
Moulds and Multiple Zeta Values

1 Moulds

Definition 1. The standard definition is that a mould is a function on “a variable number of variables”. To
flesh out this definition, in the general case, let A,B be sets and K be an algebra. A mould, M• = (M•,A, K),
is a map from the free monoid A∗ into K and a bimould is defined as a function on the free monoid of the
Cartesian product of two sets, (A× B)∗:

Mould M• : A∗ → K

w = (w1, ..., wr) 7→ Mw

Bimould N• : (A× B)∗ → K

w =

(
u1

v1
, · · · , ur

vr

)
7→ Nw.
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1.1 Examples

Ze•∗ is the bimould defined by

(Ze•∗,Q/Z× N∗,C) := Ze

(
ε1
s1

,··· , εr
sr

)
∗ =

∑
n1>n2>···nr>0

Πn−sk
k e2πiεknk

with s1 ≥ 2. If we take εi = 0 ∀i then we obtain the usual multiple zeta values. Sometimes people say that
elements in the image of this mould are “colored multiple zeta values”.

Wa•∗ is the mould defined by

(Wa•∗, {e2πik; k ∈ Q} ∪ {0},C) := Wae
2πiε10s1−1···e2πiεr0sr−1

∗ = Ze
εr
sr

, εr−1−εr
sr−1

,··· , ε1−ε2
s1

∗ .

Hence we require that the first term be a root of unity and the last term be 0.
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1.2 Operations on Moulds

Given two moulds (resp. bimoulds) (M•,A(resp. × B), K) and (N•,A(resp. × B), K) addition and multi-
plication are given by

M• +N• = C• : Cw = Mw +Nw

M• ×N• = mu(M•, N•) = C• : Cw =
∑

w=w1·w2

Mw1 ·Nw2

.

Swap

swap : (M•,A× B, K) → (M•,B ×A, K)

swap(M•)

(
u1
v1

,··· ,ur
vr

)
= M

(
vr

u1+···+ur
,

vr−1−vr
u1+···+ur−1

,··· , v1−v2
u1

)

Negation/Parity

nepar(M•)(w1,...,wr) = (−1)rM (−w1,...,−wr)

Flexions
A-semi-group, B-abelian group
w = ...w1 ·w2...
w1 =

(
u1

v1
· · · ur

vr

)
,w2 =

(
ur+1

vr+1
· · · us

vs

)
w1e :=

(
u1

v1
· · · ur−1

vr−1

∑s
k=r uk

vr

)
dw2 :=

(∑r+1
k=1 uk

vr+1

ur+2

vr+2

· · · us

vs

)

w1c :=
(

u1

v1 − vr+1

· · · ur

vr − vr+1

)
bw2 :=

(
ur+1

vr+1 − vr
· · · us

vs − vr

)
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1.3 Symmetries

Definition 2. A mould/bimould A• is symmetral (resp. alternal) if

∀w1,w2,
∑

w∈sha(w1,w2)

Aw = Aw1

Aw2

(resp. = 0),

where sha(w1,w2) denotes the shuffle product of sequences. We say such a mould is “as” (resp. “al”). Wa•∗
is as.

A mould/bimould A• is symmetrel (resp. alternel) if

∀w1,w2,
∑

w∈she(w1,w2)

Aw = Aw1

Aw2

(resp. = 0),

where she(w1,w2) denotes the “contracting shuffle” or “stuffle” product of sequences, which is given by the
recursion relation,

w1 = (a1, ..., ar),w
2 = (ar+1, ..., ar+s)

she(wi, ∅) = wi

she(w1,w2) = a1 · she((a2, ..., ar),w2) t ar+1 · she(w1, (ar+2, ..., ar+s)) t (a1 + ar+1) · she((a2, ..., ar), (ar+2, ..., ar+s)).

Such a mould is called es (resp. el). Ze•∗ is es.
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1.4 More Examples

The following examples of moulds define two generating series for multiple zeta values, and provide a method
of regularization of multiple zeta values.

Regularization

There exists a unique mould, Ze•, such that

· Ze• = Ze•∗ wherever Ze•∗ is defined,

· Ze• is defined on all of (Q/Z× N∗)∗

· Ze(
0
1) = 0,

· Ze• is symmetrel

Likewise, there exists a unique mould, Wa•, such that

· Wa• = Wa•∗ wherever Wa•∗ is defined,

· Wa• is defined on all {e2πik; k ∈ Q} ∪ {0},

· Wa(1) = Wa(0) = 0,

· Wa• is symmetral.

Generating Series

Zig• := Zig

(
ε1
v1

,··· , εr
vr

)
=
∑
si≥1

Ze

(
ε1
s1

,··· , εr
sr

)
vs1−1
1 · · · vsr−1

r .

Zag• := Zag

(
u1
ε1

,··· ,ur
εr

)
=
∑
si≥1

Wa(e
2πiε10s1−1,··· ,e2πiεr0sr−1)us1−1

1 (u1 + u2)
s2−1 · · · (u1 + u2 + · · ·+ ur)

sr−1.

Zag• is symmetral, whereas Zig• satifies another symmetry, symmetril, closely related to symmetrel.
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Conversion

(mono•,Q/Z× N∗,C) := 1 +
∑
k=1

mono

(
0k

1k

)
tk = exp

(∑
k=2

(−1)k−1ζ(k)
tk

k

)

:= 0 whenever

(
ε1
s1
, · · · , εr

sr

)
6=
(
0

1
, ...,

0

1

)
(mini•,Q[ui]×Q/Z,C) := mini

(
ε1
v1

,··· , εr
vr

)
= mono(

ε1
1
,··· , εr

1 ).

Proposition 3. mini• × swap(Zag•) = Zig•

We say then that Zag• is as/is, since it’s symmetral and its swap is symmetril (up to multiplication by
a commutative bimould).
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2 Key Results

2.1 ARI/GARI

In order to keep simplicity for this talk, we take the following definition, which is more restricted than the
usual general definition.

Definition 4. Let ARIal/il be the Lie algebra with the following definition.

• As a vector space over Q,

(ARIal/il,Q[ui]×Q/Z,C[[ui]]) := 〈M• : M∅ = 0,M is al, swap(M•) is alternil∗∗〉,

• The Lie bracket is given by

ari(M•, N•)w =
∑

w=w1w2

Aw1

Bw2 −Bw1

Aw2

+
∑

w=w2w3w4

M bw3

Nw2ew4 −N bw3

Mw2ew4

+
∑

w=w1w2w3

Mw1dw3

Nw2c −Nw1dw3

Mw2c

(** The alternil condition means “up to a multiplication by a commutative bimould”.)

Remarks

• The ari bracket is equal to the Lie-Poisson bracket {, }, up to a variable change, on the usual Lie algebra
of multizeta values (dm). However, the ari bracket can be defined on a more general set of vector spaces,
which is a tool Ecalle uses in his proofs.

• The flexions (b, e, c, d) in the definition of the “ari” bracket correspond to the derivations, Df (x) =
0, Df (y) = [y, f ], which give the definition of the above mentioned Poisson bracket.
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Definition 5. By taking the ari-exponential of the Lie algebra, ARIal/il, we obtain a Lie group, GARIas/is
which has the following presentation.

• As a set,

(GARIas/is,Q[ui]×Q/Z,C[[ui]]) := {M• : M∅ = 1,M is as, swap(M•) is symmetril∗∗},

• The group law is given by

gari(A•, B•)w =
∑

w=a1b1c1···bscsas+1

Adb1e · · ·AdbseBa1c · · ·Bas+1c(B−1)bc
1 · · · (B−1)bc

s

,

where s ≥ 0,bi 6= ∅ (∀1 ≤ i ≤ s), ci · ai+1 6= ∅ (∀1 ≤ i ≤ s− 1) and (B−1) denotes the inverse for
standard mould multiplication.

• invgari(M•) is inverse of a mould M• for the gari product,

gari(invgari(A•), A•) = gari(A•, invgari(A)•) = 1•, where 1∅ = 1,1w = 0.

IMPORTANT FACT

The mould Zag• is an element of the Lie group, GARI.
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2.2 Canonical Decomposition into Irreductibles

Theorem 6. The mould Zag• may be decomposed into three factors,

Zag• = gari(Zag•I , Zag
•
II , Zag

•
III)

such that:

• The even/odd length components of Zag•I,II are even/odd functions of w, while the even/odd legth
components of Zag•III are odd/even functions of w;

• Each component is decomposed as a series in a basis of ARIal/il, which when evaluated at εi = 0 are
irreducible elements of the Q algebra of multiple zeta values, Zeta;

• The irreducibles appearing as coefficients in the factors give us a factorization for the multiple zeta value
algebra,

Zeta := ZetaI ⊗ ZetaII ⊗ ZetaIII .
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2.3 Zag•III

· The factor Zag•III is the most simple to express explicitly,

gari(Zag•III , Zag
•
III) = gari(nepar(invgari(Zag•)), Zag•).

By linearizing, you can see that indeed this provides an odd/even function on components of even/odd
length.

· The length 1 component is given by

Zag
(u1

0 )
III =

∑
s≥3, odd

ζ(s)us−1
1 .

· The associated factor in the multiple zeta value algebra, ZetaIII , is generated by irreducibles of odd depth,
i.e. linear combinations of ζ(s1, ..., sr) where r is odd. The mould of such irreducibles is denoted by
Irr•III .

· We get an explicit expression for the set of irreducible multiple zeta values in factor Zag•III in terms of a
mould loma•, which is a generating mould which (vaguely speaking) forms a basis of rational polynomials
for ARIal/il (the explicit construction is out of the scope of this talk). We have

Zag•III :=
∑

si≥1, r odd

Irrs1,...,srIII loma•s1 · · · loma•sr ,

where loma•si is the restriction of loma• to the weight si terms.
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2.4 Zag•I

· ZagwI ∈ Q[[ui, π
2]] (when ε1 = 0), which in the language of zetas, means that the corresponding factor in

the Zeta algebra, ZetaI , is generated by 6ζ(2) = π2.

· The explicit factorization of Zag•I from Zag• is a very costly analytic contruction, whose difficulty comes
from getting rid of unwanted singularities. The formula is the following:

Zag•I = gari(tal•, invgari(pal•), expari(roma•)),

and again the definition of pal and roma go out of the scope, since they are very long.

2.5 Zag•II

· Zag•II is explicitly calculated by factoring Zag• by Zag•I and Zag•III .

· Zag•II may be factored as a generating series for the irreducible multiple zeta values of even depth in the
same manner as Zag•III , providing a set of “canonical” irreducibles for ZetaII ,

Zag•II :=
∑

si≥1, r even

Irrs1,...,srII loma•s1 · · · loma•sr .
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