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tWe formulate epsilon substitution method for elementary analysis EA (se
ond order arithmeti
 with
omprehension for arithmeti
al formulas with predi
ate parameters). Two proofs of its termination arepresented. One uses embedding into rami�ed system of level one and 
utelimination for this system. These
ond proof uses non-e�e
tive 
ontinuity argument.Introdu
tionThe epsilon substitution method is based on the language introdu
ed by Hilbert [7℄ (and used later byBourbaki [3℄). The main non-boolean 
onstru
tion of this language is �xF [x℄, read as \an x satisfying the
ondition F [x℄". In number-theoreti
 
ontexts it is often interpreted as least x satisfying F [x℄". Existentialand universal quanti�ers be
ome expli
itly de�nable by9xF [x℄ = F [�xF [x℄℄; 8xF [x℄ = F [�x:F [x℄℄ (1)The main axioms of the 
orresponding formalism are 
riti
al formulasF [t℄! F [�xF [x℄℄ (2)Hilbert's approa
h (Ansatz) to transforming arbitrary (non-�nitisti
) number-theoreti
 proofs into �ni-tisti
 (
ombinatorial) proofs by means of the substitution method is des
ribed in [7℄. Cf. also the short andlively presentation by Hermann Weyl in [19℄. The approa
h is as follows.Take all 
riti
al formulas (2) o

urring in a given proof P . There is only a �nite number of them, soone always deals with a �nite system E of 
riti
al formulas. Consider any substitution S of numerals for
onstant epsilon-terms. If all 
riti
al formulas (2) are true under S, it is 
alled a solving substitution forthe system E. Hilbert proposed a spe
i�
 plan for �nding a solving substitution by a series of su

essiveapproximations, des
ribed below. If it su

eeds and if the last formula of the proof P , i.e. the formula provedby P , is a 
onstant 
ombinatorial identity su
h as 1 + 2 + : : :+ 10 = 55, repla
ing all free variables by anynumerals and then ea
h epsilon-term t by S(t) immediately yields a variable-free (�nitisti
, 
ombinatorial)proof of the same identity. Moreover, it was noted by A
kermann and stressed later by Kreisel that the samedevi
e allows one to extra
t the numeri
al 
ontent of existential proofs, i.e. proofs of existential formulas9xF [x℄ with 
ombinatorial (free variable) F [x℄. Indeed, 9xF [x℄ is translated as F [�xF [x℄℄. If S is a solvingsubstitution for the proof P of su
h a formula, and N = S(�xF [x℄) then S(P ) is a proof of F [N ℄. So N is anumeri
al realization of the existential quanti�er in 9xF [x℄.Hilbert's suggestion for �nding a solving substitution by a su

essive approximation method is based onthe following idea of generating substitutions of numerals for 
losed epsilon-terms. The initial approximationS0 is identi
ally 0. At every stage only a �nite number of epsilon-terms are assigned non-zero values. If1



approximations S0; : : : ; Si are already generated, and Si is not yet a solving substitution, then Si+1 is foundas follows. Fix appropriate ordering of the 
riti
al formulas (2) and take the �rst formula in this orderingwhi
h is false under Si, i.e. for whi
hSi(F [t℄) = true; Si(F [�xF ℄) = falseThis means that the value Si(�xF ) is in
orre
t: this value does not satisfy F , while F [Si(t)℄ is true underSi. Then the value of �xF is 
orre
ted by puttingSi+1(�xF ) = (the least N � t) (Si(F [n℄) = true)The problem stated by Hilbert was to prove termination of the sequen
e S0; S1; S2; : : : after a �nitenumber of steps for any system of 
riti
al formulas (2). After von Neumann's [15℄ atta
k on this (see below)Hilbert [6℄ stated further problems:�nd a proof of termination for pure number theory, for analysis, and for analysis with the axiom of
hoi
e, when ea
h of these systems is suitably reformulated in the epsilon-
al
ulus.The �rst attempt by A
kermann [1℄ to prove termination for analysis was shown by von Neumann [15℄ to
ontain a serious defe
t 
onne
ted with the treatment of equality. Von Neumann introdu
ed a devi
e allowingto avoid this defe
t, gave an exa
t formulation based on Hilbert's Ansatz and presented a termination prooffor the 
ase when the terms �xF [x℄ in 
riti
al formulas involve only free-variable (
ombinatorial) formulasF [x℄. This 
orresponds to number theory with the indu
tion axiom for quanti�er free formulas.After Gentzen's proof [4℄ of 
ut-elimination and 
onsequently of 
onsisten
y for arithmeti
 (with respe
tto 
losed equations) revealed the role of the ordinal �0, A
kermann [2℄ was able to �nd a �nal formulationand to give a termination proof for full �rst order arithmeti
 (pure number theory). His formulation for �rstorder arithmeti
, des
ribed also by Hilbert and Bernays [7℄, and used in all the subsequent resear
h, 
onsistsof Hilbert's Ansatz modi�ed in a

ordan
e with von Neumann's remarks plus the following stipulation: afterthe value of �xF was 
orre
ted, the values of all terms of greater 
omplexity (rank) are set to 0.A
kermann's proof [2℄ is rather involved. On the other hand, there exists mu
h easier non-e�e
tivetermination proof of the substitution method for the �rst order arithmeti
. It uses a very simple non-e�e
tive proof of the existen
e of solving substitution (
f. [18℄, se
tion 5.1) and 
ontinuous dependen
eof a solution of a system of 
riti
al formulas from fun
tion parameters (
f. [18℄, end of the se
tion 5.3).These ideas were elaborated by Mints in [10℄ for the �rst order arithmeti
 and in [11℄ for the theory ofhereditarily �nite sets into a non-e�e
tive termination proof whi
h uses 
ontinuity in Baire topology in thespa
e of number-theoreti
 fun
tions. A possibility to simplify a system of 
riti
al formulas by substituting
omputable values of subordinate �-matri
es and a need for some restri
tions on the fun
tionals used waspointed out in [8℄, p. 259 (ii), 260.The existen
e of a solving substitution for the 
ase of analysis (se
ond order arithmeti
) is proved as simplyas in the �rst order 
ase, but nothing similar to the simple termination proof is known for the se
ond order
ase. G. Kreisel [8, 9℄ further investigated the substitution method for the �rst order 
ase and made it abasis for the no-
ounterexample interpretation, the �rst published fun
tional interpretation produ
ing non-trivial 
onstru
tive results for non-
onstru
tive proofs. W. Tait [18℄ presented a �ner analysis of the rate oftermination in terms of relevant parameters based on his analysis [17℄ of re
ursion s
hemata.The next step was made in [12℄ where a Gentzen-type system PA� in the epsilon language for �rst orderarithmeti
 was proposed. The axioms of this 
al
ulus depend on a parti
ular system E of 
riti
al formulas.Normalization (
ut-elimination) steps for this 
al
ulus were de�ned and the following statements proved.Theorem 1. The sequent expressing existen
e of a solving substitution for the system E of 
riti
al formulasis derivable in PA� by a derivation of spe
ial form, 
alled f -derivation.Theorem 2. f -derivations 
an be normalized, i.e. the 
ut rule 
an be eliminated by a series of normalizationsteps.Theorem 3. A 
ut-free derivation of the sequent in Theorem 1 en
odes a �nite sequen
eS0; S1; : : : ; Sn (3)of su

essive substitutions (in the sense of A
kermann) terminating in a solving substitution for the originalsystem E of 
riti
al formulas. 2



Hen
e the rate of 
onvergen
e (i.e. the value of n in (3) as a fun
tion of the system E) is determinedby theorems 3 and 2, and is measured by �0 . The derivation mentioned in Theorem 1 in fa
t formalizesthe non-e�e
tive proof of the existen
e of a solving substitution mentioned earlier. In this paper we applythe proof strategy expressed by Theorems 1-3 to the subsystem of the se
ond order arithmeti
 based on the
omprehension s
hema for arithmeti
al formulas with predi
ate parameters. This system is 
alled EA in[16℄, and is obviously predi
ative: it 
an be easily embedded into rami�ed analysis of the level 1, and itsproof-theoreti
 ordinal is proved in [16℄ to be ��0 . This opens the way to the extension of our approa
h torami�ed systems where bound predi
ate variables have levels and range over predi
ate terms of lower levels.Present approa
h to the de�nition of the epsilon substitution for the se
ond order epsilon-terms has twoimportant new features. The values are 
losed arithmeti
al abstra
ts, and the passage to the new substitutionis done a

ording to the rank of some intermediate obje
t (
anoni
al form, 
f. Se
tion 5). These de�nitionshave been found in the framework of the termination proof via 
ut-elimination whi
h is presented in these
tion 6. After this it be
ame possible to give a shorter non-e�e
tive proof whi
h is presented in the se
tion7. This resear
h was supported by Center for the Study of Language and Information, Stanford University,and by the NSF grant DMS-9206976, and its results with proofs appeared in the preprint [13℄ by the �rsttwo authors. Chapters 2 and 4 of the preprint were written by S. Tupailo, Chapter 3 was due to G. Mints.W. Bu
hholz wrote a new version of the 
ore parts of the paper with several te
hni
al improvements andsimpli�
ations.1 The System EA�The formulation here is very 
lose to [7℄.1.1 The language L2�Let us des
ribe in detail the language of �-
al
ulus.Basi
 Symbols0-variables (denoted by x; y; z; : : :);1-variables (denoted by X;Y; Z; : : :);the 0-ary fun
tion 
onstant 0 (zero), and the unary fun
tion 
onstant S (su

essor);predi
ate 
onstants for n-ary 
omputable predi
ates (n � 1) in
luding = (equality), add (addition) and prod(multipli
ation);the propositional logi
al 
onne
tives :, ^, !;the epsilon symbol � and the appli
ation symbol App.De�nition 1 (Terms and formulas)1. Ea
h �-variable is a �-term (� = 0; 1).2. The 
onstant 0 is a 0-term.3. If t is a 0-term, then St is a 0-term.4. If t1,...,tn are 0-terms and p is an n-ary predi
ate 
onstant, then pt1 : : : tn is a formula.5. If t is a 0-term and P is a 1-term then AppPt is a formula.6. If A;B are formulas then :A, ^AB, !AB are formulas.7. If F is a formula and � is a �-variable then ��F is a �-term (�=0,1).To in
rease readability, we sometimes use in�x notation for binary logi
al 
onne
tives, insert parenthesesand use standard abbreviations like A _ B = :A! B.De�nition 2 (�-terms)If G is a formula and z is a 0-variable o

urring free in G, then �zG is a �-term.�-terms (� = 0; 1), formulas and �-terms are 
alled expressions.Terms of the form ��F are 
alled �-terms.The 0-terms 0; S0; SS0; ::: are 
alled numerals. 3



Var denotes the set of all variables, IN denotes the set of all numerals.We de�ne 00 := 0; 01 := �z(z = 0).For ea
h term u we set �(u) := n 0 if u is a 0-term1 if u is a 1-term.Note 1. Instead of usual 
omputable fun
tions we use 
omputable predi
ates (their graphs) to simplifyte
hni
al details. Computable fun
tions 
an be introdu
ed in a familiar way via their graphs [14℄.Note 2. Lambda-symbols are not allowed to o

ur inside other expressions. The result of their substitutioninto other expressions is understood via �-
onversion (
f. De�nitions 6,7 below), whi
h allows to treat themtogether with 1-terms.Synta
ti
 variables:e; u; v; w for expressions,�; � for variables,p for any predi
ate 
onstant and the symbols S;:;^;!;App,s; t for 0-terms,n for a numeral Sn0,P for 1-terms,T for 1-terms and �-terms,A;B; F;G for formulas.The set FV (e) of free variables of an expression e is de�ned in the standard way.De�nition 3FV (0) := ; and FV (�) = f�g for ea
h variable �,FV (pe1 : : : en) = FV (e1) [ : : : [ FV (en),FV (��F ) := FV (F ) n f�g,FV (�zG) := FV (G) n fzg.e is 
alled 
losed i� FV (e) = ;SubstitutionWe identify expressions whi
h are equivalent modulo renaming of bound variables. If u is a �(�)-term thene[�=u℄ denotes the result of substituting u for ea
h free o

urren
e of � in e, where bound variables in e arerenamed if ne
essary. If � is known from the 
ontext we write e[u℄ for e[�=u℄.The next series of de�nitions is needed mainly in the se
tion 3 below to determine 
omputations >frominside repla
ing 
losed �-terms by their values. The depth d(e) is a measure of nesting of 
losed �-subterms,taking into a

ount that 1-�-subterms 
an be substituted by �-terms, and this 
an in
rease nesting by anarbitrary �nite amount. It uses the natural sum fun
tion # on ordinal numbers, whi
h is a 
ommutativeasso
iative analog of the ordinal sum +:!�#!� = !max(�;�) + !min(�;�)De�nition 41. d(�) := d(0) := 02. d(pe1 : : : en) := d(e1)# : : :#d(en), for p 6= App3. d(AppPt) := ! � (d(P )#d(t))4. d(��F ) := � 1 + d(F ) if ��F is 
losedd(F ) otherwise5. d(�zG) := d(G)Note 1. d(e) < !!.Note 2. d(e) = 0 i� e does not 
ontain 
losed �-subterms.De�nition 51. An �-term e = ��F is 
alled 
anoni
al if it is 
losed and d(e) = 1 (i.e. d(F ) = 0).2. A �-term �zG is 
alled 
anoni
al if FV (G) = fzg and d(G) = 0.4



3. e is 
alled simple if d(e) = 0 and e is 
losed.4. e is 
alled arithmeti
al if e 
ontains no 1-variable.5. TRUE (FALSE) denotes the set of all true (false) simple formulas. [Note that a simple formula 
ontainsno variables and is 
onstru
ted from 
omputable atomi
 formulas by boolean 
onne
tives. Every simple termis a numeral℄.6. IB0 := IN; IB1:= the set of all 
anoni
al arithmeti
al �-terms.The obje
ts to be immediately evaluated are 
anoni
al �-terms, and the values of �-terms will be elementsof B�.To de�ne substitution e[Y=T ℄ for expressions e and �-terms T , we extend the `operation' App:De�nition 6App(T; t) := � G[t℄ if T = �zGAppT t otherwiseFor p 6= App we set p(e1; : : : ; en) := pe1 : : : en.De�nition 71. If e 2 Var [ f0g then e[Y=T ℄ := � T if e = Ye otherwise2. (pe1 : : : en)[Y=T ℄ := p(e1[Y=t℄; : : : ; en[Y=t℄)3. (��F )[Y=T ℄ := � ��F if � = Y��F [Y=T ℄ otherwise where it is assumed without loss of generality that � 62 FV (T ).4. (�zF )[Y=T ℄ := �zF [Y=T ℄ assuming that z 62 FV (T ).The next de�nition 
on
erns a restri
tion on the se
ond order 
riti
al formulas whi
h arise in the pro
essof translating EA-derivations (Se
tion 2 below) into EA�-derivations.De�nition 8 (Regular �-terms)A �-term �zG is 
alled regular if it 
an be obtained from a �-term without bound 1-variables by substitutionof �-terms for free variables and z 2 FV (G).1.2 Axioms and inferen
e rules of EA�The language of EA� is L2�.The only inferen
e rule of EA� is modus ponens: F F ! GG .Axioms of EA�Propositional axioms: all propositional tautologies of the language L2�,All substitution instan
es of de�ning axioms for the predi
ate 
onstants, in
luding the predi
ates of additionand multipli
ation:add(s; 0; s) and add(s; t; r)! add(s; St; Sr)prod(s; 0; 0) and prod(s; t; r) ^ add(r; s; r1)! prod(s; St; r1)Equality axioms: t = t and s = t! (F [s℄! F [t℄),Peano axioms for S: St 6= 0 and Ss = St! s = t ,Minimality axioms: �xF [x℄ = St! :F [t℄,Criti
al formulas:F [t℄! F [�xF [x℄℄,s 6= 0! F [�xF [x℄℄ with F := (s = Sx),F [T ℄! F [�XF [X ℄℄ with T being a 1-term or a regular �-term.Comment. Criti
al formulas of the se
ond kind are not present in [7℄. They are needed here to interpreteRobinson's axiom s 6= 0! 9x(s = Sx).This 
on
ludes the des
ription of EA�. Note that the formulass = t! (�xF [x; s℄ = �xF [x; t℄)are 
onsequen
es of the equality axioms of EA�.Note: EA� is 
losed under the substitution rule: if F is derivable and u is a �(�)-term, then F [�=u℄ isderivable. Indeed, all axioms and inferen
e rules of EA� are 
losed under substitution.5



2 Embedding EA into EA�EA is the usual system of elementary analysis (i.e. se
ond order arithmeti
 with the axiom s
heme ofarithmeti
al 
omprehension). The language L2 of EA is obtained from L2� by dropping the epsilon symbol� and adding the existential quanti�er 9. In the de�nition of terms and formulas 
ase 7 is repla
ed by:7. If F is a formula and � is a �-variable (� = 0; 1) then 9�F is a formula.Note that the only 1-terms of L2 are 1-variables.The universal quanti�er is de�ned via 9: 8�F := :9�:F .Axioms of EA(1) Propositional axioms: all propositional tautologies of the language L2,(2) De�ning axioms for the predi
ate 
onstants, in
luding the predi
ates of addition and multipli
ation:add(x; 0; x) and add(x; y; z)! add(x; Sy; Sz)prod(x; 0; 0) and prod(x; y; z) ^ add(z; x; z1)! prod(x; Sy; z1)(3) Equality axioms: x = x and x = y ! (F [x℄! F [y℄),(4) Peano axioms for S: Sx 6= 0 and Sx = Sy ! x = y ,(5) Indu
tion axioms: F [0℄! 8x(F [x℄! F [Sx℄)! 8xF [x℄,(6) First order existential axioms: F [t℄! 9xF [x℄,(7) Se
ond order existential axioms: F [T ℄! 9XF [X ℄,where T is a 1-variable or a �-term 
ontaining no bound 1-variables.Inferen
e rules of EA modus ponens F F ! GG9 ! F [�℄! G9�F [�℄! Gwhere �; � are both 0-variables or 1-variables and the standard proviso is satis�ed: the eigenvariable � doesnot o

ur free in the 
on
lusion 9�F [�℄! G.De�nition 9For any formula F of EA de�ne indu
tively an L2�-formula F �:F � := F for atomi
 F(:F )� := :F � and (F �G)� := (F � �G�) for � = ^;!(9�F [�℄)� := F �[��F [�℄�℄(�zG)� := �zG�Theorem 2.1a) If EA ` F then EA� ` F �.b) If EA ` F and F is 
losed then there exists an EA�-derivation of F � in whi
h all formulas are 
losed.Proof: a) Let EA0 be the set of all L2-formulas F with EA� ` F �.EA0 is 
losed under modus ponens and the existential rule 9 !. (Note that (9�F [�℄! G)� = F �[��F �[�℄℄!G�, and therefore 
losure of EA0 under 9 ! follows from the fa
t that EA� is 
losed under substitution.)The *-translation of any EA-axiom of kind (1){(4) is an EA�-axiom of the same kind.The *-translation of any existential axiom of EA is a 
riti
al formula.Below we show that the *-translation of every indu
tion axiom of EA is derivable in EA�. This will �nishthe proof of a).Observe that b) is an immediate 
onsequen
e of a): Given an EA�-derivation d of a 
losed formula F onesimply repla
es every free �-variable in d by 0�.Now we 
onsider the *-translation A of an indu
tion axiom.Obviously A is of the form G[0℄! G[u℄! G[e℄ with G[x℄ := G[x℄! G[Sx℄, u := �x:G[x℄, e := �x:G[x℄.Let e� := �y(e = Sy).We derive G[0℄! G[u℄! G[e℄ by 
ase distin
tion e = 0, e 6= 0. The �rst 
ase is settled by the equality axiom0 = e ! G[0℄ ! G[e℄. For the se
ond 
ase observe that e 6= 0! G[u℄ ! G[e℄ follows by propositional logi
>from the minimality axiom e = Se� ! ::G[e�℄, the 
riti
al formulas e 6= 0! e = Se�, :G[e�℄! :G[u℄and the equality axiom e = Se� ! G[Se�℄! G[e℄. 26



3 Computations with the �-SubstitutionsDe�nition 10An �-substitution is a fun
tion S su
h thatdom(S) (domain of S) is a set of 
anoni
al �-terms,if e 2 dom(S) then S(e) 2 IB�(e) [ f?g.An �-substitution S is 
alled total if dom(S) is the set of all 
anoni
al �-terms.S := S [ f(e; ?) : e is a 
anoni
al �-term 62 dom(S)g is 
alled the standard extension of S.Comment. We 
onsider a fun
tion as a set of ordered pairs. So an �-substitution is a set of pairs (e; u) wheree is a 
anoni
al �-term and u 2 IB�(e) [ f?g. Hilbert's �nitist position allowed only for �nite �-substitutionsS. All (
anoni
al) �-terms ��F not mentioned in S expli
itly, have default value 0�(�). In fa
t the possiblevalue ? for a term indi
ates exa
tly this default value. The �-substitution pro
ess is de�ned entirely in termsof �nite substitutions: the standard extension S of S is used only to simplify notation for 
omputations withdefault values. Essentially in�nite substitutions appear only in se
tion 7 below.3.1 Computation StepsLet S be an arbitrary �-substitution.De�nition 11 (Indu
tive de�nition of e ,!1S e0)1.1. If (e; u) 2 S and u 6=? then e ,!1S u1.2. If (e; ?) 2 S then e ,!1S 0�(e)2. If 1 � i � n, ei ,!1S e0i and e0i is not a �-term then pe1 : : : en ,!1S pe1 : : : ei�1e0iei+1 : : : en3. If (P; �zG) 2 S then AppPt ,!1S G[t℄4. If F ,!1S F 0 then ��F ,!1S ��F 05. If G ,!1S G0 then �zG ,!1S �zG0.Comment. Sin
e S is de�ned only for 
anoni
al terms whi
h do not 
ontain any proper 
losed �-subterms,
omputations pro
eed from inside, and sin
e 
anoni
al terms are 
losed, no term 
ontaining variables isimmediately 
omputed a

ording to S: only its 
losed subterms 
an be repla
ed.Note. If e ,!1S �zG and e is not a �-term then either (e; �zG) 2 S or (e; ?) 2 S and �zG = 01.De�nition 121. e is 
alled S-redu
ible if there exists an e0 with e ,!1S e0. Otherwise e is 
alled S-irredu
ible or in S-normalform.2. ,!S denotes the transitive and re
exive 
losure of ,!1S.Note. e is S-redu
ible i� e 
ontains 
anoni
al �-subterms in the domain of S. In parti
ular no default
omputations are allowed unless S 
ontains pairs (e; ?).We are going to prove that ,!S is well-founded, i.e. every sequen
e of 
omputation steps is terminating,by showing that ea
h step de
reases the depth d(e) (De�nition 4).Lemma 3.1 If e ,!1S e0 then FV (e0) = FV (e).Proof. Consider the 
ases in the de�nition of ,!1S . If the 
omputation is by 1.1 or 1.2, then FV (e) = ; =FV (e0). In the 
ases 4,5 use the indu
tion hypothesis. The same works in 
ase 2 when p 6= App or p = Appbut the se
ond argument is 
hanged.Let now e = AppPt and e0 = App(P 0; t) with P ,!1S P 0 (re
all the de�nition 6). Then P is an �-term, sin
e1-variables are not redu
ible.1. P is 
anoni
al. Then P 0 = �zG 2 IB1; FV (G) = fzg and e0 = G[t℄. Hen
e FV (e0) = FV (t) = FV (e).2. P is not 
anoni
al. Then e0 = AppP 0t and FV (e0) = FV (P 0)[FV (t) IH= FV (P )[FV (t) = FV (e): 2Lemma 3.2 For ea
h arithmeti
al expression e one has:a) d(e) < !,b) d(e[y=t℄) < (d(t) + 1) � !. 7



Proof. a) is obvious, sin
e App does not o

ur in e and all 
lauses of the de�nition 4 ex
ept 3 add only �niteamount.b) Indu
tion on e. Let y 2 FV (e), sin
e otherwise d(e[y=t℄) = d(e) < !. Set � := (d(t) + 1) � !.1. If e = y then d(e[y=t℄) = d(t) < d(t) + 1 < �.2. If e = pe1 : : : en with p 6= App then d(e[t℄) = d(pe1[t℄ : : : en[t℄) = d(e1[t℄)# : : :#d(en[t℄) < �, sin
e by theindu
tion hypothesis (IH) d(ei[t℄) < � and � is 
losed under #.3. If e = �xF then we 
an assume x 62 FV (t) and d(e[t℄) = d(�xF [t℄) � 1 + d(F [t℄) IH< 1 + � = �.4. If e = �zF , apply IH. 2Lemma 3.3 If e ,!1S e0 then d(e0) < d(e).Proof by indu
tion on the de�nition of ,!1S .1.1, 1.2. If e is a 
anoni
al �-term then d(e0) = 0 < 1 = d(e).2. If e = pe1 : : : en; e0 = pe1 : : : e0i : : : en and ei ,!1S e0i , then:2.1. if p 6= App then d(e0) = d(e1)# : : :#d(e0i)# : : :#d(en) IH< d(e1)# : : :#d(en) = d(e)2.2. if e = AppPt and e0 = AppP 0t, then d(e0) = ! � (d(P 0)#d(t)) IH< ! � (d(P )#d(t)) = d(e).2.3. if e = AppPt and e0 = AppPt0, one pro
eeds as in the 
ase 2.2.3. Let e = AppPt and e0 = G[t℄. Note that 8� < !!(� � ! � ! � �).Then by Lemma 3.2 d(e0) < (d(t) + 1) � ! � ! � (d(t) + 1) � ! � (d(P )#d(t)) = d(e).4, 5. If e = ��F; e0 = ��F 0 or e = �zF; e0 = �zF 0 with F ,!1S F 0 then, sin
e FV (F ) = FV (F 0), we haved(e0) = j + d(F 0) IH< j + d(F ) = d(e) for some j = 0; 1. 2We are going to prove that ,!1S is lo
ally 
on
uent.Lemma 3.4 If e is arithmeti
al and t ,!1S t0 then e[t℄ ,!S e[t0℄.Proof is routine. 2Lemma 3.5 If e ,!1S e0 and e ,!1S e00 then there is an expression u su
h that e0 ,!S u and e00 ,!S u .Proof by indu
tion on e.1. If e 2 dom(S) then e0 = e00.2. Let e = pe1 : : : ei : : : en; e0 = pe1 : : : e0i : : : en and ei ,!1S e0i .2.1. e00 = pe1 : : : e00i : : : en with ei ,!1S e00i . Then by the IH one has e0i ,!S ui and e00i ,!S ui for some ui.Take u := pe1 : : : ui : : : en.2.2.e00 = pe1 : : : e0j : : : en with ej ,!1S e0j and i 6= j. Take u := pe1 : : : e0i : : : e0j : : : en.3. e = AppPt; e0 = G[t℄; e00 = AppPt0 with P ,!1S �zG and t ,!1S t0 . Thene00 ,!S G[t0℄ and, by Lemma 3.4 e0 ,!S G[t0℄ .The remaining 
ases are easy: apply I.H. 2Theorem 3.6 (Chur
h-Rosser Property)For ea
h expression e there exists a unique S-irredu
ible expression e� with e ,!S e�.Proof. By Lemma 3.3 
omputations terminate, and together with Lemma 3.5 this implies uniqueness. 2De�nition 13 (Normal form jejS for expression e)The unique expression e� in the previous theorem is 
alled the S-normalform of e and denoted by jejS.De�nition 14 An expression e is S-
omputable i� d(jejS) = 0Note.1. e is S-
omputable i� jejS = jejS .2. If S is total then every expression is S-
omputable.We prove next that ,!S is preserved under substitution. The main problem will be with �-terms.8



Lemma 3.7a) e ,!1S e0 implies e[�=u℄ ,!S e0[�=u℄.b) u ,!1S u0 implies e[�=u℄ ,!S e[�=u0℄.
) e[�=u℄ ,!S jejS [�=jujS℄:Proof. We �rst prove a) and b) under the assumption that u is not a �-term.a) We use indu
tion on the de�nition of ,!1S .The only non-trivial 
ase is e = AppPt; e0 = G[z=t℄; P ,!1S �zG.Then sin
e P is 
losed and FV (G) = fzg, one has e[u℄ = AppPt[u℄; e0[u℄ = G[z=t[u℄℄. Hen
e by the de�nitionof ,!1S one has e[u℄ ,!1S G[z=t[u℄℄ = e0[u℄.b) We use indu
tion on e assuming � 2 FV (e). Again the only non-trivial 
ase is e = AppPt; P [u0℄ = �zG.Then e[u℄ = AppP [u℄t[u℄; e[u0℄ = G[z=t[u0℄℄ and by IH P [u℄ ,!S �zG; t[u℄ ,!S t[u0℄. Sin
e u is not a�-term, we have �zG 2 IB1. Hen
e there exists a 
anoni
al �-term Q su
h that P [u℄ ,!S Q ,!1S �zG. Hen
ee[u℄ ,!S AppQt[u0℄ ,!1S G[z=t[u0℄℄ = e[u0℄.Now we assume that u is a �-term. We have to 
onsider two additional 
ases.a') e = AppPt and P [u℄ = �zG. Then P = � (otherwise P 
ontains �) and thus u = �zG, e0 = AppPt0 witht ,!1S t0. Hen
e e[u℄ = G[z=t[u℄℄, e0[u℄ = G[z=t0[u℄℄ and t[u℄ ,!S t0[u℄ by IH. Sin
e t[u℄ is not a �-term, by b)we obtain e[u℄ ,!S e0[u℄.b') e = AppPt and P [u℄ = �zG. Then P = � (otherwise P 
ontains �) and thus u = �zG; u0 = �zG0 withG ,!S G0. Hen
e e[u℄ = G[z=t[u℄℄ and e[u0℄ = G0[z=t[u0℄℄. By IH t[u℄ ,!S t[u0℄. Sin
e t[u℄ is not a �-term, bya), b) we obtain G[z=t[u℄℄ ,!S G0[z=t[u℄℄ ,!S G0[z=t[u0℄℄.
) By indu
tion on the number of 
omputation steps, we obtain versions of a),b) with ,!1S repla
ed by ,!S :These imply 
): e[u℄ ,!S jejS [juj℄ ,!S jejS [jujS ℄ . 2The next proposition 
lari�es the stru
ture of normal forms for partial substitutions S, where some
anoni
al �-terms are irredu
ible. It is needed in se
tion 6.3.Lemma 3.8a) If v is an S-irredu
ible subterm of e; d(v) > 0 and e ,!1S e0 then v is also a subterm of e0.b) If e[�=u℄ is S-
omputable and � 2 FV (e) then u is S-
omputable.
) If e is S-
omputable and e ,!S e0 then e ,!S e0.Proof. a) We use indu
tion on the de�nition of ,!1S . Sin
e e is redu
ible, v has to be a proper subterm of eand thus e 
annot be a 
anoni
al �-term.1. Let e = pe1 : : : ei : : : en; e0 = pe1 : : : e0i : : : en and ei ,!1S e0i . Then the 
laim follows immediately from theIH.2. e = AppPt; e0 = G[z=t℄ with P ,!1S �zG. Then P is a 
anoni
al �-term 6= v, and therefore v is not asubterm of P . Hen
e v is a subterm of t and thus of e0 sin
e z o

urs free in G.3. The 
ases e = ��F; e0 = ��F 0 or e = �zF; e0 = �zF 0with F ,!1S F 0 follow immediately from IH.b) Assume for 
ontradi
tion that d(jujS) > 0. Then jujS and hen
e jejS [jujS ℄ 
ontains an S-irredu
ible,
losed �-subterm v. By Lemma 3.7
 and Theorem 3.6 we have jejS [jujS℄ ,!S je[u℄jS , and therefore [by a)℄ vis a subterm of je[u℄jS . This 
ontradi
ts the S-
omputability of e[u℄.
) It suÆ
es to prove the Lemma for one step redu
tions. Assume that e is S-
omputable and e ,!1S e0 holds.By b) every 
anoni
al �-subterm v of e is S-
omputable and therefore in dom(S). Hen
e e ,!1S e0. 2Let us establish some properties of regular �-terms (De�nition 8) needed in se
tion 5.Lemma 3.9a) If T is regular and T ,!1S T 0 then T 0 is regular.b) If T is a 
losed regular �-term with d(T ) = 0 then T 2 IB1.
) If T is a 
losed regular �-term then jT jS 2 IB1.Proof. We have T = e[�1=u1; :::; �n=un℄ where u1; :::; un are �-terms and no bound 1-variable o

urs in e.a) Without loss of generality we may assume that either T 0 = e[u01; u2; :::; un℄ with u1 ,!1S u01 or T 0 =e0[u1; :::; un℄ with e ,!1S e0. In both 
ases one easily sees that T 0 is again regular. (Only if u01 2 IB1 a shortargument is needed.) 9



b) For 
ontradi
tion let us assume that �i 2 FV (e). Then, sin
e T is 
losed, ui is a 
losed �-term and thus0 < d(ui) � d(T ). Hen
e none of �1; :::; �n o

urs free in e and we have T = e whi
h means that T is a 
losed�-term 
ontaining no 1-variables. Hen
e T 2 IB1, sin
e d(T ) = 0.
) follows from a) and b). 24 The rank fun
tionThe rank will measure nesting of bound variables. We extend to the �-language a de�nition known forRami�ed Analysis [16℄.Set o(x) := 0, o(X) := !, o(App) := !, o(p) := o(0) := 0, for p 6= App.In the following � denotes elements from Var [ f�g.De�nition 15 De�nition of rk�(e)1. If � 62 FV(e) [ f�g then rk�(e) := 0.2. For � 2 FV(e) [ f�g we de�ne:rk�(e) := 8><>: o(e) if e 2 Var [ f0gmaxfo(p); rk�(e1); :::; rk�(en)g if e = pe1:::enmaxfo(�); rk�(F ); rk�(F ) + 1g if e = ��Frk�(G) if e = �zG .Note 1. rk�(e) < ! � 2.Note 2. rk�(e) is a measure of nesting of bound variables in subterms of e 
ontaining free variable � , andrk� takes a

ount of all �-subterms. More pre
isely,Lemma 4.1 rk�(e) = supfo(�); rk�(F )+1 : �; ��F o

ur in eg (4)Proof by indu
tion on e. De�neo(e) := supfo(�) : � o

urs in eg; rk1(e) := supfrk�(F )+1 : ��F o

urs in egNote that o(pe1:::en) = maxfo(e1); :::; o(en)g:1. e 2 Var [ f0g. Then rk�(e) = o(e); rk1(e) = 02. e = pe1:::en. Thenrk�(e) IH= maxfo(p);maximaxfo(ei); rk1(ei)gg == maxfo(p);maxi o(ei);maxi rk1(ei)g = maxfo(e); rk1(e)g.3. e = ��F . Thenrk�(e) = maxfo(�); rk�(F ); rk�(F )+1g IH= maxfo(�); o(F ); rk1(F ); rk�(F )+1g = maxfo(e); rk1(e)g4.e = �zG. Then rk�(e) = rk�(G) IH= maxfo(G); rk1(G)g = maxfo(e); rk1(e)g. 2Next Lemmas establish properties of rank.Lemma 4.2a) e arithmeti
al =) rk�(e) < !b) X 2 FV(e) =) ! � rkX(e).
) ! � rk�(P ), for ea
h 1-term P .Proof. Easy indu
tion on e; P .Lemma 4.3If d(e) = 0 and e is not a �-term then rk�(e) � supfrk�(e) : � 2 FV(e)g.Proof:1. e = 0: Then rk�(e) = 0. e = � 2 Var: Then rk�(e) = o(�) = rk�(e).2. e = ��F : Then, sin
e d(e) = 0, we have d(F ) = 0 and FV(e) 6= ;. Therefore10



maxfo(�); rk�(F )+1g � supfrk�(e) : � 2 FV(e)g and, by I.H., rk�(F ) � supfrk�(F ) : � 2 FV(F )g.Hen
e rk�(e) = maxfo(�); rk�(F ); rk�(F )+1g � supfrk�(e) : � 2 FV(e)g.3. e = pe1:::en. Sin
e ! � rk�(P ) for ea
h 1-term P , we haverk�(e) = maxfrk�(e1); :::; rk�(en)g IH� supfrk�(ei) : � 2 FV(ei)& 1�i�ng � supfrk�(e) : � 2 FV(e)g. 2Lemma 4.4If ��F is 
anoni
al then rk�(F ) � rk�(F ) and rk�(��F ) = maxfo(�); rk�(F )+1g.Proof:Sin
e ��F is 
anoni
al, we have d(F ) = 0. By 4.3 this yieldsrk�(F ) � supfrk�(F ) : � 2 FV(F )g and thus (sin
e FV(F ) � f�g ) rk�(F ) � rk�(F ).Hen
e rk�(��F ) = maxfo(�); rk�(F ); rk�(F ) + 1g = maxfo(�); rk�(F ) + 1g. 2The next two lemmas show that the rank does not in
rease during 
omputation.Lemma 4.5rk�(e[y=t℄) < maxf!; rk�(t)+1g, if e is arithmeti
al.Proof: Let y 2 FV(e) and � 2 FV(e[t℄) [ f�g. (Otherwise rk�(e[t℄) = rk�(e) < ! or rk�(e[t℄) = 0.)1. e = y: rk�(e[t℄) = rk�(t).2. e = pe1:::en: Then rk�(e[t℄) = maxfo(p); rk�(e1[t℄); :::; rk�(en[t℄)g, and the assertion follows by I.H..3. e = �xF . Then o(x) = 0, rk�(e[t℄) = maxfrk�(F [t℄); rkx(F [t℄) + 1g and, by I.H.,rk�(F [t℄) < maxf!; rk�(t) + 1g and rkx(F [t℄) < maxf!; rkx(t) + 1g = !.The last equation holds by 
lause 1 in the de�nition of rank, sin
e x 62 FV(t) [ f�g.4. e = �zG. The assertion follows by I.H. 2Lemma 4.6If e ,!1S e0 then rk�(e0) � rk�(e).Proof by indu
tion on the de�nition of ,!1S :Let � 2 FV(e0) [ f�g. (Otherwise rk�(e0) = 0.)1.1. If e is a 
anoni
al 0-�-term then rk�(e0) = 0, sin
e e0 2 IN.1.2. If e is a 
anoni
al 1-�-term then rk�(e0) < ! � rk�(e), sin
e e0 is arithmeti
al and � = �.2. e = pe1:::en or e = �yF :2.1. e = AppPt and e0 = G[z=t℄ with P ,!1S �zG. Thenrk�(e0) 4:5� maxf!; rk�(t)g � rk�(e) = maxf!; rk�(P ); rk�(t)g.2.2. otherwise: immediate from I.H.3. e = ��F and e0 = ��F 0 with F ,!1S F 0:rk�(e0) = maxfo(�); rk�(F 0); rk�(F 0)+1g IH� maxfo(�); rk�(F ); rk�(F )+1g = rk�(e). 2Substitution of a variable by an appropriate 
anoni
al value also does not in
rease the rank.Lemma 4.7rk�(e[�=u℄) � rk�(e), for ea
h u 2 IB�(�).Proof by indu
tion on e: Let e0 := e[�=u℄ and assume that � 2 FV(e) and � 2 FV(e0) [ f�g.Note that FV(e0) = FV(e) n f�g.1. e = �: Then � = � and rk�(e0) = 0 (if �(�) = 0) or rk�(e0) < ! = rk�(e) (if �(�) = 1).2. e = App�t and u = �zG: Then e0 = G[z=t[u℄℄ and thusrk�(e0) 4:5� maxf!; rk�(t[u℄)g IH� maxf!; rk�(t)g = rk�(e).3. e = ��F . Thenrk�(e0) = rk�(��F 0) = maxfo(�); rk�(F 0); rk�(F 0) + 1g IH� maxfo(�); rk�(F ); rk�(F ) + 1g = rk�(e).4. In all other 
ases the assertion follows immediately from IH. 2The next statement shows that our de�nition of rank is suitable: the rank de
reases when the 'body' ofa 
anoni
al �-term is substituted by a 
anoni
al value.11



Lemma 4.8If ��F is 
anoni
al then rk�(F [u℄) < rk�(��F ), for ea
h u 2 IB�(�).Proof: rk�(F [u℄) 4:7� rk�(F ) 4:4� rk�(F ) < rk�(��F ). 2De�nition 16 rk(e) := rk�(e) is 
alled the rank of e.De�nition 17 (Trun
ation to a given rank)For ea
h �-substitution S and r 2 On we set S�r := f(e; u) 2 S : rk(e) � rg.Analogously we de�ne S�r, S<r, S>r.Lemma 4.9If S; S0 are �-substitutions with S�r = S0�r then jejS = jejS0 holds for all expressions e of rank � r.Proof:Sin
e all subterms of an expression e have ranks � rk(e), we have:rk(e) � r ) 8e0( e ,!S e0 , e ,!S0 e0 ).Together with Lemma 4.6 this yields the assertion by indu
tion on d(e). 25 The H-pro
essLet us re
all that 
riti
al formulas are formulas of three types:F [t℄! F [�xF [x℄℄,s 6= 0! F [�xF [x℄℄ with F := (s = Sx),F [T ℄! F [�XF [X ℄℄ with T a 1-�-term or regular lambda-term.We assume that Cr0; :::; CrN (with N 2 IN) is a �xed sequen
e of 
losed 
riti
al formulas.In this se
tion we de�ne a su

essive approximation pro
ess for �nding a solution of this system a

ordingto Hilbert's approa
h. It is useful to re
all here a Comment from Se
tion 3. The H-pro
ess will be arrangedin su
h a way that all non-default values of �-terms are 
orre
t: S(�xF [x℄) is the least n satisfying F [n℄, andS(�XF [X ℄) is an arithmeti
al �-term T satisfying F [T ℄.De�nition 18F [[x=n℄℄ := F [x=n℄ ^ :F [x=n�1℄ ^ : : : ^ :F [x=0℄,F [[X=T ℄℄ := F [X=T ℄.De�nition 19Let S be an �-substitution:e ,!S TRUE (FALSE) :() jejS 2 TRUE (FALSE).F(S) := fF [[�=u℄℄ : (��F; u) 2 S&u 6=? gS is 
orre
t i� A ,!S TRUE for all A 2 F(S).S is solving i� CrI ,!S TRUE for I = 0; :::; N . Otherwise S is nonsolving.S := S [ f(e; ?) : e 
anoni
al �-term 62 dom(S)g is 
alled the standard extension of S, 
f. Se
tion 3.The de�nition of a term whose value is to be 
orre
ted (H-term) to a new value (H-value) and ofthe �-substitution H(S) to whi
h S is redu
ed by this 
hange of value, is given in terms of the standardextension S. In fa
t the �rst term of minimal rank is 
hosen, and all values of higher rank are 
an
elled.Sin
e �-substitutions are de�ned only for 
anoni
al terms, all these operations are pre
eded by transformingarbitrary �-term ��F into its 
anoni
al form ��jF jS .De�nition 20Let S be an �-substitution su
h that S is nonsolving. (Then jCrI jS 2 FALSE for some I � N .)Set rI := rk(��jF jS), where CrI = F0 ! F [��F ℄.Cr(S) := CrI , where I � N is su
h thatjCrI jS 2 FALSE&8J � N [ jCrJ jS 2 FALSE ) rI < rJ _ (rI = rJ ^ I � J)℄.12



Let Cr(S) = F0 ! F [��F ℄:��jF jS is 
alled the H-term of S.The H-value v of S is de�ned as followsa) if �(�) = 1 and F0 = F [T ℄ then v := jT jS,b) if �(�) = 0, F0 = (s 6= 0), and F = (s = Sx) then v := jsjS � 1,
) if �(�) = 0 and F0 = F [t℄ then v := the unique n 2 IN with jF jS [[n℄℄ ,!S TRUE.Remark: If e is the H-term and v the H-value of S, then v 2 IB�(e). (For �(e) = 1 
f. Lemma 3.9
.)The next de�nition is 
entral for the substitution method.De�nition 21 If S is nonsolving thenH(S) := (S n f(e; ?)g)�rk(e) [ f(e; v)g, where e is the H-term and v the H-value of S.Let us prove that H(S) is indeed a 
orre
t �-substitution if S is 
orre
t and nonsolving.Lemma 5.1Let S be an �-substitution su
h that S is 
orre
t and nonsolving,and let e be the H-term, v the H-value of S. Then the following holds:a) (e; ?) 2 S,b) jejH(S) = v 6= 0�(e),
) H(S) is 
orre
t.Proof:Let Cr(S) = F0 ! F [��F ℄. Then e = ��jF jS .a) Assumption: (e; w) 2 S and w 6=?. Then, sin
e S is 
orre
t, by Lemma 3.7
 F [��F ℄ ,!S jF jS [w℄ ,!STRUE.On the other hand, sin
e Cr(S) ,!S FALSE, we have F [��F ℄ ,!S FALSE. Contradi
tion.b) By Lemma 3.7b we have F [e℄ ,!S FALSE and F [v℄ ,!S TRUE. Hen
e, by 3.7b, v 6= jejS = 0�(e).The equation jejH(S) = v holds, sin
e (e; v) 2 H(S).
) Let (��A;w) 2 H(S) with w 6= ?. Then (��A;w) 2 S or ��A is e and w is v. One has jA[[w℄℄jS 2 TRUE: inthe �rst 
ase sin
e S is 
orre
t, and in the se
ond 
ase by de�nition of H(S) and Lemma 3.7
. By Lemma4.8 one has rk(A[[w℄℄) < rk(e), and by Lemma 4.9 jA[[w℄℄jH(S) = jA[[w℄℄jS . 2De�nition 22The H-pro
ess (for Cr0; :::; CrN ) is de�ned as follows:S0 := ;, Sn+1 := �H(Sn) if Sn is nonsolving; otherwise .The H-pro
ess terminates i� there exists an n 2 IN su
h that Sn is solving.The next de�nition determines when the substitution S itself, (and not S) 
ontains suÆ
ient information to
ompute all ne
essary values. An important instan
e is the provable in
orre
tness of S.De�nition 23Let S be an �-substitution.S is 
omputationally in
onsistent (
i) i� A ,!S FALSE for some A 2 F(S).Otherwise S is 
omputationally 
onsistent (

).An expression e is S-
omputable i� d(jejS) = 0.S is 
omputing i� all formulas A 2 F(S) are S-
omputable.S is de
iding i� S is 
omputing and the 
riti
al formulas Cr0; :::; CrN are S-
omputable.Remark1. A 
losed formula A is S-
omputable i� A ,!S TRUE or A ,!S FALSE.2. e is S-
omputable i� jejS = jejS .3. If S is 
omputing and 

 then S is 
orre
t.The next de�nition requires that all steps for 
omputing H(S) are possible in terms of S itself.13



De�nition 24Let S be an � substitution. We say that the H-rule applies to S i�(1) S is 

, de
iding, nonsolving, and(2) if Cr(S) = F [t℄! F [�xF ℄ then there exists an n 2 IN with jF jS [[n℄℄ ,!S TRUE.Lemma 5.2Let S be 

, de
iding, nonsolving, and Cr(S) = F [t℄! F [�xF ℄. Thena) jtjS 2 IN and F [jtjS ℄ ,!S TRUE.b) If the formulas F [i℄ (i < jtjS) are S-
omputable then the H-rule applies to S.Proof:a) Sin
e Cr(S) ,!S FALSE and Cr(S) is S-
omputable, we have F [t℄ ,!S TRUE. Now the assertion followsby the Lemmas 3.7b and 3.8b.b) Let m := jtjS . Sin
e F [m℄ ,!S TRUE and sin
e F [0℄; :::; F [m�1℄ are S-
omputable, forn := minfk : F [k℄ ,!S TRUEg we have n � m and jF jS [[n℄℄ ,!S TRUE. 2Lemma 5.3If the H-rule applies to S then H(S) is 
orre
t.Proof: (
f. proof of 5.1)Let (��A;w) 2 H(S) with w 6= ?. We have to prove jA[[w℄℄jH(S) 2 TRUE. But rk(A[[w℄℄) < rk(e) (with ethe H-term of S) and therefore jA[[w℄℄jH(S) = jA[[w℄℄jS . If (��A;w) 2 S then jA[[w℄℄jS 2 TRUE, sin
e S is
orre
t. Otherwise ��A = e and w = H-value of S. We treat the 
ase where Cr(S) = F [T ℄ ! F [�XF [X ℄℄and leave the two other 
ases to the reader. Then ��A = e = ��jF jS and w = jT jS. Sin
e S is de
iding,F [T ℄ is S-
omputable and therefore (by Lemmas 3.7
 and 3.8
) jF [T ℄jS = j jF jS [ jT jS ℄ jS = jA[[w℄℄jS . Sin
ejCr(S)jS 2 FALSE and S is de
iding, we have jF [T ℄jS = jF [T ℄jS 2 TRUE. 26 Termination proof via Cut-eliminationIn this se
tion we apply the general s
hema from [12℄ for redu
ing the termination problem for theH-pro
ess to the 
ut-elimination problem in some spe
ially devised sequent 
al
ulus with a kind of !-rule.The termination proof is 
onstru
tive and uses indu
tion up to ��0 . In the sequel we use r as synta
ti
variable for ordinals (< ��0).6.1 The system �EAThe original in�nite derivation 
onstru
ted for a given system E of 
riti
al formulas represents the treeof all �nite �-substitutions: empty substitution is put at the bottom, and all one-
omponent extensions ofS are pla
ed above S (the rule Cut below). The bran
h of this tree is terminated (
f. Axioms below) whena provably in
orre
t substitution, solution, or a substitution admitting H-rule is rea
hed. This 'bottom-up'view of the inferen
e rules is helpful below.The Cut-elimination pro
ess introdu
es steps of the H-pro
ess into this tree in the form of the rulesFr;H. The rule Fr temporarily 'freezes' the default value of e, whi
h may be 
hanged by the rule H intonon-default values.De�nition 25A sequent is a fun
tion � su
h that dom(�) is a set of 
anoni
al �-terms, and �(e) 2 IB�(e) [ f?; ?Æg forea
h e 2 dom(�).So a sequent is almost the same as an �-substitution. A 
omponent (e; ?0) of a sequent S indi
ates thatthe default value for e is �xed and will not be 
hanged in the extensions of S to be 
onsidered. By identifying? and ?Æ we asso
iate with every sequent � an �-substitution whi
h is also denoted by �. A sequent �is 
alled 
orre
t (

, de
iding, 
omputing) if the asso
iated �-substitution has the respe
tive property. Ananaloguous 
onvention is followed with respe
t to notations like jej�, ,!�, et
.14



Abbreviation:(e; u);� := f(e; u)g [�, if e 62 dom(�).� � r :() 8(e; u) 2 �(rk(e) � r) ( () � = ��r). In the same way we de�ne \� � r".De�nition 26�f := f(e; u) 2 � : u =?Æg; �t := f(e; u) 2 � : u =?g: �xed and temporary part of a sequent.The system �EARules of inferen
e:(Cut) (e; ?Æ);� : : : (e; u);� : : : (u 2 IB�(e))� (CutFr) (e; ?);� : : : (e; u);� : : : (u 2 IB�(e))�(Fr) (e; ?);�� (H) (e; v);��rk(e)(e; ?);� ,if the H-rule applies to (e; ?);�, ande is the H-term, v the H-value of (e; ?);�.Axioms:(AxF) �, if � is 
i(AxS) �, if � is 

, de
iding, and solving(AxH) (e; ?Æ);�, if the H-rule applies to (e; ?);� and e is the H-term of (e; ?);�.In the above rules and axioms e always denotes a 
anoni
al �-term not in dom(�).We 
all e the main term of the respe
tive inferen
e.De�nition 27 By a dedu
tion in �EA we mean a dedu
tion (i.e. wellfounded tree) a

ording to the rules ofinferen
e of �EA from axioms of �EA and additional sequents. By a derivation in �EA we mean a dedu
tionin �EA from axioms of �EA only.By h(d) we denote the height of the dedu
tion d, i.e. h(d) := supfh(du) + 1 : u 2 Ig where (du)u2I is thefamily of immediate subdedu
tions of d.If I is an inferen
e then rk(I) denotes the rank of its main term.If d is a dedu
tion, and X is one of the symbols Cut, CutFr, Fr, H, and ./ is one of the symbols <;�; >;�;=thenX(d) ./ r :() rk(I) ./ r for every X-inferen
e I in d.Hen
e \Cut(d) < r" means that all 
uts in d have rank < r, and \X(d) < 0" means that there are noX-inferen
es in d.6.2 Cut-eliminationCuts will be eliminated in the usual way beginning with the maximal rank r. Eliminated 
uts will berepla
ed by CutFr and H with the same main term, i.e. with the same rank. More pre
isely, a 
ut will berepla
ed by CutFr and then moved (permuted) up the derivation until one en
ounters AxS with a main terme tra
eable to the main formula (e; ?) of CutFr. Then the AxS is repla
ed by the rule H, and the derivation ofthe 
orresponding right premise of the 
ut is pla
ed over the rule H. After all 
uts of rank r are eliminated,these CutFr will be pruned to Fr. So �nally 
uts of rank r will be repla
ed by Fr of rank r. This motivatesthe followingDe�nition 28 Let d be a dedu
tion.d is an r-dedu
tion i� Cut(d) < r & CutFr(d) < 0 & Fr(d) � r & H(d) � r.d is an r+-dedu
tion i� Cut(d) < r & CutFr(d) = r & Fr(d) > r & H(d) � r.Lemma 6.1Every r+-derivation d of � 
an be transformed into an r-derivation d0 of � with h(d0) � h(d) by pruningea
h CutFr to Fr. 15



Proof is obvious. 2Lemma 6.2 (Properties of �xed and temporary parts of a sequent)a) If � is a sequent in an r+1-dedu
tion of ; then �t > r and �f � r.b) If � is a sequent in an r+-dedu
tion of a sequent � then(1) ��r n�t � �,(2) (�f)�r � �,(3) �t � r ) �t � r.Proof.a) is proved by the bottom-up indu
tion on the given dedu
tion. This statement is obviously true for ;, andis inherited from 
on
lusion to the premise of a rule: temporary part �t is in
reased only by Fr whi
h hasrank � r+1 > r, and �f is in
reased by Cut whi
h has rank < r + 1 (i.e. � r).b)(1) The only nontrivial 
ase is (H). Let � = (e; ?);� and � = (e; v);��rk(e). Then ��r n�t � ��r � �,sin
e r � rk(e).(2) Going from � down to � the only points where some (e; ?Æ) 
ould vanish are Cut-inferen
es. But ea
hCut in an r+-derivation has rank < r.(3) holds, sin
e Fr(d) > r and CutFr(d) = r, so that formulas added to �t are of the rank � r. 2Appli
ability of the standard 
ut-elimination transformations in our 
ase is seriously restri
ted by non-admissibility (in general) of the weakening rule: adding 
omponents to a sequent 
an fail to produ
e asequent.De�nition 29 Two sequents �;� are multipli
able if � [ � is a fun
tion. In this 
ase we write � �� for� [ �, and say that � �� is de�ned.Lemma 6.3Let d be an r+-derivation of �. Let � � r be a 
orre
t sequent su
h that � �� is de�ned and(�f)�r � �; �t � r. Then there exists an r+-derivation d �� of � �� with h(d ��) � h(d).Proof by indu
tion on d:We distinguish 
ases a

ording to the last inferen
e of d.1. Cut with main term e: Then rk(e) < r.(a) e 62 dom(�): d �� is obtained from (du ��)u2IB�(e)[f?Æg by the same Cut.(b) (e; ?) 2 �: This 
annot happen, sin
e �t � r and rk(e) < r.(
) (e; u) 2 � with u 2 IB�(e) [ f?Æg:Then ((e; u);�) �� = � ��, and therefore the Cut is pruned: the derivation d �� := du �� has endsequent� ��.2. CutFr with main term e. Then rk(e) = r and (e; ?Æ) 62 �. Hen
e (e; ?Æ) 62 �, sin
e (�f)�r � �.(a) e 62 dom(�): As (a) above.(b) (e; u) 2 � with u 2 IB�(e) [ f?g: as (
) above.3. Fr with main term e: Then ((e; ?);�) �� is de�ned, sin
e � � r < rk(e).4. H with main term e: Then rk(e) � r, and � = (e; ?);� is derived from �0 := (e; v);��rk(e).>From � � r � rk(e) it follows that �0 := � n f(e; :::)g is still 
orre
t, and that (�0f)�r � �0.>From e 62 dom(�0) and �0 � (e; v);� it follows that �0 ��0 is de�ned.Sin
e �0 � r � rk(e), we also get �0 ��0 = (e; v);��rk(e) ��0 = (e; v); (���0)�rk(e) and ��� = (e; ?);���0.So d �� is obtained from d0 ��0 by an H-inferen
e of the same kind.5. Axioms: If � is an axiom then � �� is an axiom of the same kind. 2We 
ontinue to investigate admissibility of weakening .De�nition 30 (�0; :::;�n) is an r-path (for �n) if it is a path in some r-dedu
tion of �0 = ;.Lemma 6.4Let (�0; :::;�n) be an r+1-path for � := �n. Let � � r be a 
orre
t sequent su
h that ��r � �.Then � �� is de�ned, and there exists a dedu
tion of � from � �� 
onsisting only of Fr- and H-inferen
esof ranks > r. 16



Proof by indu
tion on n: Let n > 0 and �0 := �n�1.� �� is de�ned, sin
e ��r � � = ��r. Note that �0�r � ��r, and therefore by I.H. there is a dedu
tion of� from �0 ��. We now show that either �0 �� = ��� or �0 �� derives from ��� by a Fr- or H-inferen
e ofrank > r. For this we distinguish 
ases a

ording to the topmost inferen
e in (�0; :::;�n), i.e. the inferen
efrom � to �0.1. Cut : We have � = (e; u);�0 and rk(e) � r. Then the Cut is pruned. Indeed, (e; u) 2 � and thus� �� = �0 ��.2. CutFr : This 
annot happen.3. Fr with main term e, and � = (e; ?);�0: Then rk(e) > r and � �� = (e; ?);�0 ��.4. H with main term e, and � = (e; v);��rk(e); �0 = (e; ?);�:Then �0�� is derived from ��� by H. Indeed rk(e) > r, ��� = (e; v); (���)�rk(e), and �0�� = (e; ?);���.The H-rule applies to �0 �� (
f. De�nition 24), sin
e the H-rule applies to �0, and � is 
orre
t. 2Appli
ability of the 
ut-redu
tion transformation is restri
ted more or less to subderivations of `good'derivations of an empty sequent ;.Lemma 6.5Let d be a derivation ending with a 
ut C of rank r su
h that the immediate subderivations of d are r+-derivations, and there exists an (r+1)-path for the endsequent � of d.Then there exists an r+-derivation d0 of � with h(d0) � h(d) + ! + h(d).Proof. Let e be the main term of C, and du the immediate subderivations of d.We transform d as follows:(1) The 
ut C is turned into an inferen
e CutFr by 
hanging every sequent (e; ?Æ);�0 of d?Æ into (e; ?);�0.The only rules that are damaged by this transformation are axioms AxH of the form (e; ?Æ);� whi
h nowbe
ome (e; ?);�. At ea
h of these points we extend the dedu
tion by the 
orrespondingH-inferen
e, obtainingthereby the new top sequent (e; v);��r.(2) We 
onsider now one su
h top sequent � := (e; v);��r.By Lemma 5.3 � = ��r is 
orre
t, and by 6.2a,b(1) we get ��r = ��r n�t � �.(3) By Lemma 6.4 � �� is de�ned, and there exists a dedu
tion of � from � �� 
onsisting only of Fr- andH-inferen
es of ranks > r.(4) To derive top sequents ��� in (3) we 
onsider now the subderivation dv of �0 := (e; v);� in the originalderivation d.�0 � � is de�ned, sin
e � � � is de�ned and (e; v) 2 �. By Lemma 6.2b(2),(3) (applied to d?Æ) we have((e; ?Æ);�)f�r � (e; ?Æ);� and ( ((e; ?Æ);�)t � r ) ((e; ?Æ);�)t � r ). By 6.2a (applied to the (r+1)-pathfor �) we have �t > r. Hen
e (�f)�r � �0 and �t � r. Now by Lemma 6.3 there is an r+-derivation dv ��of �0 ��, i.e. of � ��.(5) The stru
ture of d0 is the following: to some tops of the dedu
tion d0?Æ of (e; ?);� (whi
h is an r+-dedu
tion) one-bran
h dedu
tions from Lemmma 6.4 are added, and the tops of the latter dedu
tions arer+-derived by Lemma 6.3. Hen
e the entire derivation is an r+-derivation. 2Now 
ut redu
tion is iterated in the standard way.Lemma 6.6If d is an r+1-derivation of �, and � has an r+1-path then there exists an r+-derivation d0 of � withh(d0) � !h(d)+1.Proof by indu
tion on h(d):If h(d) = 0, i.e. d 
onsists of an axiom, the assertion is obvious. Assume h(d) > 0.Let I be the last inferen
e of d. Let (du)u2I be the family of immediate subderivations of d, and �u theendsequent of du. Then by I.H. for ea
h u 2 I we have an r+-derivation d0u of �u with h(d0u) � !h(du)+1 �!h(d). Let d+ be the derivation of � whi
h is obtained from the family (d0u)u2I by I.Obviously h(d+) � !h(d) + 1.1. I is not a 
ut of rank r: Then d+ is an r+-derivation of �.2. I is a 
ut of rank r: In that 
ase we apply Lemma 6.5 to d+, and obtain an r+-derivation d0 of � withh(d0) � h(d+) + ! + h(d+) < !h(d)+1. 2 17



Lemma 6.7If d is an !-derivation of �, and � has an !-path f in whi
h all 
uts are of rank � r (with r < !) thenthere exists an r+-derivation d0 of � with h(d0) � �h(d)+1.Proof by indu
tion on h(d):1. Suppose that d ends in a 
ut of rank r + n. Let du be the !-subderivations of its premises. By I.H. ea
hdu 
an be transformed into an (r+n)+-derivation d0u. By repla
ement of du by d0u for all u the derivation dis turned into a derivation 
 with h(
) = supu(h(d0u) + 1) � supu(�h(du)+1 + 1) � �h(d) + 1.To the derivation 
 we apply Lemma 6.5 and obtain an (r+n)+-derivation 
0 of � with h(
0) � h(
)+!+h(
) <�h(d)+1.Now n appli
ations of Lemmata 6.1,6.6 yield the 
laim.Note that for ea
h i 2 IN f is an (r+i+1)-path, and (� < �h(d)+1 ) !�+1 < �h(d)+1).2. Suppose that d ends in some other inferen
e I. Again by I.H. ea
h immediate subderivation du transformsinto an r+-derivation d0u. By repla
ement of du by d0u for all u the derivation d is turned into an r+-derivationd0 with h(d0) = supu(h(d0u) + 1) � supu(�h(du)+1 + 1) � �h(d)+1. 2Lemma 6.8 (Cut-elimination)Let d be an r-derivation of ; with r < ! + ! and h(d) < �0.Then there exists a 0-derivation d0 of ; with h(d0) < ��0 .Proof: w.l.o.g. r = ! + n. Then n appli
ations of 6.6,6.1 yield an !-derivation dÆ of ; with h(dÆ) < �0. TodÆ we apply 6.7, 6.1 and obtain a 0-derivation d0 of ; with h(d0) � �h(dÆ)+1 < ��0 . 2The next Lemma says in fa
t that a 
ut-free derivation of the empty sequent is a proto
ol of a terminatingH-pro
ess.Lemma 6.9A 0-derivation d of ; 
onsists of exa
tly one bran
h and the following holds:(a) all sequents in d are 
orre
t;(b) the top sequent of d is an axiom AxS, and all other inferen
es in d are of the kind Fr or H.Proof.(a) Proof by bottom-up indu
tion: H : 
f. Lemma 5.3. Fr : If � is 
orre
t and e 62 dom(�) then (e; ?);� is
orre
t.(b) Sin
e d is a 0-derivation, there are no Cut- or CutFr-inferen
es in d. Hen
e d is linear. By bottom-upindu
tion we obtain �f = ; for ea
h sequent � in d. Sin
e d is wellfounded, there exists a top sequent �.This has to be an axiom. By (a) � is not 
i. Sin
e �f = ;, � 
annot be an axiom AxH. 26.3 Constru
tion of the original derivationHere we 
onstru
t the tree of �nite �-substitutions mentioned at the beginning of the se
tion 6. Generalidea here is the same as in [12℄. At ea
h stage leaves of the tree are extended (by the bottom-up appli
ationof Cut) to make them \more 
omputed" till the axioms are rea
hed. Subterms of the non-
omputed (butneeded) �-terms of maximum rank are 
omputed till these maximum �-terms 
an be redu
ed to a 
anoni
alform and then 
omputed. Note that the following de�nitions are stated for a given substitution S, and notfor its 
ompletion S.De�nition 31 Let S be an �-substitution and � a �nite set of 
losed formulas.�S(�) := maxfrk(jAjS) : A 2 �; d(jAjS) > 0g [ f0g�S(�) := !! � r +#S(�; r) where r := �S(�),#S(�; r) := dr(jA1jS)# : : :#dr(jAnjS), where � = fA1; :::; Ang without repetitions,dr(F ) := � 0 if rk(F ) < rd(F ) otherwise .Note that �S(�) < ! + !; #S(�; r) < !!; �S(�) < !!+1 � 3.18



Lemma 6.10 (One step of extension)Let S be an �-substitution and � a �nite set of 
losed formulas.Let e = ��F 62 dom(S) be a 
anoni
al �-subterm of a formula jA0jS with A0 2 �; rk(jA0jS) = �S(�).Let u 2 IB�(e) [ f?g, S0 := S [ f(e; u)g, and �0 := if u =? then � else � [ fF [[u℄℄g.Then �S0(�0) � �S(�) and �S0(�0) < �S(�).Proof:(a) Sin
e S � S0, we have jjwjS jS0 = jwjS0 and thus rk(jwjS0) � rk(jwjS), d(jwjS0 ) � d(jwjS) for ea
h w.Let r := �S(�) and r0 := �S0(�0).One easily sees that r0 � r. Indeed, rk(jF [[u℄℄jS0 ) � rk(F [[u℄℄) < rk(e) � r, and for remaining terms wo

urring in � 
f (a) .Let r0 = r (for r0 < r the 
laim is trivial: �S0(�0) < !! � (r0 + 1) � !! � r).For ea
h A 2 � we have rk(jAjS0) � rk(jAjS); d(jAjS0 ) � d(jAjS) and thus dr(jAjS0) � dr(jAjS).Moreover jA0jS is S0-redu
ible and rk(jA0jS) = r. Hen
e dr(jA0jS0) < dr(jA0jS) (Lemma 3.3).Finally dr(jF [[u℄℄jS0 ) = 0, sin
e rk(jF [[u℄℄jS0) < r. 2Lemma 6.11 (Rank redu
tion)Let � be a sequent, L a �nite set of 
losed formulas, and r := ��(F(�) [ L) (
f. De�nition 19).Then there is a dedu
tion d of � by 
uts of ranks � r from 
omputing sequents � 
ontaining � and 
omputingall formulas in L. Moreover h(d) � ��(F(�) [ L).Proof by indu
tion on ��(F(�) [ L):Let � := F(�) [ L. If � 
omputes all formulas in � we are done.Otherwise there exists a 
anoni
al �-subterm e = ��F of a formula jA0j� with A0 2 �; rk(jA0j�) = r.Let u 2 IB�(e) [ f?Æg and �0 := (e; u);�. Then F(�0) = if u =?Æ then F(�) else F(�) [ fF [[u℄℄g.By the Lemma 6.10 r0 := ��0(F(�0) [ L) � r and ��0(F(�0) [ L) < ��(F(�) [ L).Hen
e (by I.H.) there exists a dedu
tion du of �0 by 
uts of ranks � r0 from 
omputing sequents � 
ontaining�0 and 
omputing all formulas in L, and h(du) � ��0(F(�0) [ L).A 
ut with main term e yields the desired dedu
tion d. 2Lemma 6.12There exists an r < ! + ! and an r+1-derivation d of the empty sequent 
ontaining only axioms and 
uts.In addition we have h(d) < !!+2.Proof:First apply Lemma 6.11 to the empty sequent and the set L := fCr0; :::; CrNg. Let r := �;(L), and 
onsideran arbitrary top sequent � of the resulting r+1-dedu
tion dÆ whi
h is not an axiom. Then � is 

, de
idingand nonsolving. Sin
e the only inferen
es in dÆ are 
uts of rank � r, we have �t = ; and rk(e) � r for ea
he 2 dom(�). Let e be the H-term of �. Sin
e � is de
iding, e is �-
omputable (
f. Lemmas 3.7
 and 3.8b).Together with Lemma 5.1a and �t = ; this implies (e; ?Æ) 2 �. Sin
e � is not an axiom AxH, it followsthat Cr(�) is of the form F [t℄ ! F [�xF ℄ and e = �xA with A := jF j�. By Lemma 5.2 A[n℄ ,!� TRUE forn := jtj�.Now let L0 := fA[n�1℄; : : : ; A[0℄g. Then ��(F(�) [ L0) � r. Apply Lemma 6.11 to �, L0 and 
onsiderany 

 top sequent � of the resulting r+1-dedu
tion. � 
ontains � and 
omputes all formulas in L0. NowLemma 5.2b yields that � is an axiom AxH with main term e. 2Theorem 6.13 . The H-pro
ess terminates.Proof. Combine Lemmata 6.12, 6.8, 6.9. Cf. [12℄.6.4 Produ
ing a substitution in terms of �nite predi
ates6.4.1 SoundnessLemma 6.14 Let S be a 
orre
t and total �-substitution. Then all 
losed axioms of EA� ex
ept maybe
riti
al formulas are satis�ed by S. Modus ponens rule preserves truth under S.19



Proof. All instan
es of propositional tautologies and de�ning axioms for predi
ate 
onstants are satis�edby S by the Lemma 3.7. Modus ponens preserves truth under S, sin
e values of 
omposite formulas are
al
ulated a

ordingly to standard boolean rules. Equality axioms are satis�ed, sin
e by Lemma 3.7
: ifjtjS = jujS for 0-terms t, u then je[t℄jS = je[u℄jS for any expression e.Consider a minimality axiom �xF [x℄ = St ! :F [t℄: Assume j�xF [x℄ = StjS 2 TRUE and let n := jtjS .Then (�xjF jS ; n+1) 2 S and by 
orre
tness and Lemma 3.7 we have jF [[n+1℄℄jS = j jF jS [[n+1℄℄ jS 2 TRUE,in parti
ular j:F [t℄jS = j:F [n℄jS 2 TRUE. 26.4.2 �-free derivationLet d* be a 
losed derivation in EA�, and let S be a 
orre
t, total, and solving �-substitution for thesystem Cr0; :::; CrN of 
riti
al formulas of d*. (For example S = Sn, where Sn is produ
ed by the H-pro
essfor Cr0; :::; CrN , 
f. De�nition 22.) Sin
e S is 
orre
t and total, all axioms of d* ex
ept 
riti
al formulasare satis�ed by S and modus ponens rule preserves truth under S. Sin
e S is solving, 
riti
al formulas aresatis�ed, too. Hen
e all formulas in d* are true under S.Closed formulas are 
onstru
ted by propositional 
onne
tives >from atomi
 formulas of the form pe1 : : : enand App(�XF )e1 where ei are numerals or 
losed 0-�-terms possibly pre
eded by several S, and �XF is a
losed 1-term. Let M be the maximum of all numerals, in
luding all values jujS of all 0-terms u mentionedin all 
omputations above needed to verify the axioms of the derivation d*.Repla
e exterior o

urren
es of 1-epsilon-terms �XF in d* by �nite predi
atesfn �M j jApp(�XF )njS 2 TRUEgand exterior o

urren
es of 0-epsilon-terms u by their S-values. We obtain an �-free derivation from formulaswhi
h are true under the standard interpretation of predi
ate 
onstants and boolean 
onne
tives, and therule (Appfn1; : : : ; nkg(n) is true ) def() (n o

urs among n1; : : : ; nk) :Note that thereby an EA� derivation d* of a formula F [�xF ℄ (= (9xF )�) or F [�XF ℄ (= (9XF )�) with Fquanti�er- and �-free is transformed into a derivation of F [n℄ or F [P ℄ for some numeral n or �nite predi
ateP .7 Non-
onstru
tive proof of terminationIn this se
tion S, Sn; ::: always denote �-substitutions with fe 2 dom(S) : S(e) = ?g = ;. For ea
h pair (e; u)we set rk((e; u)) := rk(e).De�nition 32 Let S be an �-substitution su
h that S is 
orre
t and nonsolving.Let e be the H-term and v the H-value of S.We set rk(S) := rk(e) and �(S) := (e; v).Note that if S is 
orre
t and nonsolving, then a

ording to our general assumption on S we have e 62 dom(S)and H(S) = S�rk(e) [ f(e; v)g.De�nition 33 An �-substitution S is 
alled r-substitution (r 2 On) i� S is 
orre
t and rk(�) < r for allpairs � 2 S, i.e. S = S<r.De�nition 34 Let r 2 On. An r-pro
ess is a sequen
e (Si)i<� su
h that:{ 0 < � � !,{ S0 is an r-substitution,{ if i < � and Si is nonsolving and rk(Si) � r then i+ 1 < � and Si+1 = H(Si),{ if i < � and (Si is solving or rk(Si) < r) then � = i+ 1.(In this 
ase Si is the last substitution, and S� = Si+1 is not de�ned.)20



Remark1. For ea
h r-substitution S there is a unique r-pro
ess (Si)i<� with S = S0.2. If (Si)i<� is an r-pro
ess thena) for all i < �, Si is 
orre
t and (Si)<r = S0 ,b) for all i with i+1 < �, Si is nonsolving and rk(Si) � r.The values of rank r are preserved in an r-pro
ess.Lemma 7.1If (Si)i2� is an r-pro
ess and i � j < � then (Si)�r � Sj .Proof: If i+1 < � then Si+1 = (Si)�rk(e) [ f(e; v)g with rk(e) � r, and therefore (Si)�r � Si+1. >From thisthe 
laim follows by indu
tion on j. 2An in�nite r-pro
ess if it existed, would ne
essarily introdu
e values of rank > r .Lemma 7.2 If (Si)i2! is an r-pro
ess then 8k9i � k( rk(Si) > r ).Proof:Assumption: k 2 IN&8i � k( rk(Si) = r ). | We write jejn for jejSn .(1) For ea
h 
anoni
al �-term e there is an n su
h that 8i � n( jejn = jeji ).Proof:1. rk(e) = r and e 62 Si2! dom(Si): Then jeji = 0�(e) for all i.2. rk(e) = r and e 2 dom(Sn): By Lemma 7.1 it follows that jeji = jejn for all i � n.3. rk(e) < r: Then jeji = jej0 for all i.4. rk(e) > r: By assumption we have 8i > k(e 62 dom(Si)) and therefore jeji = 0�(e) for all i > k. 2(2) For ea
h expression e there is an n su
h that 8i � n(jeji = jejn).Proof by indu
tion on d(e). If d(e) = 0 then jeji = e = jejn. Assume now that d(e) > 0 and let u be some
anoni
al �-subterm of e. By (1) there is an m su
h that juji = jujm for all i � m. Let e0 result from e by`
ontra
tion' of u. Then e ,!1Si e0 for all i � m, and by I.H. there is an n � m su
h that je0ji = je0jn for alli � n. Hen
e jeji = je0ji=je0jn = jejn for all i � n. 2 (2).By (2) there is an n � k su
h that jF jn+1 = jF jn and j��F jn+1 = j��F jn for ea
h 
riti
al formula F0!F [��F ℄from the list Cr0; :::; CrN . So espe
ially for the H-term e = ��jF jn of Sn we have jejn+1 = j��jF jn+1jn+1 =j��F jn+1 = j��F jn = jejn. (Note that j��F jS = j ��jF jS jS). But, sin
e Sn+1 = H(Sn), this is a 
ontradi
tionto Lemma 5.1b. 2Ea
h in�nite r-pro
ess 
an be extended to an in�nite r + 1-pro
ess.Theorem 7.3Let (Si)i2! be an r-pro
ess. Then (by adding pairs of rank r) S0 
an be extended to an (r+1)-substitutionS+ su
h that the (r+1)-pro
ess beginning with S+ is in�nite.Proof: Again we set jejn := jejSn .S+ := Si2!(Si)�r. By Lemma 7.1 S+ is a fun
tion. We show that the r + 1-pro
ess beginning with S+ isan a

elerated version of the given in�nite r-pro
ess (Si)i2! . (
f. (2) below).(1) S+ is 
orre
t.Proof: Let (��A; u) 2 (Si)�r. Then for ea
h v 2 IB�(�), rk(A[v℄) < rk(��A) � r and therefore jA[v℄ji =jA[v℄j0 = jA[v℄jS+. Hen
e jA[[u℄℄ji = jA[[u℄℄jS+. Sin
e Si is 
orre
t, we have jA[[u℄℄ji 2 TRUE.Let (S+i)i<� be the (r+1)-pro
ess starting with S+. Abbreviation: jej+n := jejS+n .The following proposition (2a) together with (1) yields the theorem.(2) For every i 2 ! holds(a) i < �,(b) there exists j 2 ! su
h that S+i is an extension of Sj by some pairs of rank r.Proof by indu
tion on i:I. i = 0: (a) trivial. (b) Take j := 0.II. i! i+1: 21



By I.H. i < �, and there is a j su
h that S+i = Sj ℄	 with 8� 2 	( rk(�) = r).(The symbol ℄ indi
ates disjoint union).Let � be the �nite set of all pairs � 2 S+ of rank r whi
h are used in the 
omputation of jCrI j+0 ; :::; jCrI j+i(I = 0; :::; N) as well as �(S+0); : : : ; �(S+i).Let k := minfl � j : � � Sl&rk(Sl) > rg (
f. Lemma 7.2). We have k � j&� � Sk&rk(Sk) > rCASE A: k = j.(a) Then S+i = Sk ℄	, and 	 is not used in the 
omputation of jCrI j+i sin
e Sk already 
ontains �. Hen
ejCrI j+i = jCrI jk for I = 0; :::; N . Sin
e Sk is nonsolving and rk(Sk) > r, it follows that S+i is nonsolving,�(S+i) = �(Sk), and rk(S+i) � r + 1. Hen
e i+ 1 < �.(b) S+i+1 = (S+i)�rk(S+i)℄f�(S+i)g = (Sk ℄	)�rk(Sk)℄f�(Sk)g = (Sk)�rk(Sk)℄f�(Sk)g℄	 = Sk+1℄	.CASE B: j < k. Then rk(Sk�1) = r. Otherwise (Sk)�r = (Sk�1)�r and rk(Sk�1) > r, so that k is notminimal.Hen
e in the step from Sk�1 to Sk all pairs of rank > r are removed. It follows that S+0 = Sk ℄� where �
onsists of pairs of rank r whi
h are not used in the 
omputation of jCrI j+0 ; :::; jCrI j+i and �(S+i).Proposition. S+l = Sk+l ℄ �, for l = 0; :::;minfi+ 1; � � 1g (�).Proof by indu
tion on l: Let l < minfi+ 1; � � 1g and S+l = Sk+l ℄ �.By the de�nition of �, all pairs of rank r whi
h are used in the 
omputation of jCrI j+0 ; :::; jCrI j+i and �(S+i)are 
ontained in � � Sk. Sin
e l � i, we have �(S+l) = �(Sk+l) and rk(S+l) = rk(Sk+l). Sin
e l+1 < �, thesubstitution S+l is not terminal, and we have rk(S+l) � r+1. Hen
e S+l+1 = (S+l)�rk(S+l) [ f�(S+l)g =(Sk+l ℄ �)�rk(Sk+l) ℄ f�(Sk+l)g = (Sk+l)�rk(Sk+l) ℄ f�(Sk+l)g ℄ � = Sk+l+1 ℄ �.(a) The above proposition (�) yields jCrI j+i = jCrI jk+i sin
e 	 is not used in the 
omputation of jCrI j+i.Hen
e S+i is nonsolving, sin
e Sk+i is nonsolving. Now by (�) we also have �(S+i) = �(Sk+i) andrk(S+i) = rk(Sk+i). Assume rk(Sk+i) = r; then �(Sk+i) 2 S+ � S+i and thus �(Sk+i) 6= �(S+i), sin
e�(S+i) 62 S+i. Contradi
tion.Hen
e rk(S+i) = rk(Sk+i) � r+1 and thus i+ 1 < �.(b) As in the proof of (�) we get S+i+1 = Sk+i+1 ℄ �. 2Theorem 7.4The 0-pro
ess � beginning with the empty substitution ; terminates in a solving substitution.Proof: Obviously it suÆ
es to prove that � is �nite (terminates).For 
ontradi
tion we assume that � is in�nite.Below we de�ne substitutions Sr for all r 2 On su
h that:(1) S0 = ;,(2) Sr is an r-substitution,(3) the r-pro
ess starting with Sr is in�nite,(4) Sq � Sr, for all q < r.Let R := maxfrk(CrI ) : I � Ng + 1. Then rk(S) < R for ea
h substitution S. But on the other handrk(SR) � R, sin
e by (3) the R-pro
ess starting with SR is in�nite. Contradi
tion.De�nition of Sr by trans�nite re
ursion on r:S0 := ;,Sr+1 := (Sr)+ (
f. Theorem 7.3),Sr := Sq<r Sq, if r 2 Lim.In parallel with that de�nition we prove by trans�nite indu
tion on r that Sr satis�es the above 
onditions(2),(3),(4). The su

essor step is settled by theorem 7.3. Now assume r 2 Lim.Then (4) is trivial, and (2) follows >from I.H.(2),(4), sin
e ea
h parti
ular value (e; u) in Sr is veri�ed by
omputation in some Sq; q < r.For (3) assume that the r-pro
ess for Sr is �nite. Then it uses information only from Sq for �nitely manyq < r, hen
e there is a q < r su
h that Sq is �nite whi
h 
ontradi
ts I.H.(3). 2
22
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