A note on SLDNF-resolution

Wilfried Buchholz Mathematisches Institut Universität München Theresienstr. 39 D-80333 München

email: buchholz@rz.mathematik.uni-muenchen.de

1 Introduction

In this paper, starting from Definition 8.8 in [3], we design a new (and as it seems to us rather compact and elegant) notion of SLDNF-tree together with the appropriate definition of fairness such that the following "strong completeness theorem" can be established:

Theorem

Let S be an input/output specification, P an S-correct logic program, T a fair SLDNF-tree for G w.r.t. P.

- a) If G is S-correct and comp(P) $\models_3 G\sigma$ then T is successfull and yields a computed answer substitution θ such that $G\sigma$ is an instance of $G\theta$.
- b) If G is S-closed and comp $(P) \models_3 \neg G$ then T is finitely failed.

This theorem extends Stärk's completeness result from [7] (cf. also Theorem 8.52 in [3]) where only the existence of *some* successfull (finitely failing, resp.) SLDNF-tree is proved. It also partly extends Drabent's result in [4], since it refers to the extension of SLDNF-resolution (used in [7] and [3]) where also non-ground negative literals may be selected. Actually we do not prove the Theorem as it stands but refer to the intermediate sets YES_P and NO_P introduced in [7]. These sets correspond to a sequent calculus introduced by the author in [1]. From [7] it follows that for S-correct P we have comp(P) $\models_3 G \Leftrightarrow G \in \text{YES}_P$, for all S-correct G, and comp(P) $\models_3 \neg G \Leftrightarrow G \in \text{NO}_P$, for all S-closed G.

The second purpose of this note is to demonstrate the usefulness (at least for theoretical investigations) of a certain notion of SLD(NF)-derivation implicitely introduced in ([2], pg. 495, Definition 3.18) and ([5], pp. 151ff). Instead of a derivation $G_0 \xrightarrow{\alpha_1} G_1 \cdots G_i \xrightarrow{\alpha_{i+1}} G_{i+1} \cdots$ in the usual sense we consider the corresponding sequence of resultants $\Phi_i := G_i \neg G_0 \alpha_1 ... \alpha_i$. The main advantage of this approach is that the relation between two adjacent members of the sequence $\Phi_0, \Phi_1, ...$ can be described locally without a condition on the "previously released variables" (or some "standardizing apart" condition): Φ_{i+1} is a most general unrestricted resolvent of Φ_i (w.r.t. some rule K and position ν in G_i).

2 Closure properties of the sets YES_P , NO_P

Basic Notions

We use the following syntactic variables:

 $\sigma, \tau, \rho, \theta, \vartheta$ for substitutions (Subst := set of all substitutions),

A, B for atoms,

 L, L_1, L_2, \dots for literals, i.e. atoms A and negated atoms $\neg A$,

 G, H, Q, Π for queries, i.e. formulas of the shape $L_1 \wedge ... \wedge L_n$ (the empty query is denoted by \square),

K for rules, i.e. formulas of the shape $Q \to A$ ($\square \to A$ is identified with A).

For (quantifierfree) formulas F, F':

 $F \geq F' : \Leftrightarrow F' \leq F : \Leftrightarrow F' \text{ is an instance of } F, \text{ i.e. } \exists \sigma(F\sigma = F').$

var(F) := set of all variables occurring in F.

A rule $\Pi \to B$ is *applicable* to an atom A iff A and B have a common instance, i.e. if $\exists \sigma, \rho(B\sigma = A\rho)$. Remark: K is applicable to A iff $\exists Q, \rho(K \geq Q \to A\rho)$.

A logic program is a finite set of rules.

If P is a logic program then

 $P' := \{ K\sigma : K \in P \& \sigma \in Subst \},$

 $P(A) := \{ K \in P : K \text{ is applicable to } A \}.$

Expressions of the shape $G \wedge * \wedge G'$ are called *q-forms*.

If $\Gamma = G \wedge * \wedge G'$ is a q-form then

 $\Gamma \sigma := G \sigma \wedge * \wedge G' \sigma,$

 $\Gamma[Q] := G \wedge Q \wedge G',$

 $\Gamma[] := \Gamma[\Box] = G \wedge G',$

 $\nu(\Gamma) := i$ where $G = L_1 \wedge ... \wedge L_{i-1}$.

We use Γ, Γ', \ldots as syntactic variables for q-forms.

From now on let P be an arbitrary but fixed logic program.

Definition 1 (Inductive definition of the sets YESⁿ_P and NOⁿ_P)

- $(Y1) \quad \Box \in YES_P^n$
- $(Y2) \quad Q \to A \in P' \& \Gamma[Q] \in YES_P^n \implies \Gamma[A] \in YES_P^{n+1}$
- (Y3) $\Gamma[] \in YES_P^k \& A \in NO_P^m \implies \Gamma[\neg A] \in YES_P^{k+m+1}$
- (N1) $(\forall \rho, Q)(Q \rightarrow A\rho \in P' \Rightarrow \Gamma \rho[Q] \in NO_P^n) \Longrightarrow \Gamma[A] \in NO_P^{n+1}$.
- $(\mathrm{N2}) \quad A \in \mathrm{YES}_P^n \implies \Gamma[\neg A] \in \mathrm{NO}_P^{n+1}.$

Corollary 2 YES_Pⁿ \subseteq YES_Pⁿ⁺¹ and NO_Pⁿ \subseteq NO_Pⁿ⁺¹.

Definition 3 YES_P := $\bigcup_{n < \omega}$ YES_Pⁿ, NO_P := $\bigcup_{n < \omega}$ NO_Pⁿ.

Remark 4 Our (Y3) differs a little bit from (Y3) in [7], but one easily verifies that the resulting sets YES_P , NO_P are the same as in [7].

a) $G \in YES_P^n (NO_P^n) \implies G\sigma \in YES_P^n (NO_P^n)$. Lemma 5

- b) $\Gamma[H] \in YES_P^n \iff \exists k, m (n = k + m \& \Gamma[] \in YES_P^k \& H \in YES_P^m).$
- c) $\Gamma[] \in NO_P^n \implies \Gamma[H] \in NO_P^n$.

Proof by induction on n:

- a) We only consider (N1). In all other cases the claim follows immediately from the IH (or is trivial). Let $G = \Gamma[A]$ and $(\forall \rho, Q)(Q \to A\rho \in P' \Rightarrow \Gamma\rho[Q] \in NO_P^n)$. Then $(\forall \rho, Q)(Q \to A\sigma\rho \in P' \Rightarrow \Gamma\sigma\rho[Q] \in NO_P^n)$ and thus by (N1) $\Gamma\sigma[A\sigma] \in NO_P^{n+1}$.
- b) straightforward.
- c) Let $\Gamma \in NO_P^{n+1}$ and w.l.o.g. $\Gamma = G \wedge *$.

Then $\Gamma[] = G$ and one of the following two cases holds.

1. $G = \Gamma'[A]$ with $(\forall \rho, Q)(Q \rightarrow A\rho \in P' \Rightarrow \Gamma'\rho[Q] \in NO_P^n)$:

Then by IH $(\forall \rho, Q)(Q \to A\rho \in P' \Rightarrow \Gamma'\rho[Q] \land H\rho \in NO_P^n)$, and thus by (N1) $\Gamma[H] = \Gamma'[A] \wedge H \in NO_P^{n+1}$.

2. $G = \Gamma'[\neg A]$ with $A \in YES_P^n$: Then (N2) yields $\Gamma[H] = \Gamma'[\neg A] \land H \in NO_P^{n+1}$.

Lemma 6 (Splitting-Lemma)

 $G \wedge G' \in \mathrm{NO}_P^n \& \mathrm{var}(G) \cap \mathrm{var}(G') = \emptyset \implies G \in \mathrm{NO}_P^n \text{ or } G' \in \mathrm{NO}_P^n.$

Proof by induction on n:

Let $G \wedge G' \in NO_P^{n+1}$. Then w.l.o.g. one of the following two cases holds:

1. $G = \Gamma[A]$ and $(\forall \rho, Q)(Q \to A\rho \in P' \Rightarrow \Gamma\rho[Q] \land G'\rho \in NO_P^n)$.

Assume $G' \notin NO_n^{n+1}$ (otherwise we are finished).

Then also $G' \not\in NO_P^n$, and by Lemma 5a we get $G'' \not\in NO_P^n$ for each variant G'' of G'. We now prove $\forall \rho, Q(Q \rightarrow A\rho \in P' \Rightarrow \Gamma \rho[Q] \in NO_P^n)$, which by (N1) yields $G \in P'$ NO_P^{n+1} . Let $Q \to A\rho \in P'$. Since $var(\Gamma[A]) \cap var(G') = \emptyset$, there is a substitution ρ_0 such that $A\rho_0 = A\rho$, $\Gamma\rho_0 = \Gamma\rho$, $\operatorname{var}(\Gamma\rho[Q]) \cap \operatorname{var}(G'\rho_0) = \emptyset$ and $G'\rho_0 \geq G'$. We now conclude as follows:

 $Q \to A\rho_0 = Q \to A\rho \in P' \Rightarrow \Gamma \rho[Q] \land G' \rho_0 = \Gamma \rho_0[Q] \land G' \rho_0 \in \mathrm{NO}_P^n \stackrel{\mathrm{IH}}{\Rightarrow} \Gamma \rho[Q] \in \mathrm{NO}_P^n.$ 2. $G = \Gamma[\neg A]$ and $A \in YES_P^n$: Then $\Gamma \in NO_P^{n+1}$ by (N2).

Lemma 7 (Inversion-Lemma)

- a) $\Gamma[A] \in YES_P^n \implies n > 0 \& \exists Q(Q \to A \in P' \& \Gamma[Q] \in YES_P^{n-1}).$
- b) $\Gamma[A] \in NO_P^n \& Q \to A \in P' \implies \Gamma[Q] \in NO_P^n$.

Proof a) By L.5b there are k, m such that n = k + m and $\Gamma[] \in YES_P^k$, $A \in YES_P^m$. The latter yields m > 0 and $\exists Q (Q \in YES_P^{m-1} \& Q \rightarrow A \in P')$. Again by L.5b we obtain $\Gamma[Q] \in \mathrm{YES}_P^{k+m-1} = \mathrm{YES}_P^{n-1}$

b) Induction on n: Let $\Gamma[A] \in \mathrm{NO}_P^{n+1}$. W.l.o.g. we may assume that $\Gamma = G \wedge *$. Then one of the following cases holds:

1. $\forall Q', \rho(Q' \rightarrow A\rho \in P' \Rightarrow \Gamma \rho[Q'] \in NO_P^n)$: Then $\Gamma[Q] \in NO_P^n \subseteq NO_P^{n+1}$, since $Q \rightarrow A \in P'$.

2. $G = \Gamma'[B]$ and $\forall Q', \rho(Q' \to B \rho \in P' \Rightarrow \Gamma' \rho[Q'] \land A \rho \in NO_P^n)$:

Since $\forall \rho(Q\rho \to A\rho \in P')$, by IH we get $\forall Q', \rho(Q' \to B\rho \in P' \Rightarrow \Gamma'\rho[Q'] \land Q\rho \in NO_P^n$. Hence by (N1) $\Gamma[Q] = \Gamma'[B] \wedge Q \in NO_P^{n+1}$

3. $G = \Gamma'[\neg B]$ and $B \in YES_P^n$: Then $\Gamma[Q] = \Gamma'[\neg B] \land Q \in NO_P^{n+1}$ by (N2).

Note

Lemmata 5,6,7 and their proofs have been extracted from section 2.1 of [6].

3 SLDNF-resolution

Formulas of the shape $G \rightarrow H$ are called *r-formulas*. Expressions of the shape $\Gamma \rightarrow H$, where Γ is a q-form, are called *r-forms*. If $\Delta = \Gamma \rightarrow H$ is an r-form then $\Delta \sigma := \Gamma \sigma \rightarrow H \sigma$, $\Delta[Q] := \Gamma[Q] \rightarrow H$, $\nu(\Delta) := \nu(\Gamma)$. Syntactic variables: Δ for r-forms, and Φ , Ψ for r-formulas.

Definition 8 Φ' is called a *u-resolvent of* Φ *w.r.t.* (ν, K) (in symbols Φ $\frac{u}{(\nu, K)}$ Φ'), if there are Δ , A, Q, ρ such that $\Phi = \Delta[A]$, $\Phi' = \Delta \rho[Q]$, $Q \to A\rho \leq K$ and $\nu(\Delta) = \nu$. Φ' is called a *resolvent of* Φ *w.r.t.* (ν, K) (in symbols Φ $\overline{(\nu, K)}$ Φ'), if Φ' is a most general u-resolvent of Φ w.r.t. (ν, K)

if Φ' is a most general u-resolvent of Φ w.r.t. $(\nu,K),$ i.e. $\Phi\xrightarrow[(\nu,K)]{u}\Phi''$ & $\forall \Phi'' (\Phi\xrightarrow[(\nu,K)]{u}\Phi'' \Rightarrow \Phi' \geq \Phi'').$

 Φ' is called resolvent of Φ w.r.t. P (in symbols $\Phi' \xrightarrow{P} \Phi$), if $\Phi \xrightarrow{(\nu,K)} \Phi'$ for some $K \in P$, $\nu \in \mathbb{N}$.

 $\begin{array}{l} (\Phi_K)_{K\in J} \text{ is called a } complete \ family \ of \ resolvents \ for } \Phi \ w.r.t. \ P \\ \text{(in symbols } \Phi \xrightarrow{*} (\Phi_K)_{K\in J}), \text{ if there are } \Delta, \ A \ \text{such that} \\ \Phi = \Delta[A], \ J = P(A) \ \text{and} \ (\forall K \in P(A)) \ \Phi \xrightarrow{(\nu,K)} \Phi_K \ \text{where } \nu := \nu(\Delta). \end{array}$

Lemma 9 For $\Phi = \Delta[A]$, $\nu := \nu(\Delta)$ and K the following statements are equivalent:

- (i) $K \in P(A)$.
- (ii) $\Phi \xrightarrow[(\nu,K)]{u} \Phi'$ for some Φ' .
- (iii) $\Phi \xrightarrow[(\nu,K)]{} \Psi$ for some Ψ .

Proof (i) \Rightarrow (iii): Let $\Pi \to B$ a variant of K such that $\operatorname{var}(\Phi) \cap \operatorname{var}(\Pi \to B) = \emptyset$. Since $K \in P(A)$ and $\operatorname{var}(A) \cap \operatorname{var}(B) = \emptyset$, the atoms A, B are unifiable. Let θ be a most general unifier of A, B, and let $\Psi := \Delta \theta[\Pi \theta]$. We prove $\Phi \xrightarrow{(\nu, K)} \Psi$: Since $\Pi \theta \to A \theta \leq K$, Ψ is a u-resolvent of Φ w.r.t. (ν, K) . Now let Φ' be an arbitrary u-resolvent of Φ w.r.t. (ν, K) . Then $\Phi' = \Delta \rho[Q]$ with $Q \to A \rho \leq K \leq \Pi \to B$. Since $\operatorname{var}(\Delta[A]) \cap \operatorname{var}(\Pi \to B) = \emptyset$, we may assume that $Q = \Pi \rho$ and $A \rho = B \rho$. Hence $\rho = \theta \sigma$ for some σ and thus $\Phi' = \Delta \theta \sigma[\Pi \theta \sigma] \leq \Psi$. (iii) \Rightarrow (ii) and (ii) \Rightarrow (i) are trivial.

 $\mathbf{Lemma} \ \mathbf{10} \ \ G \rightarrow H \ \xrightarrow{\quad * \quad } \ (G_K \rightarrow H_K)_{K \in J} \ \& \ \forall K \in J(G_K \in \mathrm{NO}_P) \ \Longrightarrow \ G \in \mathrm{NO}_P.$

Proof By assumption there are Γ , A such that $G = \Gamma[A]$, J = P(A) and $G \rightarrow H$ $\xrightarrow{(\nu,K)} G_K \rightarrow H_K$ for all $K \in J$ (with $\nu := \nu(\Gamma)$). By the second assumption (and since J is finite) there exists an n such that $G_K \in \mathrm{NO}_P^n$ for all $K \in J$. Now let $Q \rightarrow A\rho \in P'$. We have to prove: $\Gamma \rho[Q] \in \mathrm{NO}_P^n$. (Then the claim follows by (N1).) For some $K \in J$ we have $Q \rightarrow A\rho \leq K$. Then $G \rightarrow H$ $\xrightarrow{(\nu,K)} \Gamma \rho[Q] \rightarrow H\rho$ and $G \rightarrow H$ $\xrightarrow{(\nu,K)} G_K \rightarrow H_K$ which yields $G_K \geq \Gamma \rho[Q]$. Together with $G_K \in \mathrm{NO}_P^n$ by Lemma 5a we now obtain $\Gamma \rho[Q] \in \mathrm{NO}_P^n$.

Definition 11 An SLDNF-tree for P is a function T such that

- I. $\emptyset \neq \text{dom}(T) \subseteq \{\langle \iota_0, ..., \iota_{n-1} \rangle : n \in \mathbb{N} \& \iota_0, ..., \iota_{n-1} \in P \cup \{0, 1\}\}$ and $\forall \langle \iota_0, ..., \iota_n \rangle \in \operatorname{dom}(T)(\langle \iota_0, ..., \iota_{n-1} \rangle) \in \operatorname{dom}(T).$
- II. For each $\xi \in \text{dom}(T)$ $T(\xi)$ is a r-formula and one of the following cases holds:
 - (0) $T(\xi) = \Box H$ and ξ is a leaf of T,
 - (1) There are Δ , A such that $T(\xi) = \Delta[A]$, $\{\iota : \xi * \langle \iota \rangle \in \text{dom}(T)\} = P(A)$ and, $T(\xi) \xrightarrow{(\nu,K)} T(\xi * \langle K \rangle)$ for all $K \in P(A)$ (where $\nu := \nu(\Delta)$) (We say that the literal A is selected at ξ .)
 - (2) There are Δ , A such that $T(\xi) = \Delta[\neg A], \{\iota : \xi * \langle \iota \rangle \in \text{dom}(T)\} = \{0, 1\},$ $T(\xi*\langle 1\rangle) = A \rightarrow A$, and

$$T(\xi*\langle 0\rangle) = \begin{cases} \Delta[] & \text{if } \operatorname{var}(A) = \emptyset \\ \Delta[\neg A] & \text{otherwise} \end{cases}, \quad (\neg A \text{ is } selected \text{ at } \xi).$$

In other words: An SLDNF-tree for P is a finitely branching downward growing (possibly infinite) tree of r-formulas which is correct with respect to the following rules:

$$(0) \quad \Box \rightarrow H$$

(1)
$$\frac{\Phi}{\dots \Phi_K \dots (K \in J)} \qquad \text{if } \Phi \xrightarrow{*} (\Phi_K)_{K \in J}$$
(2)
$$\frac{\Delta[\neg A]}{\Delta[]} \qquad \text{if } \text{var}(A) = \emptyset$$
(2')
$$\frac{\Delta[\neg A]}{\Delta[\neg A]} \qquad \text{if } \text{var}(A) \neq \emptyset.$$

(2)
$$\frac{\Delta[\neg A]}{\Delta[]} \qquad \text{if } var(A) = \emptyset$$

(2')
$$\frac{\Delta[\neg A]}{\Delta[\neg A]} \quad \text{if } \text{var}(A) \neq \emptyset.$$

Remark 12 1. If (ξ, Φ) is a leaf of an SLDNF-tree then either $\Phi = \square \rightarrow H$ or $\Phi \xrightarrow{*} (\Phi_K)_{K \in J} \text{ with } J = \emptyset.$

2. Each subtree of an SLDNF-tree is itself an SLDNF-tree.

Convention: In the following T always denotes an SLDNF-tree for P.

Abbreviations:

 $\varepsilon := \langle \rangle$ (the empty sequence, i.e. the root)

 $T = (\Phi; (T_{\iota})_{\iota \in I}) : \Leftrightarrow T(\varepsilon) = \Phi \text{ and } (T_{\iota})_{\iota \in I} \text{ is the family of immediate subtrees of } T.$ In case that $I=\{0,...,n-1\}$ we also write $(\Phi;T_0,...,T_{n-1})$ instead of $(\Phi;(T_\iota)_{\iota\in I})$.

For $\xi \in \text{dom}(T)$ let $T|_{\xi}$ be the subtree determined by ξ ,

i.e., $dom(T|_{\xi}) := \{ \eta : \xi * \eta \in dom(T) \} \text{ and } T|_{\xi}(\eta) := T(\xi * \eta).$

Let no be a new symbol. A generalized answer is either a query or the symbol no. We now define a relation $T \Vdash X$ between SLDNF-trees T and generalized answers X. As one easily verifies this relation \vdash has the property that if $T(\varepsilon) = G \rightarrow H \& T \vdash H'$ then H' is an instance of H. Further if $T(\varepsilon) = G \rightarrow G$ then "T $\Vdash G\theta$ " corresponds to "T is successful and yields $\theta | G$ as a computed answer substitution", and "T \vdash no" corresponds to "T is finitely failed" in [3].

Definition 13 (Inductive definition of $T \Vdash X$)

$$0. T = (\square \rightarrow H;) \Rightarrow T \Vdash H$$

1.
$$T = (\Delta[A]; (T_K)_{K \in P(A)})$$
:

1.1.
$$(\exists K \in J) T_K \Vdash H \Rightarrow T \Vdash H$$
.

1.2.
$$(\forall K \in J) T_K \Vdash \text{no} \Rightarrow T \Vdash \text{no}$$
.

2.
$$T = (\Delta[\neg A]; T_0, T_1)$$
 and $T_0(\varepsilon) \in {\Delta[], \Delta[\neg A]}, T_1(\varepsilon) = A \rightarrow A$:

2.1.
$$T_0 \Vdash H \& T_1 \Vdash \mathsf{no} \Rightarrow T \Vdash H$$
.

2.2.
$$T_1 \Vdash A' > A \Rightarrow T \Vdash \mathsf{no}$$
.

2.3.
$$T_0 \Vdash \mathsf{no} \Rightarrow T \Vdash \mathsf{no}$$
.

2.4.
$$T_0 \Vdash H \& T_0(\varepsilon) = T(\varepsilon) \Rightarrow T \Vdash H$$
.

The following figures are intended to make the above definition more transparent.

$$0. \ \square \rightarrow H: H \ , \qquad 1.1. \ \frac{\Phi \colon H}{\Phi_K \colon H} \ , \quad 1.2. \ \frac{\Phi \colon \mathsf{no}}{\dots \ \Phi_K \colon \mathsf{no} \dots \ (K \in J)}$$

$$2.1. \ \frac{\Delta[\neg A]: H}{\Delta[]: H} \xrightarrow{A \neg A: \text{no}}, \qquad 2.2. \ \frac{\Delta[\neg A]: \text{no}}{\Delta[(\neg A)]} \xrightarrow{A \neg A: A'} \text{with } A' \ge A$$

$$2.3. \ \frac{\Delta[\neg A] \colon \mathsf{no}}{\Delta[(\neg A)] \colon \mathsf{no}} \ A \to A \ , \qquad 2.4. \ \frac{\Delta[\neg A] \colon H}{\Delta[\neg A] \colon H} \ A \to A$$

Remark 14 1. In clause 2.2 of the above definition actually A' is a variant of A, since $T_1(\varepsilon) = A \rightarrow A \& T_1 \Vdash A'$ implies $A \geq A'$.

2. If $T \Vdash X$ holds then this fact is already established by a finite initial segment of T. In other words: Assume that for finite initial segments \tilde{T} of SLDNF-trees we have defined the relation $\tilde{T} \Vdash X$ by the same clauses as for SLDNF-trees. Then for each SLDNF-tree T we have $T \Vdash X$ if and only if $\tilde{T} \Vdash X$ for some finite initial segment \tilde{T} of T.

Theorem 15 (Correctness)

a)
$$T(\varepsilon) = G \rightarrow H \& T \Vdash H' \implies (\exists \vartheta) H\vartheta \geq H' \& G\vartheta \in YES_{P}$$
.

b)
$$T(\varepsilon) = G \rightarrow H \& T \Vdash \mathsf{no} \implies G \in \mathrm{NO}_P$$
.

Proof by induction on the definition of \Vdash :

a) Let
$$T = (G \rightarrow H; (T_{\iota})_{\iota \in J}).$$

0.
$$G = \square$$
 and $H' = H$: $\vartheta := id$.

1.1.
$$G = \Gamma[A], Q \rightarrow A\rho \leq K \in P$$
 and $T_K(\varepsilon) = \Gamma \rho[Q] \rightarrow H\rho \ \& \ T_K \Vdash H'$:

By IH there is a ϑ such that $H\rho\vartheta \geq H' \& \Gamma\rho[Q]\vartheta \in YES_P$.

Since $Q\vartheta \rightarrow A\rho\vartheta \in P'$, it follows that $G\rho\vartheta = \Gamma\rho\vartheta[A\rho\vartheta] \in YES_P$.

2.1.
$$G = \Gamma[\neg A], T_0(\varepsilon) = \Gamma[] \rightarrow H \& T_0 \Vdash H', T_1(\varepsilon) = A \rightarrow A \& T_1 \Vdash \mathsf{no}$$
:

By IHa there is a ϑ such that $H\vartheta \geq H' \& \Gamma[\vartheta \in YES_P]$.

By IHb we get $A \in NO_P$ and thus (by L.5a) also $A\vartheta \in NO_P$. Hence $\Gamma[\neg A]\vartheta \in YES_P$.

2.4. $G = \Gamma[\neg A], T_0(\varepsilon) = T(\varepsilon) \& T_0 \Vdash H'$:

In this case the claim follows immediately from IH.

- b) 1.2. $T_K(\varepsilon) = G_K \rightarrow H_K \& T_K \Vdash \text{no for all } K \in J = P(A)$:
- By IHb $G_K \in NO_P$ for all $K \in J$. By Lemma 10 this implies $G \in NO_P$.
- 2.2. $G = \Gamma[\neg A]$ and $T_1(\varepsilon) = A \rightarrow A \& T_1 \Vdash A' \geq A$:
- By IHa there is a ϑ such that YES_P $\ni A\vartheta \geq A' \geq A$.
- By Lemma 1a from this we get $A \in YES_P$ and thus $G \in NO_P$.
- 2.3. $G = \Gamma[\neg A], T_0(\varepsilon) = \Gamma[(\neg A)] \rightarrow H \& T_0 \Vdash \text{no}$:
- By IHb $\Gamma[(\neg A)] \in NO_P$. This implies $G \in NO_P$ (cf. L.5c).

Corollary 16 $T(\varepsilon) = G \rightarrow G \& T \Vdash G\theta \implies G\theta \in YES_P$.

Definition 17 A main branch in T is a sequence $(\xi_j)_{j < N}$ (with $0 < N \le \omega$) of nodes in T, such that for all j < N:

- (i) $j+1 < N \Rightarrow \xi_{j+1} = \xi_j * \langle \iota \rangle$ for some $\iota \in P \cup \{0\}$,
- (ii) $j + 1 = N \implies \xi_i$ is a leaf node in T.

A main branch is called *fair* if either it terminates with a leaf $(\xi, \Gamma[A])$ such that $P(A) = \emptyset$ or for each literal L in it after finitely many steps a descendent of L is selected. T is called *fair*, if all its main branches are fair.

Obviously for each program P and goal G a fair SLDNF-tree can be defined.

Definition 18

Let $\mathcal{C}^+, \mathcal{C}^-$ be sets of queries.

P is called a $(C^+,C^-)^*$ -program, if the following conditions are satisfied:

- (S1) $G \in \mathcal{C}^+$ (\mathcal{C}^-) $\Rightarrow G\sigma \in \mathcal{C}^+$ (\mathcal{C}^-),
- (S2) $Q \rightarrow A \in P' \& \Gamma[A] \in \mathcal{C}^+ (\mathcal{C}^-) \Rightarrow \Gamma[Q] \in \mathcal{C}^+ (\mathcal{C}^-),$
- (S3) $\Gamma[\neg A] \in \mathcal{C}^+$ & $var(A) \neq \emptyset \Rightarrow \Gamma$ contains at least one positive literal,
- (S4) $\Gamma[\neg A] \in \mathcal{C}^+ \& \operatorname{var}(A) = \emptyset \Rightarrow \Gamma[] \in \mathcal{C}^+ \& A \in \mathcal{C}^-,$
- (S5) $\Gamma[\neg A] \in \mathcal{C}^- \Rightarrow \Gamma[] \in \mathcal{C}^- \& A \in \mathcal{C}^+.$

Remark 19 The above definition is a modification of Stärks definition of (C^+, C^-) -programs in [7]. As one easily verifies, the following holds: if S is an input/output specification, P is S-correct, and C^+ (C^-) is the set of S-correct (S-closed) queries in the sense of [7], then P is a $(C^+, C^-)^*$ -program. But, as one of the referees noticed, not every (C^+, C^-) -program is a $(C^+, C^-)^*$ -program.

Theorem 20 (Strong Completeness)

Assume that T is a fair SLDNF-tree with $T(\varepsilon) = G \dashv H$, and P is a $(\mathcal{C}^+, \mathcal{C}^-)^*$ -program.

- a) $G\sigma \in YES_P^n \& G \in \mathcal{C}^+ \implies (\exists H') \ T \Vdash H' \ge H\sigma$ (in particular if G=H then $(\exists \theta) \ T \Vdash G\theta \ge G\sigma$).
- b) $G \in NO_P^n \& G \in \mathcal{C}^- \implies T \Vdash no.$

Proof by induction on n: Let $T = (G \rightarrow H; (T_{\iota})_{\iota \in J})$.

Proposition 1:

There exists a node $\xi = \langle 0, ..., 0 \rangle \in \text{dom}(T)$ (ξ may be empty) such that $T(\varepsilon) = T(\langle 0 \rangle) = T(\langle 0, 0 \rangle) = ... = T(\xi)$ and $(\xi * \langle 0 \rangle \in \text{dom}(T) \Rightarrow T(\xi * \langle 0 \rangle) \neq T(\xi))$.

Proof: Assume the contrary. Then for all $k \in \mathbb{N}$ we have $\xi_k := \langle 0, ..., 0 \rangle \in \text{dom}(T)$ and $T(\xi_k) = T(\varepsilon)$ which means that at every node ξ_k a nonclosed negative literal is selected and in particular G contains a nonclosed negative literal. Now, since $G \in \mathcal{C}^+$, by (S3) it follows that G contains at least one positive literal B a descendent of which will be selected at some ξ_k (due to the fairness of T). Contradiction.

Now let ξ be as in Proposition 1. Obviously we have $(T|_{\xi} \Vdash X \Rightarrow T \Vdash X)$. Therefore w.l.o.g. we may assume that $\xi = \varepsilon$ and thus one of the following cases holds.

0. $G = \square$ and $J = \emptyset$: H' := H.

1. $G = \Gamma[A], \ \nu = \nu(\Gamma), \text{ and } G \rightarrow H \xrightarrow[(\nu,K)]{} T_K(\varepsilon) \text{ for all } K \in J = P(A)$:

From $G\sigma \in \mathrm{YES}_P^n$ it follows by L.7a that there exists a query Q and a rule $K \in P(A)$ such that $\Gamma\sigma[Q] \in \mathrm{YES}_P^{n-1}$ and $K \geq Q \to A\sigma$. Then $G \to H$ \xrightarrow{u} $\Gamma\sigma[Q] \to H\sigma$ and $G \to H$ $\xrightarrow{(\nu,K)} T_K(\varepsilon) =: G_K \to H_K$. Hence $G_K\sigma' = \Gamma\sigma[Q] \in \mathrm{YES}_P^{n-1}$ and $H_K\sigma' = H\sigma$ for some σ' . From $G \in \mathcal{C}^+$ we get $G_K \in \mathcal{C}^+$ by (S1),(S2). Now by IH there is an H' such that $T_K \Vdash H' \geq H\sigma$. And $T_K \Vdash H'$ implies $T \Vdash H'$.

2. $G = \Gamma[\neg A], T_0(\varepsilon) = \Gamma[] \rightarrow H, T_1(\varepsilon) = A \rightarrow A \text{ and } var(A) = \emptyset$:

From $G \in \mathcal{C}^+$ we get $\Gamma[] \in \mathcal{C}^+$ and $A \in \mathcal{C}^-$ by (S4). From $G\sigma \in \mathrm{YES}_P^n$ by L.5b we get n > 0, $\Gamma[]\sigma \in \mathrm{YES}_P^{n-1}$, $\neg A = \neg A\sigma \in \mathrm{YES}_P^n$. The latter implies $A \in \mathrm{NO}_P^{n-1}$. Hence by IH $T_1 \Vdash$ no and $T_0 \Vdash H' \geq H\sigma$ for some H'. From $T_0 \Vdash H'$ and $T_1 \Vdash$ no we get $T \Vdash H'$.

b)

Proposition 2:

Every main branch of T starting with ε contains a node ξ such that $T|_{\xi} \Vdash \mathsf{no}$.

From this we get $T \Vdash \text{no}$, since otherwise there would be a main branch $(\xi_j)_{j < N}$ starting with ε such that $T|_{\xi_j} \not \models \text{no}$ for all j < N.

Proof of Proposition 2:

Let $(\xi_j)_{j < N}$ be a main branch of T starting with $\xi_0 = \varepsilon$. Let $T(\xi_j) = G_j \rightarrow H_j$. Then by (S1),(S2),(S5) $G_j \in \mathcal{C}^-$ for all j < N.

- 1. Assume that the branch terminates with $T(\xi_l) = \Delta[A]$ such that $J = P(A) = \emptyset$. Then $T|_{\xi_l} \Vdash \text{no.}$
- 2. Assume that there is an l s.t. $G_l = \Gamma'[\neg A']$, $T(\xi_l * \langle 1 \rangle) = A' \rightarrow A'$ and $A' \in YES_P^{n-1}$. From $G_l \in \mathcal{C}^-$ we get $A' \in \mathcal{C}^+$ by (S5). By IHa there is an A'' s.t. $T|_{\xi_l * \langle 1 \rangle} \Vdash A'' \geq A'$. From this we get $T|_{\xi_l} \Vdash \mathsf{no}$.
- 3. Otherwise: Then, since $G \in NO_P^n$, n > 0 and one of the following two cases holds: 3.1. $G = \Gamma[\neg A]$ with $A \in YES_P^{n-1}$:

Since T is fair, there exists an l such that $G_l = \Gamma'[\neg A']$, $T(\xi_l * \langle 1 \rangle) = A' \rightarrow A'$ and $A \geq A'$. From $A \in YES_P^{n-1}$ we get $A' \in YES_P^{n-1}$ and thus case 2. holds.

3.2. $G = \Gamma[A]$ with $\forall Q, \rho(Q \to A\rho \in P' \Rightarrow \Gamma\rho[Q] \in NO_P^{n-1})$:

By side induction on l we prove:

(+) $G_l = \Gamma'[A'] \& A'$ descendent of $A \& Q \to A' \rho \in P' \implies \Gamma' \rho[Q] \in NO_P^{n-1}$.

If l=0, then $\Gamma'=\Gamma$ and A'=A, from which together with $Q\to A'\rho\in P'$ the claim

Now let l > 0. Then one of the following three cases holds.

- (i) $G_{l-1} = \Gamma''[B]$ (where B not a descendent of A) and $G_l = \Gamma''\tau[\Pi]$ with $\Pi \to B\tau \in P'$: W.l.o.g. $G_{l-1} = B \wedge \Gamma_0[A_0]$, $\Gamma' = \Pi \wedge \Gamma_0 \tau$ und $A' = A_0 \tau$, where A_0 is a descendent of A. Further we have $Q \to A_0 \tau \rho \in P'$, from which by side-IH we get $B \tau \rho \wedge \Gamma_0 \tau \rho[Q] \in$ NO_P^{n-1} . Since $\Pi \rho \to B \tau \rho \in P'$, L.7b now yields $\Gamma' \rho[Q] = \Pi \rho \wedge \Gamma_0 \tau \rho[Q] \in NO_P^{n-1}$.
- (ii) $G_{l-1} = G_l$: Then the claim follows immediately from the side-IH.

(iii) $G_{l-1} = \neg B \wedge \Gamma'[A'] \& T(\xi_{l-1} * \langle 1 \rangle) = B \rightarrow B$, where B is closed: By side-IH we have $\neg B \wedge \Gamma' \rho[Q] \in \mathrm{NO}_P^{n-1}$. By L.6 it follows that $\Gamma' \rho[Q] \in \mathrm{NO}_P^{n-1}$ or $\neg B \in \mathrm{NO}_P^{n-1}$. The latter would imply $B \in \mathrm{YES}_P^{n-1}$ and we were in case 2. So $\Gamma' \rho[Q] \in \mathrm{NO}_P^{n-1}$ holds.

Since T is fair, there exists an l, such that $G_l = \Gamma'[A']$, A' is descendent of A, and $G_{l+1} = \Gamma' \rho[Q]$ with $Q \to A' \rho \in P'$. By (+) from this we get $G_{l+1} \in NO_P^{\leq n}$ and thus $T|_{\xi_{l+1}} \Vdash \text{no by IHb.}$

Acknowledgement

The author is indepted to Kees Doets and an anonymous referee for their valuable comments.

References

- [1] W. Buchholz. Ein Negation-as-Failure-Kalkül. Typescript, University of Munich, 1992.
- [2] K. Doets. Levationis laus. J. of Logic and Computation 3, pp. 487-516 (1993)
- [3] K. Doets. From Logic to Logic Programming. MIT Press, 1994.
- [4] W. Drabent. Completeness of SLDNF-resolution for non-floundering queries. J. of Logic Programming 27(2), pp. 89-106 (1996)
- [5] J.C. Shepherdson. The role of standardising apart in logic programming. Theoretical Computer Science 129, pp. 143-166 (1994)
- [6] R.F. Stärk. The Proof Theory of Logic Programs with Negation. PhD Thesis, University of Bern, 1992.
- [7] R.F. Stärk. Input/output dependencies of normal logic programs. J. of Logic and Computation 4, pp. 249–262 (1994)