LMU WiSe 2013/14

Übungen zur mathematische und statistische Methoden für Pharmazeuten

Frau Dr. S. Carr

Blatt 13

Aufgabe 92. Sei X eine normalverteilte Zufallsgröße mit der bekannten Standardabweichung $\sigma=5$; für den unbekannten Erwartungswert μ soll die Hypothese, $H_0: \mu=24$ gegen die Alternative $H_1: \mu>24$ zum Signifikanzniveau α getestet werden. Dazu wird eine unabhängige Zufallsstichprobe vom Umfang n gezogen.

- a) Man bestimme jeweils den Annahmebereich A für H_0 mit $\alpha=0,05$ bzw. 0,01 bzw. 0,001 und n=10 bzw. 20 bzw. 40.
- b) Die gezogene Stichprobe weise einen Mittelwert von $\overline{x} = 26,75$ auf; man entscheide, in welchen der unter a) betrachteten Fälle H_0 abgelehnt wird.

Aufgabe 93. Sei X eine normalverteilte Zufallsgröße mit der bekannten Standardabweichung $\sigma=5$; für den unbekannten Erwartungswert μ soll die Hypothese, $H_0: \mu=24$ gegen die Alternative $H_1: \mu \neq 24$ zum Signifikanzniveau α getestet werden. Dazu wird eine unabhängige Zufallsstichprobe vom Umfang n gezogen.

- a) Man bestimme jeweils den Annahmebereich A für H_0 mit $\alpha=0,05$ bzw. 0,01 bzw. 0,001 und n=10 bzw. 20 bzw. 40.
- b) Die gezogene Stichprobe weise einen Mittelwert von $\overline{x} = 26,75$ auf; man entscheide, in welchen der unter a) betrachteten Fälle H_0 abgelehnt wird.

Aufgabe 94. Sei X eine normalverteilte Zufallsgröße mit der bekannten Standardabweichung $\sigma=3,5$; für den unbekannten Erwartungswert μ soll die Hypothese, $H_0: \mu=42$ gegen die Alternative $H_1: \mu \neq 42$ zum Signifikanzniveau $\alpha=0,01$ getestet werden. Dazu wird eine unabhängige Zufallsstichprobe vom Umfang n=30 erhoben, die einen Mittelwert von $\overline{x}=39,9$ aufweise. Man ermittle das Ergebnis dieses Tests und gebe die statistische Interpretation.

Aufgabe 95. Es soll die Hypothese , $H_0: \mu = \mu_0$ über den unbekannten Erwartungswert μ einer normalverteilten Zufallsgröße X mit der bekannten Standardabweichung σ gegen die Alternative $H_1: \mu \neq \mu_0$ zum Signifikanzniveau α getestet werden. Bekanntlich wird dabei der Annahmebereich

$$A = \left[\mu_0 - \tau_{\alpha/2} \frac{\sigma}{\sqrt{n}}; \mu_0 + \tau_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

so konstruiert, so dass das Risiko 1. Art genau α beträgt. Dagegen hängt das Risiko 2. Art β vom wahren Wert μ_1 des (unbekannten) Erwartungswerts μ von X ab.

a) Man beweise,

$$P(\overline{X} \in A) = \Phi\left(\frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} + \tau_{\alpha/2}\right) - \Phi\left(\frac{\mu_0 - \mu_1}{\sigma/\sqrt{n}} - \tau_{\alpha/2}\right).$$

Man nimmt an, dass \overline{X} den wahren Erwartungswert μ_1 beträgt.

- b) Folgern Sie aus Teil a), dass $\beta = \Phi\left(\frac{\mu_0 \mu_1}{\sigma/\sqrt{n}} + \tau_{\alpha/2}\right) \Phi\left(\frac{\mu_0 \mu_1}{\sigma/\sqrt{n}} \tau_{\alpha/2}\right)$.
- c) Seien nun $\mu_0 = 100$, $\sigma = 10$, n = 400. Man berechne das Risiko 2. Art β zu $\alpha = 0,05$ bzw. 0,01 bzw. 0,001 in den Fällen $\mu_1 = 101$ bzw. 102.

Aufgabe 96. Der Schadstoffgehalt in einem Flußwasser wird als normalverteilte Zufallsgröße X mit dem Erwartungswert $\mu=12,5$ und Standardabweichung $\sigma=2,5$ angenommen.

- a) Mit welcher Wahrscheinlichkeit wird bei einer Messung des Schadstoffgehalts ein Wert Zwischen 12,5 und 14,0 gemessen?
- b) Die Wahrscheinlichkeit, dass bei einer Messung der Wert g überschritten wird, soll 2.5% betragen. Man bestimme g.

Es wird nun bezweifelt, dass der Erwartungswert nach wie vor $\mu=12,5$ beträgt. Dagegen gilt die Standardabweichung $\sigma=2,5$ als unstrittig. Daher soll die Hypothese, $H_0: \mu=12,5$ gegen die Alternative $H_1: \mu>12,5$ zum Signifikanzniveau $\alpha=5\%$ durch einen geeigneten Test überprüft werden. Es wird dabei eine unabhängige Stichprobe vom Umfang n=20 erhoben, welche Mittelwert $\overline{x}=13,2$ besitzt.

- c) Man bestimme den Annahmebereichs A dieses Tests. Welche Aussage ist mit Hilfe dieses Tests möglich?
- d) Wie hoch ist das Risiko 2. Art, wenn der wahre Erwartungswert 13,5 beträgt?