Epsilon Substitution Method for Elementary Analysis

Grigori Mints
Department of Philosophy, Stanford University, Stanford, CA 94305
Sergei Tupailo
Institute of Cybernetics, Estonian Academy of Sciences, Tallinn, EE0026, Estonia
Wilfried Buchholz
Mathematisches Institut der Universitat Miinchen,
Theresienstrasse 39, D-80333 Miinchen, Bundesrepublik Deutschland

July 25, 1997

Abstract

We formulate epsilon substitution method for elementary analysis EA (second order arithmetic with
comprehension for arithmetical formulas with predicate parameters). Two proofs of its termination are
presented. One uses embedding into ramified system of level one and cutelimination for this system. The
second proof uses non-effective continuity argument.

Introduction

The epsilon substitution method is based on the language introduced by Hilbert [7] (and used later by
Bourbaki [3]). The main non-boolean construction of this language is exF[z], read as “an x satisfying the
condition F[z]”. In number-theoretic contexts it is often interpreted as least z satisfying F[z]”. Existential
and universal quantifiers become explicitly definable by

JxF[z] = FlexF[x]]; VzF|x] = Flex—Fz]] (1)
The main axioms of the corresponding formalism are critical formulas
F[t] —» FlexF[z]) (2)

Hilbert’s approach (Ansatz) to transforming arbitrary (non-finitistic) number-theoretic proofs into fini-
tistic (combinatorial) proofs by means of the substitution method is described in [7]. Cf. also the short and
lively presentation by Hermann Weyl in [19]. The approach is as follows.

Take all critical formulas (2) occurring in a given proof P. There is only a finite number of them, so
one always deals with a finite system E of critical formulas. Consider any substitution S of numerals for
constant epsilon-terms. If all critical formulas (2) are true under S, it is called a solving substitution for
the system E. Hilbert proposed a specific plan for finding a solving substitution by a series of successive
approximations, described below. If it succeeds and if the last formula of the proof P, i.e. the formula proved
by P, is a constant combinatorial identity such as 1 4+ 2 + ... 4 10 = 55, replacing all free variables by any
numerals and then each epsilon-term ¢ by S(¢) immediately yields a variable-free (finitistic, combinatorial)
proof of the same identity. Moreover, it was noted by Ackermann and stressed later by Kreisel that the same
device allows one to extract the numerical content of existential proofs, i.e. proofs of existential formulas
JzF[z] with combinatorial (free variable) F[z]. Indeed, 3xF[xz] is translated as FlexzF[z]]. If S is a solving
substitution for the proof P of such a formula, and N = S(exF[z]) then S(P) is a proof of F[N]. So N is a
numerical realization of the existential quantifier in 3z F[z].

Hilbert’s suggestion for finding a solving substitution by a successive approximation method is based on
the following idea of generating substitutions of numerals for closed epsilon-terms. The initial approximation
Sp is identically 0. At every stage only a finite number of epsilon-terms are assigned non-zero values. If

approximations Sy, ..., S; are already generated, and S; is not yet a solving substitution, then S; 4 is found
as follows. Fix appropriate ordering of the critical formulas (2) and take the first formula in this ordering
which is false under S;, i.e. for which

Si(F[t]) = true, S;(F[exF]) = false

This means that the value S;(ezF) is incorrect: this value does not satisfy F', while F[S;(t)] is true under
S;. Then the value of exF' is corrected by putting

Sit1(exF) = (the least N < t) (S;(F[n]) = true)

The problem stated by Hilbert was to prove termination of the sequence Sy, S1,Sa,... after a finite
number of steps for any system of critical formulas (2). After von Neumann’s [15] attack on this (see below)
Hilbert [6] stated further problems:

find a proof of termination for pure number theory, for analysis, and for analysis with the axiom of
choice, when each of these systems is suitably reformulated in the epsilon-calculus.

The first attempt by Ackermann [1] to prove termination for analysis was shown by von Neumann [15] to
contain a serious defect connected with the treatment of equality. Von Neumann introduced a device allowing
to avoid this defect, gave an exact formulation based on Hilbert’s Ansatz and presented a termination proof
for the case when the terms exF[z] in critical formulas involve only free-variable (combinatorial) formulas
F[z]. This corresponds to number theory with the induction axiom for quantifier free formulas.

After Gentzen’s proof [4] of cut-elimination and consequently of consistency for arithmetic (with respect
to closed equations) revealed the role of the ordinal €y, Ackermann [2] was able to find a final formulation
and to give a termination proof for full first order arithmetic (pure number theory). His formulation for first
order arithmetic, described also by Hilbert and Bernays [7], and used in all the subsequent research, consists
of Hilbert’s Ansatz modified in accordance with von Neumann’s remarks plus the following stipulation: after
the value of exF was corrected, the values of all terms of greater complexity (rank) are set to 0.

Ackermann’s proof [2] is rather involved. On the other hand, there exists much easier non-effective

termination proof of the substitution method for the first order arithmetic. It uses a very simple non-
effective proof of the existence of solving substitution (cf. [18], section 5.1) and continuous dependence
of a solution of a system of critical formulas from function parameters (cf. [18], end of the section 5.3).
These ideas were elaborated by Mints in [10] for the first order arithmetic and in [11] for the theory of
hereditarily finite sets into a non-effective termination proof which uses continuity in Baire topology in the
space of number-theoretic functions. A possibility to simplify a system of critical formulas by substituting
computable values of subordinate e-matrices and a need for some restrictions on the functionals used was
pointed out in [8], p. 259 (ii), 260.
The existence of a solving substitution for the case of analysis (second order arithmetic) is proved as simply
as in the first order case, but nothing similar to the simple termination proof is known for the second order
case. G. Kreisel [8, 9] further investigated the substitution method for the first order case and made it a
basis for the no-counterexample interpretation, the first published functional interpretation producing non-
trivial constructive results for non-constructive proofs. W. Tait [18] presented a finer analysis of the rate of
termination in terms of relevant parameters based on his analysis [17] of recursion schemata.

The next step was made in [12] where a Gentzen-type system P Ae in the epsilon language for first order
arithmetic was proposed. The axioms of this calculus depend on a particular system FE of critical formulas.
Normalization (cut-elimination) steps for this calculus were defined and the following statements proved.
Theorem 1. The sequent expressing existence of a solving substitution for the system E of critical formulas
is derivable in P Ae by a derivation of special form, called f-derivation.

Theorem 2. f-derivations can be normalized, i.e. the cut rule can be eliminated by a series of normalization
steps.
Theorem 3. A cut-free derivation of the sequent in Theorem 1 encodes a finite sequence

S0, S1, ..., Sn (3)

of successive substitutions (in the sense of Ackermann) terminating in a solving substitution for the original
system F of critical formulas.

Hence the rate of convergence (i.e. the value of n in (3) as a function of the system E) is determined
by theorems 3 and 2, and is measured by €y . The derivation mentioned in Theorem 1 in fact formalizes
the non-effective proof of the existence of a solving substitution mentioned earlier. In this paper we apply
the proof strategy expressed by Theorems 1-3 to the subsystem of the second order arithmetic based on the
comprehension schema for arithmetical formulas with predicate parameters. This system is called EA in
[16], and is obviously predicative: it can be easily embedded into ramified analysis of the level 1, and its
proof-theoretic ordinal is proved in [16] to be €.,. This opens the way to the extension of our approach to
ramified systems where bound predicate variables have levels and range over predicate terms of lower levels.

Present approach to the definition of the epsilon substitution for the second order epsilon-terms has two
important new features. The values are closed arithmetical abstracts, and the passage to the new substitution
is done according to the rank of some intermediate object (canonical form, cf. Section 5). These definitions
have been found in the framework of the termination proof via cut-elimination which is presented in the
section 6. After this it became possible to give a shorter non-effective proof which is presented in the section
7.

This research was supported by Center for the Study of Language and Information, Stanford University,
and by the NSF grant DMS-9206976, and its results with proofs appeared in the preprint [13] by the first
two authors. Chapters 2 and 4 of the preprint were written by S. Tupailo, Chapter 3 was due to G. Mints.
W. Buchholz wrote a new version of the core parts of the paper with several technical improvements and
simplifications.

1 The System F Ae

The formulation here is very close to [7].

1.1 The language L2¢

Let us describe in detail the language of e-calculus.

Basic Symbols

0O-variables (denoted by z,y, z, . ..);

1-variables (denoted by X,Y, Z,...);

the 0-ary function constant 0 (zero), and the unary function constant S (successor);

predicate constants for n-ary computable predicates (n > 1) including = (equality), add (addition) and prod
(multiplication);

the propositional logical connectives =, A, —;

the epsilon symbol € and the application symbol App.

Definition 1 (Terms and formulas)

Each v-variable is a v-term (1 = 0,1).

The constant 0 is a 0-term.

If t is a 0-term, then St is a 0-term.

If ty,...,t, are O-terms and p is an n-ary predicate constant, then pty ...t, is a formula.
If tis a O-term and P is a 1-term then AppPt is a formula.

If A, B are formulas then =A, NAB, - AB are formulas.

If F is a formula and £ is a t-variable then e£F is a v-term (1=0,1).

NSO o~

To increase readability, we sometimes use infix notation for binary logical connectives, insert parentheses
and use standard abbreviations like AV B = -4 — B.

Definition 2 (A-terms)
If G is a formula and z is a O-variable occurring free in G, then A\zG is a A-term.

t-terms (1 = 0, 1), formulas and A-terms are called expressions.
Terms of the form e£F are called e-terms.
The 0-terms 0, S0, SS0, ... are called numerals.

Var denotes the set of all variables, IN denotes the set of all numerals.
We define 0° := 0, 0! := \z(z = 0).

For each term u we set .
o(u) = {0 if v is a O-term

1 ifuisal-term

Note 1. Instead of usual computable functions we use computable predicates (their graphs) to simplify
technical details. Computable functions can be introduced in a familiar way via their graphs [14].

Note 2. Lambda-symbols are not allowed to occur inside other expressions. The result of their substitution
into other expressions is understood via A-conversion (cf. Definitions 6,7 below), which allows to treat them
together with 1-terms.

Syntactic variables:

e,u,v,w for expressions,

&, n for variables,

p for any predicate constant and the symbols S, —, A, —, App,
s, t for O-terms,

n for a numeral S™0,

P for 1-terms,

T for 1-terms and A-terms,

A, B, F,G for formulas.

The set F'V (e) of free variables of an expression e is defined in the standard way.

Definition 3

FV(0) :=0 and FV(§) = {£} for each variable &,
Vper...en) = FV(e1)U...UFV(ey,),
V(eSF) == FV(F) \ {{},
V(A2G) := FV(G) \ {z}.

e is called closed iff FV(e) =0

Substitution

We identify expressions which are equivalent modulo renaming of bound variables. If u is a ¢(£)-term then
e[¢/u] denotes the result of substituting u for each free occurrence of £ in e, where bound variables in e are
renamed if necessary. If £ is known from the context we write e[u] for e[£/u].

The next series of definitions is needed mainly in the section 3 below to determine computations ;from
inside replacing closed e-terms by their values. The depth d(e) is a measure of nesting of closed e-subterms,
taking into account that 1-e-subterms can be substituted by A-terms, and this can increase nesting by an
arbitrary finite amount. It uses the natural sum function # on ordinal numbers, which is a commutative
associative analog of the ordinal sum +:

wa#wﬁ — wmax(aﬁ) +wmin(a7ﬁ)

Definition 4
d(§) :==d(0

1.

2. d(peq ..

3. d(Apth
4.

)
€n) =
d(e€F) : {
5. d(AzG) := d(G)

Note 1. d(e) < w
Note 2. d(e) =

(6)# ... #d(en), for p # App

w - (d(P)#d(t))

(if €F is closed
otherwise

1ff e does not contain closed e-subterms.

Definition 5
1. An e-term e = e£F is called canonical if it is closed and d(e) =1 (i.e. d(F) =0).
2. A A-term \zG is called canonical if FV(G) = {z} and d(G) =0

3. e is called simple if d(e) = 0 and e is closed.

4. e is called arithmetical if e contains no 1-variable.

5. TRUE (FALSE) denotes the set of all true (false) simple formulas. [Note that a simple formula contains
no variables and is constructed from computable atomic formulas by boolean connectives. Every simple term
is a numeral].

6. By := IN; 1By := the set of all canonical arithmetical \-terms.

The objects to be immediately evaluated are canonical e-terms, and the values of i-terms will be elements
of B,.

To define substitution e[Y/T] for expressions e and A-terms T', we extend the ‘operation’ App:
Definition 6

App(T,t) := { Glt] if T =XG

AppTt otherwise
For p # App we set p(e1,...,en) :=peq .. .ey.
Definition 7
T ife=Y

1. If e € Var U {0} then e[Y/T)] := { e otherwise
2. (per...ex)[Y/T):=plea[Y/t],...,en[Y/t])

| eF if¢é=Y
7 (€P)Y/T] = { eEF[Y/T] otherwise
4. (AzF)[Y/T) := XzF[Y/T] assuming that z ¢ FV(T).

where it is assumed without loss of generality that & ¢ FV(T).

The next definition concerns a restriction on the second order critical formulas which arise in the process
of translating E A-derivations (Section 2 below) into E Ae-derivations.

Definition 8 (Regular \-terms)
A X-term \zG is called regular if it can be obtained from a \-term without bound 1-variables by substitution
of e-terms for free variables and z € FV (G).

1.2 Axioms and inference rules of F Ae

The language of FAe is L2e.
The only inference rule of E Ae is modus ponens:

Axioms of E Ae

Propositional axioms: all propositional tautologies of the language L2e,

All substitution instances of defining axioms for the predicate constants, including the predicates of addition
and multiplication:

add(s,0,s) and add(s,t,r) — add(s,St,Sr)

prod(s,0,0) and prod(s,t,r) A add(r,s,r1) — prod(s,St,ry)

Equality axioms: t =t and s =1t — (F[s] = FJt]),

Peano axioms for S: St #0 and Ss=St »>s=1¢,

Minimality axioms: ez F[z] = St — —F[t],

Critical formulas:

F[t] = FlexF[z]],

s #0 — FlexF[z]] with F := (s = Sz),

F[T] - F[eX F[X]] with T being a 1-term or a regular A-term.

Comment. Critical formulas of the second kind are not present in [7]. They are needed here to interprete
Robinson’s axiom s # 0 — Jz(s = Sz).

This concludes the description of EAe. Note that the formulas

F F—>G
-G

s=t— (exFz,s] = exF[z,t])

are consequences of the equality axioms of E Ae.
Note: EAe is closed under the substitution rule: if F' is derivable and u is a ¢(£)-term, then F[{/u] is
derivable. Indeed, all axioms and inference rules of F Ae are closed under substitution.

2 Embedding FA into FAe

EA is the usual system of elementary analysis (i.e. second order arithmetic with the axiom scheme of
arithmetical comprehension). The language L2 of EA is obtained from L2e by dropping the epsilon symbol
e and adding the existential quantifier 3. In the definition of terms and formulas case 7 is replaced by:

7. If F is a formula and £ is a t-variable (1 = 0,1) then IEF is a formula.

Note that the only 1-terms of L2 are 1-variables.
The universal quantifier is defined via 3: VEF := —3¢—F.

Axioms of EA
(1) Propositional axioms: all propositional tautologies of the language L2,
(2) Defining axioms for the predicate constants, including the predicates of addition and multiplication:
add(z,0,z) and add(z,y,z) — add(z,Sy,Sz)
prod(z,0,0) and prod(z,y,z) A add(z,x,z1) — prod(z,Sy, z1)
(3) Equality axioms: x =z and z =y — (F[z] = F[y]),
(4) Peano axioms for S: Sz #0 and Sz =Sy >z =y,
(5) Induction axioms: F[0] — Vz(F[z] — F[Sz]) = VzF[z],
(6) First order existential axioms: F[t] — JzF[z],
(7) Second order existential axioms: F[T] — IX F[X],
where T is a 1-variable or a A-term containing no bound 1-variables.

Inference rules of £A

F F->d
modus ponens —a
Flnl - @
3 Bl) B
7 PG

where £, n are both O-variables or 1-variables and the standard proviso is satisfied: the eigenvariable 1 does
not occur free in the conclusion IEF[¢] — G.

Definition 9

For any formula F of EA define inductively an L2e-formula F*:
F* :=F for atomic F

(=F)*:==F* and (FoG)* :=(F*©G*) for©=A—
(BEFIE)" = F*[e€Fle)]

(A2G)* = \2G*

Theorem 2.1
a) If EAF F then EAet F*.
b) If EAF F and F is closed then there exists an E Ae-derivation of F* in which all formulas are closed.

Proof: a) Let EA’ be the set of all L2-formulas F' with EAe - F*.

E A’ is closed under modus ponens and the existential rule 3 —. (Note that (IEF[¢] — G)* = F*[e{F*[¢]] =
G*, and therefore closure of EA’ under 3 — follows from the fact that EAe is closed under substitution.)
The *-translation of any FEA-axiom of kind (1)—(4) is an EAe-axiom of the same kind.

The *-translation of any existential axiom of EA is a critical formula.

Below we show that the *-translation of every induction axiom of EA is derivable in EAe. This will finish
the proof of a).

Observe that b) is an immediate consequence of a): Given an EAe-derivation d of a closed formula F' one
simply replaces every free t-variable in d by 0*.

Now we consider the *-translation A of an induction axiom.

Obviously A is of the form G[0] — G[u] — G[e] with G[z] := G[z] — G[Sz], u := exz—=G[z], e := ex~G[x].
Let e™ := ey(e = Sy).

We derive G[0] — G[u] — G[e] by case distinction e = 0, e # 0. The first case is settled by the equality axiom
0 = e = G[0] = GJe]. For the second case observe that e # 0 — G[u] — G[e] follows by propositional logic
;from the minimality axiom e = Se™ — =—=G[e~], the critical formulas e # 0 — e = Se™, —Gle~] = =G[u]
and the equality axiom e = Se™ — G[Se”] = Gle]. O

3 Computations with the e-Substitutions

Definition 10

An e-substitution is a function S such that

dom(S) (domain of S) is a set of canonical e-terms,

if e € dom(S) then S(e) € BY® U {?}.

An e-substitution S is called total if dom(S) is the set of all canonical e-terms.
S:=SU{(e,?) : e is a canonical e-term ¢ dom(S)} is called the standard extension of S.

Comment. We consider a function as a set of ordered pairs. So an e-substitution is a set of pairs (e, u) where
e is a canonical e-term and u € B“®) U {?}. Hilbert’s finitist position allowed only for finite e-substitutions
S. All (canonical) e-terms e£F not mentioned in S explicitly, have default value 04(€). In fact the possible
value ? for a term indicates exactly this default value. The e-substitution process is defined entirely in terms
of finite substitutions: the standard extension S of S is used only to simplify notation for computations with
default values. Essentially infinite substitutions appear only in section 7 below.

3.1 Computation Steps
Let S be an arbitrary e-substitution.

Definition 11 (Inductive definition of e <} e)

1.1. If (e,u) € S and u #7 then e =5 u

1.2. If (e, 7) € S then e <% 0'()

2. If 1<i<m, e ke, and e} is not a X\-term then pe; ...e, =5 per...e;_1€leir1...ep
3. If (P,A\2G) € S then AppPt —% G[t]

4. If F —§ F' then e€F <% e(F'

5. If G =L G' then \2G =5 \2G.

Comment. Since S is defined only for canonical terms which do not contain any proper closed e-subterms,
computations proceed from inside, and since canonical terms are closed, no term containing variables is
immediately computed according to S: only its closed subterms can be replaced.

Note. If e =4 AzG and e is not a A-term then either (e, \2G) € S or (e,?) € S and A\zG = 0'.

Definition 12

1. e is called S-reducible if there ezists an e’ with e <% e'. Otherwise e is called S-irreducible or in S-normal
form.

2. g denotes the transitive and reflezive closure of <.

Note. e is S-reducible iff e contains canonical e-subterms in the domain of S. In particular no default
computations are allowed unless S contains pairs (e, 7).

We are going to prove that < g is well-founded, i.e. every sequence of computation steps is terminating,
by showing that each step decreases the depth d(e) (Definition 4).

Lemma 3.1 Ife <} €' then FV(e') = FV (e).

Proof. Consider the cases in the definition of <%. If the computation is by 1.1 or 1.2, then FV(e) = 0 =
FV(e'). In the cases 4,5 use the induction hypothesis. The same works in case 2 when p # App or p = App
but the second argument is changed.

Let now e = AppPt and e’ = App(P’,t) with P <% P’ (recall the definition 6). Then P is an e-term, since
1-variables are not reducible.

1. P is canonical. Then P’ = A2G € By, FV(G) = {z} and e’ = G[t]. Hence FV (e') = FV(t) = FV (e).

2. P is not canonical. Then e’ = AppP't and FV(e') = FV(P)UFV(t) £ FV(P)UFV(t) = FV(e). O
Lemma 3.2 For each arithmetical expression e one has:

a) d(e) < w,
b) d(e[y/t]) < (d(t) +1) - w.

Proof. a) is obvious, since App does not occur in e and all clauses of the definition 4 except 3 add only finite
amount.

b) Induction on e. Let y € FV (e), since otherwise d(e[y/t]) = d(e) < w. Set a := (d(t) + 1) - w.

1. If e = y then d(ely/t]) = d(t) < d(t) + 1 < a.

2. If e = pe; ...e, with p # App then d(e[t]) = d(pe1[t]...en[t]) = d(e1[t])# ... #d(en[t]) < a, since by the
induction hypothesis (TH) d(e;[t]) < a and « is closed under #.

3. If e = exF then we can assume z ¢ FV () and d(e[t]) = d(ezF[t]) < 1+ d(F[t]) Ig l+a=a.
4. If e = Az F, apply IH. a

Lemma 3.3 Ife =4 €' then d(e') < d(e).

Proof by induction on the definition of <.
1.1, 1.2. If e is a canonical e-term then d(e’) =0 < 1 = d(e).
2.Ife=pe...e,, € =pej...€,...e, and e; =% e}, then:
TH
2.1. if p # App then d(e') = d(e1)# ... #d(e})# ... #d(en) < d(e1)F# ... #d(e,) = d(e)
2.2, if e = AppPt and ¢ = AppP't, then d(e') = w - (d(P')#d(1)) < w - (d(P)#d(t)) = d(e).
2.3. if e = AppPt and ¢’ = AppPt', one proceeds as in the case 2.2.
3. Let e = AppPt and e’ = G[t]. Note that Va < w¥(a-w < w - a).
Then by Lemma 3.2 d(e') < (d(t) + 1) - w < w - (d(t) + 1) < w - (d(P)#d(t)) = d(e).
4,5. If e = eF,e' = €€F' or e = A\2F,e' = A\zF' with F <} F' then, since FV(F) = FV(F'), we have

d(e') = j +d(F") ' j +d(F) = d(e) for some j = 0,1. O

We are going to prove that <% is locally confluent.
Lemma 3.4 If e is arithmetical and t —% t' then e[t] <5 e[t'].

Proof is routine. O
Lemma 3.5 Ife <4 e’ and e =% e’ then there is an expression u such that € —gu and " —gu .

Proof by induction on e.

1. If e € dom(S) then ' =¢€".

2. Let e=pei...ei...en, € =pej...e;...e, and e; =} €l .

2.1. " =pey...e!'...e, with e; =% e/ . Then by the IH one has €} <5 u; and e} —g u; for some u;.
Take v :=pey ... u;...en.

2.2.e" =pey...e;... e, with e; —k e; and i # j. Take u :=pe;...e}...e;...
3. e =AppPt, ¢ = G[t], €' = AppPt' with P <= \2G and t —% ¢’ . Then
e —g G[t'] and, by Lemma 3.4 ¢/ —g G[t'] .

The remaining cases are easy: apply LH. O

L. en.

Theorem 3.6 (Church-Rosser Property)
For each expression e there exists a unique S-irreducible expression e* with e —g e*.

Proof. By Lemma 3.3 computations terminate, and together with Lemma 3.5 this implies uniqueness. O

Definition 13 (Normal form |e|s for expression e)
The unique expression e* in the previous theorem is called the S-normalform of e and denoted by |e|s.

Definition 14 An expression e is S-computable iff d(Je|s) =0

Note.
1. e is S-computable iff |e|s = |e|5.
2. If S is total then every expression is S-computable.

We prove next that < g is preserved under substitution. The main problem will be with A-terms.

Lemma 3.7

a) e =k €' implies e[n/u] —s €'[n/u].
b) u L u' implies e[n/u] <5 e[n/u'].
c) elnfu] —s lels[n/luls].

Proof. We first prove a) and b) under the assumption that u is not a A-term.

a) We use induction on the definition of <.

The only non-trivial case is e = AppPt, €' = G[z/t], P =% A\2G.

Then since P is closed and FV(G) = {z}, one has e[u] = AppPt[u], e'[u] = G[z/t[u]]. Hence by the definition
of <% one has e[u] =% G[z/t[u]] = e'[u].

b) We use induction on e assuming n € FV (e). Again the only non-trivial case is e = AppPt, Plu'] = AzG.
Then e[u] = AppPlult[u], e[u'] = G[z/t[u']] and by IH Plu] —s AzG, t[u] —g t[u']. Since u is not a
A-term, we have AzG € IB;. Hence there exists a canonical e-term) such that Plu] —s @ <% A2G. Hence
e[u] =g AppQtlu'] =& Glz/t{u']] = eu'].

Now we assume that u is a A-term. We have to consider two additional cases.

a’) e = AppPt and Plu] = AzG. Then P = (otherwise P contains) and thus u = A2G, ¢’ = AppPt’ with
t =L t'. Hence e[u] = G[z/t[u]], €'[u] = G[z/t'[u]] and t[u] <5 #'[u] by IH. Since t[u] is not a A-term, by b)
we obtain e[u] —g €'[u].

b’) e = AppPt and Plu] = AzG. Then P = n (otherwise P contains A\) and thus u = A\zG,u’ = A\zG' with
G —s G'. Hence e[u] = G[z/t[u]] and e[u'] = G'[z/t[u']]. By IH t[u] —g t[u']. Since t[u] is not a A-term, by
a), b) we obtain G[z/t[u]] =5 G'[z/t[u]] —s G'[z/t[u']].

¢) By induction on the number of computation steps, we obtain versions of a),b) with <} replaced by < ¢ .
These imply c): e[u] — s |e|s[|u|]] —s le|s[|u|s] - O

The next proposition clarifies the structure of normal forms for partial substitutions S, where some
canonical e-terms are irreducible. It is needed in section 6.3.

Lemma 3.8

a) If v is an S-irreducible subterm of e, d(v) > 0 and e % e’ then v is also a subterm of €'
b) If e[n/u] is S-computable and n € FV (e) then u is S-computable.

c) If e is S-computable and e —5 €' then e —g €'.

Proof. a) We use induction on the definition of —%. Since e is reducible, v has to be a proper subterm of e
and thus e cannot be a canonical e-term.

1. Let e =pej...e;...en, € =pej...e,...e, and e; % e; . Then the claim follows immediately from the
IH.

2. e = AppPt, ¢ = G[z/t] with P <} A\2G. Then P is a canonical e-term # v, and therefore v is not a
subterm of P. Hence v is a subterm of ¢ and thus of ¢’ since z occurs free in G.

3. The cases e = e£F,e' = e{F' or e = \zF,e¢’ = \2F'with F <% F' follow immediately from IH.

b) Assume for contradiction that d(Juls) > 0. Then |u|s and hence |e|g[Ju|s] contains an S-irreducible,
closed e-subterm v. By Lemma 3.7c and Theorem 3.6 we have |e|s[|u|s] < s |e[u]|s, and therefore [by a)] v
is a subterm of |e[u]|s. This contradicts the S-computability of e[u].

c) It suffices to prove the Lemma for one step reductions. Assume that e is S-computable and e ‘—>1§ e’ holds.

By b) every canonical e-subterm v of e is S-computable and therefore in dom(S). Hence e <% €'. O

Let us establish some properties of regular A-terms (Definition 8) needed in section 5.

Lemma 3.9

a) If T is reqular and T <% T" then T' is regular.

b) If T is a closed regular A-term with d(T) = 0 then T € IB;.
c) If T is a closed regular A-term then |T|g € IB;.

Proof. We have T = e[n; /uy, ..., /un] where uy, ..., u, are e-terms and no bound 1-variable occurs in e.

a) Without loss of generality we may assume that either 77 = e[uf,us,...,u,] with uy <% uf or T' =
€'[ur, ...,uy) with e <% e'. In both cases one easily sees that 7" is again regular. (Only if u} € IB;y a short
argument is needed.)

b) For contradiction let us assume that n; € FV(e). Then, since T is closed, u; is a closed e-term and thus
0 < d(u;) < d(T). Hence none of 1y, ..., n, occurs free in e and we have T' = e which means that T is a closed
A-term containing no 1-variables. Hence T € By, since d(T") = 0.

c) follows from a) and b). O

4 The rank function

The rank will measure nesting of bound variables. We extend to the e-language a definition known for
Ramified Analysis [16].
Set o(z) := 0, o(X) :=w, o(App) :=w, o(p) := 0(0) := 0, for p # App.

In the following o denotes elements from Var U {x}.
Definition 15 Definition of rk,(e)

1. If 0 € FV(e) U {} then rk,(e) := 0.
2. For o € FV(e) U {x} we define:

o(e) if e € Var U {0}
rk, (e) = max{o(p),rky(€1),...,tk,(en)} if e = pe;...ep
73) max{o(§),rky (F),rke(F) + 1} if e = €€F
rk, (G) if e = XzG

Note 1. rk,(e) < w - 2.
Note 2. rk,(e) is a measure of nesting of bound variables in subterms of e containing free variable o , and
rk, takes account of all e-subterms. More precisely,

Lemma 4.1
rk.(e) = sup{o(n),rk,(F)+1 :n,ecF occur in e} (4)

Proof by induction on e. Define
o(e) := sup{o(n) : n occurs in e}, rky (e) := sup{rk,(F)+1 : ecF occurs in e}

Note that o(pe;...ep) = max{o(ey), ..., 0(e,)}.

1. e € Var U {0}. Then rk.(e) = o(e), rki(e) =0

2. e = pej...e,. Then

k. (e) & max{o(p), max; max{o(e;),rky(e;)}} =

= max{o(p), max; o(e;), max; rk; (e;)} = max{o(e),rk;(e)}.

3. e = €£F. Then

k. (¢) = max{o(€), tk.(F), tke (F)+1} & max{o(€), o(F), vki (F), rke (F)+1} = max{o(e), rki (e)}
4.e = Az@G. Then rk,(e) = rk.(G) = max{o(G),rk; (G)} = max{o(e),rki(e)}. O
Next Lemmas establish properties of rank.

Lemma 4.2

a) e arithmetical = rky(e) <w

b) X € FV(e) = w <rkx(e).
¢) w < rk.(P), for each 1-term P.

Proof. Easy induction on e, P.

Lemma 4.3
If d(e) = 0 and e is not a A-term then tk.(e) < sup{rk,(e) : o € FV(e)}.

Proof:

1. e = 0: Then rk.(e) = 0. e = £ € Var: Then rk.(e) = o(¢) = rke(e).
2. e = €£F: Then, since d(e) = 0, we have d(F) = 0 and FV(e) # (). Therefore

10

max{o(§), rke (F)+1} < sup{rk,(e) : ¢ € FV(e)} and, by LH., rk.(F) < sup{rk,(F) : 0 € FV(F)}.
Hence rk,(e) = max{o(§), rk.(F),rke (F)+1} < sup{rk,(e) : 0 € FV(e)}.
3. e = pej...ey. Since w < vk, (P) for each 1-term P, we have

rk.(e) = max{rk.(e1),...,rk«(en)} %{ sup{rk,(e;) : 0 € FV(e;) & 1<i<n} < sup{rk,(e) : 0 € FV(e)}. O

Lemma 4.4

If €F is canonical then rk.(F) < rke(F) and rk.(e€F) = max{o(§), rke (F)+1}.

Proof:

Since €£F is canonical, we have d(F) = 0. By 4.3 this yields

rk, (F) < sup{rk,(F): o € FV(F)} and thus (since FV(F) C {¢}) rk.(F) < rke(F).
Hence rk,(e£F) = max{o(§),rk.(F),rke(F) + 1} = max{o(§),rke (F) + 1}. O

The next two lemmas show that the rank does not increase during computation.

Lemma 4.5
rk, (e[y/t]) < max{w,rk,(t)+1}, if e is arithmetical.

Proof: Let y € FV(e) and o € FV(e[t]) U {x}. (Otherwise rk, (e[t]) = rk,(e) < w or rk,(e[t]) = 0.)

1. e = y: rk,(e[t]) = rk, ().

2. e = pey...en: Then rk,(eft]) = max{o(p),rky(e1[t]),...,rks (e,[t]) }, and the assertion follows by I.H..
3. e = exF. Then o(z) =0, rk,(e[t]) = max{rk,(F[t]), k. (F[t]) + 1} and, by L.H.,

rk, (F[t]) < max{w,rk, () + 1} and rk, (F[t]) < max{w,rk,(t) + 1} = w.

The last equation holds by clause 1 in the definition of rank, since z ¢ FV(¢) U {x}.

4. e = A\zG. The assertion follows by I.LH. O

Lemma 4.6
If e 5% €' then rk, (') <1k, (e).

Proof by induction on the definition of <%:

Let 0 € FV(e') U {*}. (Otherwise rk,(e’) =0.)

1.1. If e is a canonical 0-e-term then rk,(e’) = 0, since e’ € IN.

1.2. If e is a canonical 1-e-term then rk,(e’') < w < rk,(e), since €' is arithmetical and o = *.
2. e =pej...ep or e = \yF":

2.1. e = AppPt and €' = G[z/t] with P <} A\2G. Then

45
rk,(e') < max{w,rk,(t)} < rk,(e) = max{w,rk, (P),rky(t)}.
2.2. otherwise: immediate from I.H.
3. e =€fF and ¢’ = £F' with F —§ F":
H
rk, (€') = max{o(§), rk, (F"),rke (F')+1} < max{o(§),rk, (F),rke (F)+1} =rky(e). O

Substitution of a variable by an appropriate canonical value also does not increase the rank.

Lemma 4.7
rk, (e[n/u]) < rks(e), for each u € B,(,).

Proof by induction on e: Let ' := e[n/u] and assume that n € FV(e) and o € FV(e') U {*}.
Note that FV(e') = FV(e) \ {n}.
1. e =n: Then o = % and rk.(e’) = 0 (if ¢«(n) = 0) or rk.(e') < w =rki(e) (if ¢(n) =1).
2. e = Appnt and u = A\zG: Then e’ = G[z/t[u]] and thus

45 H
rk,(e') < max{w,rk,(t[u])} < max{w,rk,(t)} = rk,(e).
3. e = €£F. Then

TH

rk, (€') = rk, (e€F') = max{o(§),rk, (F'),rke (F') + 1} < max{o(§),rk,(F),rke(F) + 1} = rk, (e).
4. In all other cases the assertion follows immediately from IH. O

The next statement shows that our definition of rank is suitable: the rank decreases when the ’body’ of
a canonical e-term is substituted by a canonical value.

11

Lemma 4.8
If €€F' is canonical then rk.(Fu]) < rk.(e£F), for each u € B,).

47 4.4
Proof: vk, (Flu]) < rk.(F) < rke(F) < rk.(eF). O
Definition 16 rk(e) := rks(e) is called the rank of e.

Definition 17 (Truncation to a given rank)
For each e-substitution S and r € On we set S<, := {(e,u) € S : rk(e) <r}.
Analogously we define S>,, S<r, Ss>r.

Lemma 4.9
If S, S" are e-substitutions with S<, = S, then |e|s = |e|s: holds for all expressions e of rank <r.

Proof:

Since all subterms of an expression e have ranks < rk(e), we have:

tk(e) <r = Ve'(e—=ge & e—ge).

Together with Lemma 4.6 this yields the assertion by induction on d(e). O

5 The H-process

Let us recall that critical formulas are formulas of three types:

F[t] = FlexF[z]],

s #0 — FlexF[z]] with F := (s = Sz),

F[T] —» F[eXF[X]] with T a 1-e-term or regular lambda-term.

We assume that Cry,...,Cry (with N € IN) is a fixed sequence of closed critical formulas.

In this section we define a successive approximation process for finding a solution of this system according
to Hilbert’s approach. It is useful to recall here a Comment from Section 3. The H-process will be arranged
in such a way that all non-default values of e-terms are correct: S(exF[z]) is the least n satisfying F'[n], and
S(eX F[X]) is an arithmetical A-term T satisfying F/[T].

Definition 18
Flz/n] := Flx/n] A =Flz/n—=1] A ... A =F[z/0],
F[X/T] := F[X/T).

Definition 19

Let S be an e-substitution:

e =g TRUE (FALSE) : <= |e|s € TRUE(FALSE).

F(S):={F[&/u] : (e€F,u) € S&u#7}

S is correct iff A g TRUE for all A € F(S).

S is solving iff Cr; —s TRUE for I =0, ..., N. Otherwise S is nonsolving.

S :=SU{(e,?): e canonical e-term ¢ dom(S)} is called the standard extension of S, cf. Section 3.

The definition of a term whose value is to be corrected (H-term) to a new value (H-value) and of
the e-substitution H(S) to which S is reduced by this change of value, is given in terms of the standard
extension S. In fact the first term of minimal rank is chosen, and all values of higher rank are cancelled.
Since e-substitutions are defined only for canonical terms, all these operations are preceded by transforming
arbitrary e-term e£F into its canonical form €e€|F|s.

Definition 20
Let S be an e-substitution such that S is nonsolving. (Then |Cr|s € FALSE for some I < N.)
Set ry := rk(e|F|g), where Cry = Fy — F[e{F].
Cr(S) := Cry, where I < N is such that
|C7“[|§ € FALSE& VI < N[|CT’J|§ EFALSE = ry<ryV(ri=ryAI < J)]

12

Let Cr(S) = Fy — F[e€F):

€{|F|5 is called the H-term of S.

The H-value v of S is defined as follows

a) if (&) =1 and Fy = F[T] then v := Tz,

b) if (&) =0, Fy = (s #0), and F = (s = Sz) then v := |s|g — 1,

c) if (&) =0 and Fy = F[t] then v := the unique n € IN with |F|g[n] <5 TRUE.

Remark: If e is the H-term and v the H-value of S, then v € B,(,). (For t(e) =1 cf. Lemma 3.9c.)

The next definition is central for the substitution method.

Definition 21 If S is nonsolving then
H(S) :== (S \ {(e, ")} <rk(ey U{(e,v)}, where e is the H-term and v the H-value of S.

Let us prove that H(S) is indeed a correct e-substitution if S is correct and nonsolving.

Lemma 5.1

Let S be an e-substitution such that S is correct and nonsolving,

and let e be the H-term, v the H-value of S. Then the following holds:
a) (e,?) €S,

b) lelncs) = v # 01,

¢) H(S) is correct.

Proof:

Let Cr(S) = Fo — F[e{F]. Then e = €{|F|g.

a) Assumption: (e,w) € S and w #7?. Then, since S is correct, by Lemma 3.7c F[e{F] <5 |F|glw] —g
TRUE.

On the other hand, since Cr(S) <+5 FALSE, we have F[e{F| <3 FALSE. Contradiction.
b) By Lemma 3.7b we have F[e] =< FALSE and F'[v] =5 TRUE. Hence, by 3.7b, v # |e
The equation |e|g(s) = v holds, since (e,v) € H(S).

c) Let (e€A,w) € H(S) with w # 7. Then (e£A,w) € S or €A is e and w is v. One has |A[w]|g € TRUE: in
the first case since S is correct, and in the second case by definition of H(S) and Lemma 3.7c. By Lemma
4.8 one has rk(AJw]) < rk(e), and by Lemma 4.9 |A[[w]]|TS) = |A[w]|5. O

|§ = oue).

Definition 22
The H-process (for Cro,...,Cry) is defined as follows:
So:=0, Spi1:i= {H(Sn) if Sp zs nonsolving
0 otherwise o
The H-process terminates iff there exists an n € IN such that S, is solving.

The next definition determines when the substitution S itself, (and not S) contains sufficient information to
compute all necessary values. An important instance is the provable incorrectness of S.

Definition 23

Let S be an e-substitution.

S is computationally inconsistent (ci) iff A < s FALSE for some A € F(S).

Otherwise S is computationally consistent (cc).

An ezxpression e is S-computable iff d(|e|s) = 0.

S is computing iff all formulas A € F(S) are S-computable.

S is deciding iff S is computing and the critical formulas Cry,...,Crn are S-computable.

Remark

1. A closed formula A is S-computable iff A < g TRUE or A <—¢ FALSE.

2. e is S-computable iff |e|s = |e|3.

3. If S is computing and cc then S is correct.

The next definition requires that all steps for computing H(S) are possible in terms of S itself.

13

Definition 24
Let S be an € substitution. We say that the H-rule applies to S iff

(1) S is cc, deciding, nonsolving, and
(2) if Cr(S) = F[t] — FlexF) then there exists an n € IN with |F|s[n] —s TRUE.

Lemma 5.2

Let S be cc, deciding, nonsolving, and Cr(S) = F[t] — FlexF]. Then

a) |t|s € IN and F[|t|5] —g TRUE.

b) If the formulas F[i] (i < |t|s) are S-computable then the H-rule applies to S.

Proof:

a) Since Cr(S) <»g FALSE and Cr(S) is S-computable, we have F[t] <5 TRUE. Now the assertion follows
by the Lemmas 3.7b and 3.8b.

b) Let m := |t|s. Since F[m] —g TRUE and since F[0], ..., F[m—1] are S-computable, for

n:=min{k : F[k] —s TRUE} we have n < m and |F|s[n] —s TRUE. O

Lemma 5.3
If the H-rule applies to S then H(S) is correct.

Proof: (cf. proof of 5.1)

Let (e£A,w) € H(S) with w # 7. We have to prove |A[w]|gs) € TRUE. But rk(Afw]) < rk(e) (with e
the H-term of S) and therefore |AJw]|m(s) = |A[w]|s. If (e£€A,w) € S then |AJw]|s € TRUE, since S is
correct. Otherwise e€A = e and w = H-value of S. We treat the case where Cr(S) = F[T] — F[eXF[X]]
and leave the two other cases to the reader. Then e{A = e = €|F|g and w = |T|g. Since S is deciding,
F[T] is S-computable and therefore (by Lemmas 3.7c and 3.8¢) |F[T]|s = | |F|5[|T|g]|s = |A[w]|s. Since
|Cr(S)|g € FALSE and S is deciding, we have |F[T]|s = |F[T]|g € TRUE. O

6 Termination proof via Cut-elimination

In this section we apply the general schema from [12] for reducing the termination problem for the
H-process to the cut-elimination problem in some specially devised sequent calculus with a kind of w-rule.
The termination proof is constructive and uses induction up to €.,. In the sequel we use r as syntactic
variable for ordinals (< e,).

6.1 The system eFA

The original infinite derivation constructed for a given system E of critical formulas represents the tree
of all finite e-substitutions: empty substitution is put at the bottom, and all one-component extensions of
S are placed above S (the rule Cut below). The branch of this tree is terminated (cf. Axioms below) when
a provably incorrect substitution, solution, or a substitution admitting H-rule is reached. This ’bottom-up’
view of the inference rules is helpful below.

The Cut-elimination process introduces steps of the H-process into this tree in the form of the rules
Fr,H. The rule Fr temporarily ’freezes’ the default value of e, which may be changed by the rule H into
non-default values.

Definition 25
A sequent is a function © such that dom(0©) is a set of canonical e-terms, and ©(e) € B,) U {?,7°} for
each e € dom(O).

So a sequent is almost the same as an e-substitution. A component (e, ?°) of a sequent S indicates that
the default value for e is fixed and will not be changed in the extensions of S to be considered. By identifying
? and 7° we associate with every sequent © an e-substitution which is also denoted by ©. A sequent ©
is called correct (ce, deciding, computing) if the associated e-substitution has the respective property. An
analoguous convention is followed with respect to notations like |e|g, — o, etc.

14

Abbreviation:
(e,u),0 :={(e,u)} UB, if e & dom(O).
O<r < VYieu) €O@kle)<r) (< O =0<,). Inthe same way we define “© > r”.

Definition 26
Of :={(e,u) €O : u="7°}, Ot:={(e,u) € O: u="}: fized and temporary part of a sequent.
The system e¢EA

Rules of inference:

(e,7°),0 ...(e,u),0...(u € B,)

(Cut)) (CutFr))
(6,?),@ (6,’[}), ®<rk(e)
F H —_—
(7 - () L
if the H-rule applies to (e,?),0, and
e is the H-term, v the H-value of (e, ?), 0.
Axioms:

(AxF) ©, ifOisci

(AxS) 0O, if © is cc, deciding, and solving

(AxH) (e, 7°), O, if the H-rule applies to (e,?),© and e is the H-term of (e, ?), O.
In the above rules and axioms e always denotes a canonical e-term not in dom(©).
We call e the main term of the respective inference.

Definition 27 By a deduction in eEA we mean a deduction (i.e. wellfounded tree) according to the rules of
inference of eEA from axioms of eEA and additional sequents. By a derivation in e EA we mean a deduction
in eEA from axioms of eEA only.

By h(d) we denote the height of the deduction d, i.e. h(d) := sup{h(d,) + 1 : u € I} where (d,)ucrs is the
family of immediate subdeductions of d.

If 7 is an inference then rk(Z) denotes the rank of its main term.

If d is a deduction, and X is one of the symbols Cut, CutFr, Fr, H, and > is one of the symbols <, <, >, >, =
then

X(d)r : <= r1k(Z) > r for every X-inference 7 in d.

Hence “Cut(d) < r” means that all cuts in d have rank < r, and “X(d) < 0” means that there are no
X-inferences in d.

6.2 Cut-elimination

Cuts will be eliminated in the usual way beginning with the maximal rank r. Eliminated cuts will be
replaced by CutFr and H with the same main term, i.e. with the same rank. More precisely, a cut will be
replaced by CutFr and then moved (permuted) up the derivation until one encounters AxS with a main term
e traceable to the main formula (e,?) of CutFr. Then the AxS is replaced by the rule H, and the derivation of
the corresponding right premise of the cut is placed over the rule H. After all cuts of rank r are eliminated,
these CutFr will be pruned to Fr. So finally cuts of rank r will be replaced by Fr of rank . This motivates
the following

Definition 28 Let d be a deduction.

d is an r-deduction iff Cut(d) < r & CutFr(d) < 0 & Fr(d) > r & H(d) > r.

d is an r*-deduction iff Cut(d) < r & CutFr(d) =r & Fr(d) > r & H(d) > r.

Lemma 6.1

Every rt-derivation d of © can be transformed into an r-derivation d' of © with h(d') < h(d) by pruning
each CutFr to Fr.

15

Proof is obvious. O

Lemma 6.2 (Properties of fixed and temporary parts of a sequent)
a) If © is a sequent in an r+1-deduction of () then Ot > r and Of <r.
b) If ¥ is a sequent in an rT-deduction of a sequent © then

(1) 0, \0tCS,

(2) (5f)sr CO,

(8) ©t>r = St>r.

Proof.

a) is proved by the bottom-up induction on the given deduction. This statement is obviously true for (), and
is inherited from conclusion to the premise of a rule: temporary part Ot is increased only by Fr which has
rank > r+1 > r, and ©f is increased by Cut which has rank < r +1 (i.e. <r).

b)(1) The only nontrivial case is (H). Let © = (e,?),T and ¥ = (e,v), Y<;k(e)- Then O, \ Ot C T<, C 5,
since r < rk(e).

(2) Going from ¥ down to © the only points where some (e,?°) could vanish are Cut-inferences. But each
Cut in an r™-derivation has rank < r.

(3) holds, since Fr(d) > r and CutFr(d) = r, so that formulas added to ©t are of the rank > r. ad

Applicability of the standard cut-elimination transformations in our case is seriously restricted by non-
admissibility (in general) of the weakening rule: adding components to a sequent can fail to produce a
sequent.

Definition 29 Two sequents ©,% are multiplicable if © UX is a function. In this case we write © x X for
OU Y, and say that © x X is defined.

Lemma 6.3
Let d be an r*-derivation of ©. Let ¥ <r be a correct sequent such that © x ¥ is defined and
(f)>r €O, Bt >r. Then there exists an r*-derivation d * ¥ of © x ¥ with h(d * £) < h(d).

Proof by induction on d:

We distinguish cases according to the last inference of d.

1. Cut with main term e: Then rk(e) < r.

(a) e ¢ dom(X): d X is obtained from (dy * ¥),em, ,,u{?o} by the same Cut.

(b) (e,?) € ¥: This cannot happen, since Xt > r and rk(e) < r.

(c) (e,u) € ¥ with u € B,y U {?°}:

Then ((e,u),0) * ¥ = © %X, and therefore the Cut is pruned: the derivation d x ¥ := d,, * ¥ has endsequent
O xX.

2. CutFr with main term e. Then rk(e) = and (e,?°) ¢ ©. Hence (e,?°) ¢ X, since (Xf)>, C ©.

(a) e € dom(X): As (a) above.

(b) (e,u) € ¥ with u € B,y U{?}: as (c) above.

3. Fr with main term e: Then ((e, ?),®) % ¥ is defined, since ¥ < r < rk(e).

4. H with main term e: Then rk(e) > r, and © = (e,?), Y is derived from ©" := (e,v), T <ri(e)-

;From ¥ < r <rk(e) it follows that £’ := X\ {(e,...)} is still correct, and that (X'f)>, C ©'.

JFrom e € dom(X') and O C (e,v), T it follows that ©' * X' is defined.

Since X' <r <rk(e), we also get ©'+X'" = (e,v), T<pi(e) * X' = (e,v), (T X') <1x(e) and O+ X = (e,7), T+ X
So d x ¥ is obtained from dy * ¥’ by an H-inference of the same kind.

5. Axioms: If © is an axiom then © % ¥ is an axiom of the same kind. a

We continue to investigate admissibility of weakening .
Definition 30 (O, ...,0,) is an r-path (for ©,,) if it is a path in some r-deduction of Oy = (.

Lemma 6.4

Let (Oq,...,0,) be an r+1-path for © := ©,,. Let ¥ <r be a correct sequent such that O<, C I.

Then © x X is defined, and there exists a deduction of ¥ from © x X consisting only of Fr- and H-inferences
of ranks > r.

16

Proof by induction onn: Let n >0 and ©' := 0, _;.

O x X is defined, since O<, C ¥ = X<,. Note that O, C O<,, and therefore by I.H. there is a deduction of
¥ from ©' . We now show that either @' *X = @ x X or ©' % X derives from © * ¥ by a Fr- or H-inference of
rank > r. For this we distinguish cases according to the topmost inference in (O, ..., ©,,), i.e. the inference
from © to @',

1. Cut: We have ® = (e,u),0’ and rk(e) < r. Then the Cut is pruned. Indeed, (e,u) € ¥ and thus
OxX=0"xX.

2. CutFr : This cannot happen.

3. Fr with main term e, and © = (e,7),©": Then rk(e) > r and O x ¥ = (¢,7),0" % X.

4. H with main term e, and © = (e,v), Y<ii(e), ©' = (e,7), T:

Then ©'+X is derived from ©+X by H. Indeed rk(e) > r, ©xX = (e,v), (T*X)<ri(e), and O'+E = (e,?), TxX.
The H-rule applies to ©' x ¥ (cf. Definition 24), since the H-rule applies to @', and ¥ is correct. |

Applicability of the cut-reduction transformation is restricted more or less to subderivations of ‘good’
derivations of an empty sequent ().

Lemma 6.5

Let d be a derivation ending with a cut C of rank v such that the immediate subderivations of d are rt-
derivations, and there exists an (r+1)-path for the endsequent © of d.

Then there exists an r*-derivation d' of © with h(d') < h(d) + w + h(d).

Proof. Let e be the main term of C, and d,, the immediate subderivations of d.

We transform d as follows:

(1) The cut C is turned into an inference CutFr by changing every sequent (e, 7°),®’ of d7. into (e, ?),©’.
The only rules that are damaged by this transformation are axioms AxH of the form (e, ?°), T which now
become (e, ?7), T. At each of these points we extend the deduction by the corresponding H-inference, obtaining
thereby the new top sequent (e,v), T<,.

(2) We consider now one such top sequent ¥ := (e,v), T<,.

By Lemma 5.3 ¥ = X, is correct, and by 6.2a,b(1) we get O<, = O<, \ Ot C X.

(3) By Lemma 6.4 © % ¥ is defined, and there exists a deduction of ¥ from O x ¥ consisting only of Fr- and
H-inferences of ranks > r.

(4) To derive top sequents @ x X in (3) we consider now the subderivation d, of ® := (e,v), © in the original
derivation d.

©' x X is defined, since O x X is defined and (e,v) € ¥. By Lemma 6.2b(2),(3) (applied to dze) we have
((e,7°), 1) f>r C (e,7°),0 and (((e,7°),0)t > 1 = ((e,7°),T)t > r). By 6.2a (applied to the (r+1)-path
for ©) we have ©t > r. Hence (Xf)>, C ©" and Xt > r. Now by Lemma 6.3 there is an r*-derivation d, * &
of @ x X, i.e. of O % X.

(5) The structure of d' is the following: to some tops of the deduction d}. of (e,?),©® (which is an r*-
deduction) one-branch deductions from Lemmma 6.4 are added, and the tops of the latter deductions are
r*-derived by Lemma 6.3. Hence the entire derivation is an r*-derivation. O

Now cut reduction is iterated in the standard way.

Lemma 6.6
If d is an r+1-derivation of ©, and © has an r+1-path then there exists an r+-derivation d' of © with
h(d') < wh(d)+1'

Proof by induction on h(d):

If h(d) =0, i.e. d consists of an axiom, the assertion is obvious. Assume h(d) > 0.

Let Z be the last inference of d. Let (dy)uer be the family of immediate subderivations of d, and O, the
endsequent of d,,. Then by LH. for each u € I we have an r+-derivation d/, of ©, with h(d’) < wh(®)+! <
W, Let d* be the derivation of © which is obtained from the family (d’,)uer by Z.

Obviously h(d*) < w™@ 4 1.

1. Z is not a cut of rank r: Then d* is an r*-derivation of ©.

2. 7 is a cut of rank r: In that case we apply Lemma 6.5 to d¥, and obtain an rt-derivation d’ of © with
h(d') < h(dt) +w +h(dT) < WD+, O

17

Lemma 6.7
If d is an w-derivation of ©, and © has an w-path f in which all cuts are of rank < r (with r < w) then
there exists an r*-derivation d' of © with h(d') < en(g)41-

Proof by induction on h(d):

1. Suppose that d ends in a cut of rank r + n. Let d, be the w-subderivations of its premises. By I.H. each
d,, can be transformed into an (r + n)*-derivation d/,. By replacement of d,, by d,, for all u the derivation d
is turned into a derivation ¢ with h(c) = sup, (h(d;) + 1) < sup,,(en(g,)+1 + 1) < enga) + 1.

To the derivation ¢ we apply Lemma 6.5 and obtain an (r+n)*-derivation ¢’ of © with h(¢') < h(e)+w+h(c) <
€h(d)+1-

Now n applications of Lemmata 6.1,6.6 yield the claim.

Note that for each i € IN f is an (r+i+1)-path, and (a < €y(gy41 = wtl < €h(d)+1)-

2. Suppose that d ends in some other inference Z. Again by I.LH. each immediate subderivation d, transforms
into an r*-derivation d,. By replacement of d,, by d!, for all u the derivation d is turned into an r*-derivation
d" with h(d") = sup,,(h(d,,) + 1) < sup,(en(a,)+1 + 1) < €n(a)+1- O

Lemma 6.8 (Cut-elimination)
Let d be an r-derivation of O with r < w + w and h(d) < €.
Then there exzists a 0-derivation d' of () with h(d') < €, .

Proof: wl.o.g. r = w+ n. Then n applications of 6.6,6.1 yield an w-derivation d° of) with h(d°) < €. To
d® we apply 6.7, 6.1 and obtain a 0-derivation d’ of) with h(d") < ep(ge)41 < €cq- O

The next Lemma says in fact that a cut-free derivation of the empty sequent is a protocol of a terminating
H-process.

Lemma 6.9

A 0-derivation d of) consists of exactly one branch and the following holds:

(a) all sequents in d are correct;

(b) the top sequent of d is an axiom AxS, and all other inferences in d are of the kind Fr or H.

Proof.

(a) Proof by bottom-up induction: H : cf. Lemma 5.3. Fr: If © is correct and e ¢ dom(©) then (e, ?), O is
correct.

(b) Since d is a 0O-derivation, there are no Cut- or CutFr-inferences in d. Hence d is linear. By bottom-up
induction we obtain @ f = () for each sequent © in d. Since d is wellfounded, there exists a top sequent Y.
This has to be an axiom. By (a) T is not ci. Since ©f =@, Y cannot be an axiom AxH. m|

6.3 Construction of the original derivation

Here we construct the tree of finite e-substitutions mentioned at the beginning of the section 6. General
idea here is the same as in [12]. At each stage leaves of the tree are extended (by the bottom-up application
of Cut) to make them “more computed” till the axioms are reached. Subterms of the non-computed (but
needed) e-terms of maximum rank are computed till these maximum e-terms can be reduced to a canonical
form and then computed. Note that the following definitions are stated for a given substitution S, and not
for its completion S.

Definition 31 Let S be an e-substitution and ® a finite set of closed formulas.

ps(®) := max{rk(|Als) : A € ®, d(|A|s) >0} U {0}

vs(®) :=w® -r + #5(®,r) where r := ps(P),

#5(®,r) :=d.(|A1]|s)# ... #d,(JAnls), where & = {A4,..., A,,} without repetitions,
_]0 if tk(F) <r

dr(F) = d(F) otherwise

Note that ps(®) <w+w, #s(®,r) <w*, vs(®) <w** 3.

18

Lemma 6.10 (One step of extension)

Let S be an e-substitution and ® a finite set of closed formulas.

Let e = e€F ¢ dom(S) be a canonical e-subterm of a formula |Ao|s with Ay € ®, rk(JAols) = ps(P).
Let u € B, U{?}, 8" :== SU{(e,u)}, and &' := if u =7 then ® else U { F[u]}.

Then pgs (®') < ps(®) and ve (D) < vs(P).

Proof:

(a) Since S C S', we have ||w|s|s = |w|s: and thus rk(jw|s) < rk(|w|s), d(Jw|s') < d(Jw|s) for each w.
Let r := pg(®) and ' := pg (®').

One easily sees that ' < r. Indeed, rk(|F[u]|s) < rk(F[u]) < rk(e) < r, and for remaining terms w
occurring in @ cf (a) .

Let v = r (for 7" < r the claim is trivial: ve/(®') <w® - (r' +1) <w¥ -r).

For each A € ® we have rk(|A4|s) < rk(|A|s), d(|A|s) < d(|A|s) and thus d,(|A|s) < d-(|Als)-

Moreover |Ag|s is S'-reducible and rk(|4g|s) = r. Hence d,(|Ao|s') < d,(|4o|s) (Lemma 3.3).

Finally d,(|F[u]|s) = 0, since rk(|F[u]|s') < 7. O

Lemma 6.11 (Rank reduction)

Let © be a sequent, L a finite set of closed formulas, and r := pg(F(O)U L) (cf. Definition 19).

Then there is a deduction d of © by cuts of ranks < r from computing sequents Y containing ©® and computing
all formulas in L. Moreover h(d) < ve(F(0©) U L).

Proof by induction on ve(F(O©)UL):

Let ® := F(O) U L. If © computes all formulas in ® we are done.

Otherwise there exists a canonical e-subterm e = e£F of a formula |4g|e with Ay € ®, rk(]4gle) = 7.

Let u € B,y U{?°} and ©' := (e,u), 0. Then F(0') = if u =7° then F(O) else F7(©) U { F[u]}.

By the Lemma 6.10 ' := pe/(F(O©')U L) <7 and v (F(O©')UL) < ve(F(O)U L).

Hence (by I.H.) there exists a deduction d,, of ©' by cuts of ranks < 7' from computing sequents T containing
©' and computing all formulas in L, and h(dy,) < ve/ (F(O')U L).

A cut with main term e yields the desired deduction d. |

Lemma 6.12
There exists an r < w + w and an r+1-derivation d of the empty sequent containing only axioms and cuts.
In addition we have h(d) < w*+2.

Proof:

First apply Lemma 6.11 to the empty sequent and the set L := {Cry, ...,Crn}. Let r := py(L), and consider
an arbitrary top sequent © of the resulting r+1-deduction d° which is not an axiom. Then 0 is cc, deciding
and nonsolving. Since the only inferences in d° are cuts of rank < r, we have Ot = () and rk(e) < r for each
e € dom(0O). Let e be the H-term of ©. Since O is deciding, e is ©-computable (cf. Lemmas 3.7c and 3.8b).
Together with Lemma 5.1a and ©t = () this implies (e,?°) € ©. Since © is not an axiom AxH, it follows
that Cr(0) is of the form F[t] — FlexF] and e = exA with A := |F|g. By Lemma 5.2 A[n] —¢ TRUE for
n:=|tle.

Now let L' := {A[n—1],..., A[0]}. Then po(F(O©)U L') < r. Apply Lemma 6.11 to ©, L' and consider
any cc top sequent Y of the resulting r+1-deduction. YT contains © and computes all formulas in L'. Now
Lemma 5.2b yields that T is an axiom AxH with main term e. O

Theorem 6.13 . The H-process terminates.

Proof. Combine Lemmata 6.12, 6.8, 6.9. Cf. [12].

6.4 Producing a substitution in terms of finite predicates
6.4.1 Soundness

Lemma 6.14 Let S be a correct and total e-substitution. Then all closed axioms of EAe except maybe
critical formulas are satisfied by S. Modus ponens rule preserves truth under S.

19

Proof. All instances of propositional tautologies and defining axioms for predicate constants are satisfied
by S by the Lemma 3.7. Modus ponens preserves truth under S, since values of composite formulas are
calculated accordingly to standard boolean rules. Equality axioms are satisfied, since by Lemma 3.7c: if
|t|s = |u|s for O-terms ¢, u then |e[t]|s = |e[u]|s for any expression e.

Consider a minimality axiom exF|[zx] = St — —F[t]: Assume |exF[z] = St|s € TRUE and let n := |t|s.
Then (ex|F|s,n+1) € S and by correctness and Lemma 3.7 we have |F[n+1]|s = | |F|s[n+1] |s € TRUE,
in particular |- F[t]|s = |=F[n]|s € TRUE. O

6.4.2 e-free derivation

Let d* be a closed derivation in EAe, and let S be a correct, total, and solving e-substitution for the
system Crg, ..., Cry of critical formulas of d*. (For example S = S,,, where S, is produced by the H-process
for Crq,...,Crn, cf. Definition 22.) Since S is correct and total, all axioms of d* except critical formulas
are satisfied by S and modus ponens rule preserves truth under S. Since S is solving, critical formulas are
satisfied, too. Hence all formulas in d* are true under S.

Closed formulas are constructed by propositional connectives ; from atomic formulas of the form pe; ... e,
and App(eX F)e; where e; are numerals or closed 0-e-terms possibly preceded by several S, and eXF is a
closed 1-term. Let M be the maximum of all numerals, including all values |u|g of all 0-terms u mentioned
in all computations above needed to verify the axioms of the derivation d*.

Replace exterior occurrences of 1-epsilon-terms eX F' in d* by finite predicates

{n < M | |App(eX F)n|s € TRUE}

and exterior occurrences of 0-epsilon-terms u by their S-values. We obtain an e-free derivation from formulas
which are true under the standard interpretation of predicate constants and boolean connectives, and the
rule
(App{ni,...,ni}(n) is true) SN (n occurs among nq,...,Nk) .
Note that thereby an E Ae derivation d* of a formula FlezF] (= (3zF)*) or F[eXF| (= (3X F)*) with F

quantifier- and e-free is transformed into a derivation of F[n] or F[P] for some numeral n or finite predicate
P.

7 Non-constructive proof of termination

In this section S, Sy, ... always denote e-substitutions with {e € dom(S) : S(e) =?} = 0. For each pair (e, u)
we set rk((e,u)) := rk(e).

Definition 32 Let S be an e-substitution such that S is correct and nonsolving.
Let e be the H-term and v the H-value of S.
We set rk(S) :=rk(e) and n(S) := (e, v).

Note that if S is correct and nonsolving, then according to our general assumption on S we have e g dom(S)
and H(S) = SSrk(e) U {(6,1})}.

Definition 33 An e-substitution S is called r-substitution (r € On) iff S is correct and rk(m) < r for all
pairsm € S, i.e. S=S,.

Definition 34 Let r € On. An r-process is a sequence (S;)i<, such that:
- 0<v<uw,
- So is an r-substitution,
~ ifi <v and S; is nonsolving and tk(S;) > r then i+ 1 < v and S;1; = H(S;),
~ ifi <v and (S; is solving or 1k(S;) < r) then v =i + 1.
(In this case S; is the last substitution, and S, = S;11 is not defined.)

20

Remark
1. For each r-substitution S there is a unique r-process (S;);<, with S = Sy.
2. If (S;)i<v is an r-process then

a) for all i < v, S; is correct and (S;) <, = S ,

b) for all i with i+1 < v, S; is nonsolving and rk(S;) > 7.

The values of rank r are preserved in an r-process.

Lemma 7.1
If (Si)icv is an r-process and i < j < v then (S;)<r C S;.

Proof: If i+1 < v then Si 1 = (Si)<rk(e) U {(e,v)} with rk(e) > r, and therefore (S;)<, C Siy1. (From this
the claim follows by induction on j. O

An infinite r-process if it existed, would necessarily introduce values of rank > r .
Lemma 7.2 If (S;)ic. is an r-process then Yk3i > k(rk(S;) > r).

Proof:
Assumption: k € N& Vi > k(rk(S;) = 7). — We write ||, for [e|g—
(1) For each canonical e-term e there is an n such that Vi > n(|e|, = |e|;)-
Proof:
1. rk(e) =7 and e & U, dom(S;): Then [e|; = 04(¢) for all i.
2. rk(e) = r and e € dom(S,): By Lemma 7.1 it follows that |e|; = |e|, for all i > n.
3 rk(e) < r: Then |e|; = |e|o for all 4.

rk(e) > r: By assumption we have Vi > k(e & dom(S;)) and therefore |e|; = 04(¢) for all i > k. O
(2) For each expression e there is an n such that Vi > n(|e|; = |e|,).
Proof by induction on d(e). If d(e) = 0 then |e|; = e = |e|,. Assume now that d(e) > 0 and let u be some
canonical e-subterm of e. By (1) there is an m such that |u|; = |u|,, for all @ > m. Let €' result from e by
‘contraction’ of u. Then e ;)1— e’ for all i > m, and by L.H. there is an n > m such that |e'|; = |€/|, for all
i > n. Hence |e|; = |e'|;=|€e'|, = |e|n for all i > n. O (2).
By (2) there is an n > k such that |F|,+1 = |F|, and |e£F|,+1 = |e£F|,, for each critical formula Fo— F[e{F)
from the list Crg, ...,Cryn. So especially for the H-term e = €£|F|,, of S,, we have |e|n,+1 = |€€|F|nt1|nt1 =
|€€F | nt1 = |€€F|n = |e|n. (Note that [e€F|s = | €| F|s |s). But, since S, +1 = H(S,), this is a contradiction
to Lemma 5.1b. O

Each infinite r-process can be extended to an infinite r + 1-process.

Theorem 7.3
Let (S;)icw be an r-process. Then (by adding pairs of rank r) So can be extended to an (r+1)-substitution
S+ such that the (r+1)-process beginning with S+ is infinite.

Proof: Again we set |e|, := |e|5—
S+ = U,e,(Si)<r. By Lemma 7 1 S+ is a function. We show that the r + 1-process beginning with S+ is
an accelerated version of the given infinite r-process (S;)icw. (cf. (2) below).
(1) S+ is correct.
Proof: Let (e£A,u) € (S;)<r. Then for each v € IBL(g rk(AJv]) < rk(e€A) < r and therefore |A[v]|; =
|A[v]|o = |A[v]|gz- Hence |A[u]|; = [A[u]|g5- Since S; is correct, we have |A[u]|; € TRUE.
Let (S+i)i<y be the (r+1)-process starting with S+. Abbreviation: e[} := |e]
The following proposition (2a) together with (1) yields the theorem.
(2) For every i € w holds

(a) i <w,

(b) there exists j € w such that S+; is an extension of S; by some pairs of rank r.
Proof by induction on i:
I. i = 0: (a) trivial. (b) Take j :=0.
IT. ¢ — i+1:

S+y,°

21

By LH. i < v, and there is a j such that S+; = S; ¥ ¥ with V7 € ¥(rk(7) = 7).

(The symbol @ indicates disjoint union).

Let A be the finite set of all pairs m € S+ of rank r which are used in the computation of |Cr|d, ..., |Crr|
(I =0,..,N)as well as 7(S+o),...,m(S+;).

Let k := min{l > j : A C S;&rk(S;) > r} (cf. Lemma 7.2). We have k > j & A C S &rk(Sk) > r

CASE A: k=.

(a) Then S+; = S, W ¥, and ¥ is not used in the computation of |Cr|] since S, already contains A. Hence
|Crr|f = |Crr|g for T =0,...,N. Since Sy, is nonsolving and rk(Sy) > r, it follows that S+; is nonsolving,
w(S+;) = 7(Sk), and rk(S+;) > r + 1. Hence i + 1 < v.

(b) S+it1 = (S+i) <rk(s+) W{T(S+i)} = (Sk W) <rs,) W{T(Sk)} = (Sk) <rie(s) O{m(Sk)} ¥ = Sp1 W 0.
CASE B: j < k. Then rk(Sk—1) = r. Otherwise (St)<» = (Sk—1)<r and rk(Sx—1) > r, so that k is not
minimal.

Hence in the step from Si_; to S}, all pairs of rank > r are removed. It follows that S+9 = S W ® where ®
consists of pairs of rank r which are not used in the computation of |Crr|], ..., |Crr|f and 7(S+;).
Proposition. S+; = Sk W@, for I =0,...,min{i + 1,v — 1} (%).

Proof by induction on I: Let I < min{i + 1,» — 1} and S+, = Sg+; & P.

By the definition of @, all pairs of rank r which are used in the computation of |Cr|], ...,|Crr|] and 7(S+;)
are contained in A C Sy. Since ! < i, we have 7(S+;) = 7(Sk4:) and rk(S+;) = rk(Sk4;). Since I[+1 < v, the
substitution S+ is not terminal, and we have rk(S+;) > r+1. Hence S+;41 = (S+1)<rk(s+,) U{T(S+1)} =
(Skt1 W ®) <rie(sp40) W AT(Skr1) } = (Skrt) <vc(sp10) B AT (Sh)} W @ = Spepigr & @

(a) The above proposition () yields |Crr| = |Crr|gss since ¥ is not used in the computation of |Crr|}
.Hence S+; is nonsolving, since Sj,; is nonsolving. Now by (x) we also have 7(S+;) = 7(Skss) and
rk(S+;) = rk(Sk+i). Assume rk(Spy;) = r; then 7(Sk4i) € S+ C S+; and thus 7(Sk+;) # 7(S+;), since
m(S+;) € S+;. Contradiction.

Hence rk(S+;) = rk(Sg+:) > r+1 and thus i + 1 < v.

(b) As in the proof of (x) we get S+;11 = Skrit1 & ®. O

Theorem 7.4
The 0-process T beginning with the empty substitution () terminates in a solving substitution.

Proof: Obviously it suffices to prove that II is finite (terminates).

For contradiction we assume that II is infinite.

Below we define substitutions S” for all r € On such that:

(1) S°=9,

(2) S”is an r-substitution,

(3) the r-process starting with S” is infinite,

(4) S?1C S, for all g <r.

Let R := max{rk(Crr) : I < N} 4+ 1. Then rk(S) < R for each substitution S. But on the other hand
rk(S%) > R, since by (3) the R-process starting with S is infinite. Contradiction.

Definition of S™ by transfinite recursion on r:

SO =0,

S+l = (8")+ (cf. Theorem 7.3),

ST i=U, <, 8% if r € Lim.

In parallel with that definition we prove by transfinite induction on r that S” satisfies the above conditions
(2),(3),(4). The successor step is settled by theorem 7.3. Now assume r € Lim.

Then (4) is trivial, and (2) follows ;from I.H.(2),(4), since each particular value (e,u) in S” is verified by
computation in some S9, g < r.

For (3) assume that the r-process for S” is finite. Then it uses information only from S? for finitely many
q < r, hence there is a ¢ < r such that S? is finite which contradicts I.H.(3). a

22

References

[1] W.Ackermann, Begriindung des Tertium non datur mittels der Hilbertschen Theorie der Widerspruchs-
freiheit, Math.Ann. 1925, 93, 1-36

2] W.Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math.Ann. 1940, 117, 162-194

[

[3] N. Bourbaki, Theorie des ensembles, Hermann, 1958

[4] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Math Ann., 1936, 112, N4, 493-565
[

5] J.-Y.Girard, Une extension de I'interpretation de Godel a I’analyse et la application a I’elimination des
coupures dans ’analyse et la theorie des types, Proc. 2-nd Scand.Logic Symp., North-Holland, 1972,
63-92

[6] D.Hilbert, Probleme der Grundlegung der Mathematik, Math.Ann. 1929, 102, 1-9

[7] D.Hilbert, P.Bernays, Grundlagen der Mathematik, Bd.2, Springer, 1970

[8] G.Kreisel, On the Interpretation of Non-finitist proofs I, J. Symbolic Logic 1951, 16, 241-267
[9] G.Kreisel On the Interpretation of Non-finitist proofs II, J. Symbolic Logic 1952, 17, 43-58

[10] G.Mints, Simplified Consistency Proof for Arithmetic (Russian), Proc. Estonian Acad. of Sci. Fiz.-
Math.1982, 31 N4, 376-382

[11] G. Mints, Epsilon Substitution Method for the Theory of Hereditarily Finite Sets (Russian), Proc.
Eston. Acad. of Sci. Fiz.-Math. 1989 N2, 154-164

[12] G.Mints, Gentzen-type Systems and Hilbert’s Epsilon Substitution Method. I. In: Logic, Method. and
Philos. of Sci. IX, Elsevier, 1994, 91-122

[13] G. Mints, S. Tupailo, Epsilon Substitution Method for Elementary Analysis, Report No. CSLI-93-175,
1993, CSLI, Stanford University, February 1993

[14] Kleene S.C., Introduction to Methamathematics, Van Nostrand, 1952

[15] J.von Neumann, Zur Hilbertschen Beweistheorie, Math. Zeitschrift 26, 1927, 1-46

[16] K. Schutte, Proof Theory, Springer, 1977

[17] W.Tait, Functionals Defined by Transfinite Recursion, J. Symbolic Logic 1965, 30 N2, 155-174
[18] W.Tait, The Substitution Method, J. Symbolic Logic 1965, 30, N2, 175-192

[19] H.-Weyl, David Hilbert and His Mathemtical Work, Bull. Amer. Math. Society, 1944, 50, 612-654

23

