LMU WiSe 2013/14

Übungen zur mathematische und statistische Methoden für Pharmazeuten

Frau Dr. S. Carr

Blatt 2

Aufgabe 10. Wird eine Stoffmenge n einer Substanz in einem Lösungsmittel mit der Masse m gelöst, so besitzt die Lösung einen (im Vergleich zum reinen Lösungsmittel) um ΔT tieferen Schmelzpunkt. Dabei ist ΔT direkt proportional zu n (bei konstantem m) sowie indirekt proportional zu m (bei konstantem n) mit einer nur vom Lösungsmittel abhängingen Proportionalitätskonstanten E.

- a) Man drücke diesen Sachverhalt formelmäßig aus.
- b) Eine Lösung von 2,5 mol einer Substanz in 620 g Wasser besitzt einen Schmelzpunkt von -7,5°C. Man bestätige E=1,86 K kg/mol.
- c) Welche Stoffmenge an Substanz bzw. welche Masse an Wasser muß der Lösung von b) zusätzlich zugegeben werden, um den Schmelzpunkt auf -10,2°C abzusenken?

Aufgabe 11. Wird einem Stoff der Masse m die Energie E zugeführt, so erhöht sich seine Temperatur um ΔT . Dabei ist ΔT direkt proportional zu E (bei konstantem m) sowie indirekt proportional zu m (bei konstantem E).

- a) Man leite aus diesem Sachverhalt die Beziehung $E = c \cdot m \cdot \Delta T$, wobei c eine (stoffabhängige) Konstante bezeichnet.
- b) Um wieviel Prozent ändert sich der Energiebedarf, wenn bei einer Probe desselben Stoffes mit einer um 40 % größeren Masse eine um 40 % geringere Temperaturerhöhung erzielt werden soll?
- c) Es wird eine Energie von 17,5 kJ benötigt, um 250 g Wasser von 22,5°C auf 39,2° zu erwärmen. Man bestätige c=4,19 J/g/K.

Aufgabe 12.

- a) Es werden die drei Größen a, b und c betrachtet; dabei ist a direkt proportional zu b (bei festem c) und indirekt proportional zu c (bei festem b). Man drücke diesen Sachverhalt formelmäßig aus und leite daraus den Zusammenhang zwischen b und c (bei festem a) ab
- b) Die beiden Größen u und v sind indirekt proportional. Wie verändert sich v, wenn u um 25 % steigt?

c) Von den beiden Größen x und y ist bekannt, daß x direkt proportional zu y^2 ist. Wie verändert sich y wenn x um 36 % fällt?

Aufgabe 13.

- a) Für reelle Zahlen $x,y,z\neq 0$ berechne man $\frac{(x^2y^{-3}z)^{-4}/(x^{-1}y^2z^{-3})^2}{(x^{-3}yz^2)^{-3}\cdot(x^{-4}y^3z^2)^4}$.
- b) Für reelle Zahlen x, y, z > 0 berechne man $\frac{1}{(\sqrt[3]{x}\sqrt[4]{y})^5 \cdot (\sqrt{x}\sqrt[3]{y})^{-4}}$.
- c) Man bestimme mit Hilfe der Substitution $t=x^3$ die Lösungsmenge der Gleichung $x^6+7x^3-8=0$.
- d) Man bestimme mit Hilfe der Substitution $t=x^{-\frac{3}{2}}$ die Lösungsmenge der Gleichung $x^{-3}-120x^{-\frac{3}{2}}-625=0$.

Aufgabe 14.

- a) Man berechne $\log_8 64$, $\log_4 64$, $\log_2 64$, $\log_{\sqrt{2}} 64$ und $\log_{1/2} 64$.
- b) Man berechne y mit $\log_3 y = 4$ bzw. $\log_{1/3} y = 3$ bzw. $\log_{\sqrt{3}} y = -2$.
- c) Man berechne a mit $\log_a 25 = 2$ bzw. $\log_a 25 = -2$ bzw. $\log_a 25 = 6$.

Aufgabe 15. Man bestimme die Lösungsmenge der Gleichungen

- a) $\lg(x-2) + \lg(x+1) = 1$;
- b) lb(x-7) + lb(x-5) = 3;
- c) $\ln\left(\frac{x+4}{x-2}\right) \ln\left(\frac{x-3}{x+1}\right) = 2\ln 3$.

Aufgabe 16. Der Bleigehalt C_B (in $\mu g/100 \text{ m}\ell$) des menschlichen Blutes wächst mit dem mittleren Bleigehalt C_L (in $\mu g/\text{m}^3$) der Umgebungsluft in Bereich $5 < C_L < 100$ nach der Formel $C_B = 60 \lg C_L - 20$.

- a) Bei einem Patienten wird ein Bleigehalt im Blut von 76 μ g/100 m ℓ gemessen. Wie hoch ist der durchschnittliche Bleigehalt der Luft?
- b) Um wieviel Prozent senkt der Bleigehalt im Blut des Patienten, wenn der Bleigehalt der Luft halbiert wird?

Aufgabe 17.

- a) Die Strahlung einer radioaktiven Substanz nimmt pro Tag um 0,5 % ab. Um wieviel Prozent hat sich die Strahlung nach einem Jahr verringert?
- b) Eine Bakterienkultur wachse pro Stunde um p % un vermehre sich so im Laufe eines Tages auf das Vierfache. Man bestimme p.

c) Die Konzentration einer Substanz nehme im Verlauf einer Reaktion pro Minute um 2,5 % ab und falle so nach n Minuten erstmals unter 10 % des ursprünglichen Wertes. Man bestimme n.

Aufgabe 18. Zu Beginn eines Experiments liegt der Stoff A in der Konzentration $c_0 = 500 \text{g}/\ell$ vor; im Verlaufe des Experiments nimmt diese Konzentration c pro Minute um p% ab. und beträgt nach einer Stunde noch 228 g/ℓ .

- a) Man bestimme p.
- b) Welche Konzentration liegt 90 Minuten nach Versuchsbeginn vor?
- c) Nach welcher Versuchsdauer beträgt c nur noch ein Zehntel von c_0 ?