Übungen zur Analysis einer Variablen für gymnasiales Lehramt

Prof. Dr. P. Pickl

Blatt 13

Aufgabe 1. Man beweise die folgenden drei Aussagen:

- i) Die Funktion cos ist im Intervall $[0,\pi]$ streng monoton fallend und bildet dieses Intervall bijektiv auf [-1,1] ab. (Die Umkehrfunktion von cos : $[0,\pi] \to [-1,1]$ heißt Arcus-Cosinus geschrieben als arccos : $[-1,1] \to [0,\pi]$.)
- ii) Die Funktion sin ist im Intervall $[-\pi/2, \pi/2]$ streng monoton wachsend und bildet dieses Intervall bijektiv auf [-1,1] ab. (Die Umkehrfunktion von sin : $[-\pi/2, \pi/2] \rightarrow [-1,1]$ heißt Arcus-Sinus geschrieben als arcsin : $[-1,1] \rightarrow [-\pi/2, \pi/2]$.)
- iii) Die Funktion tan := $\frac{\sin}{\cos}$ ist im Intervall $(-\pi/2, \pi/2)$ streng monoton wachsend und bildet dieses Intervall bijektiv auf $\mathbb R$ ab. (Die Umkehrfunktion von tan : $(\pi/2, \pi/2) \to \mathbb R$ heißt Arcus-Tangens geschrieben als arctan : $\mathbb R \to (-\pi/2, \pi/2)$.)

Aufgabe 2. Man beweise für alle $x, y \in \mathbb{R}$, für die $\tan(x)$, $\tan(y)$ und $\tan(x+y)$ definiert sind, das Additionstheorem des Tangens:

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}.$$

Aufgabe 3. Man berechne mithilfe der Additionstheoreme die exakten Werte von $\sin(x)$, $\cos(x)$, $\tan(x)$ an den Stellen $x = \pi/3$, $\pi/4$, $\pi/6$.

Aufgabe 4. Für alle $n \in \mathbb{N}$ sei $f_n(x)$ die Funktion gegeben durch $f_n(x) = x^n$. Zeige mittels Induktion mithilfe der Produktregel, dass $\forall n \in \mathbb{N}$ die Ableitung $f'_n(x) = nx^{n-1}$.