subsymmetries (simple or double, twisted): §3.5.
tac® /tic®, taj®/tij*: §3.6.

tal®/til®, taal®/tiil®: §10.8.

tripartite relation: §3.2, (3.9).

wandering bialternals: §5.9, §8.1.

Wa®: §1.1.

Za®: §1.2 (after (2.13)).

Ze®: §1.1.

Zag®/7Zig*: §1.2, §8.
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