
Epsilon Substitution Method for Elementary AnalysisGrigori MintsDepartment of Philosophy, Stanford University, Stanford, CA 94305Sergei TupailoInstitute of Cybernetis, Estonian Aademy of Sienes, Tallinn, EE0026, EstoniaWilfried BuhholzMathematishes Institut der Universit�at M�unhen,Theresienstrasse 39, D-80333 M�unhen, Bundesrepublik DeutshlandJuly 25, 1997AbstratWe formulate epsilon substitution method for elementary analysis EA (seond order arithmeti withomprehension for arithmetial formulas with prediate parameters). Two proofs of its termination arepresented. One uses embedding into rami�ed system of level one and utelimination for this system. Theseond proof uses non-e�etive ontinuity argument.IntrodutionThe epsilon substitution method is based on the language introdued by Hilbert [7℄ (and used later byBourbaki [3℄). The main non-boolean onstrution of this language is �xF [x℄, read as \an x satisfying theondition F [x℄". In number-theoreti ontexts it is often interpreted as least x satisfying F [x℄". Existentialand universal quanti�ers beome expliitly de�nable by9xF [x℄ = F [�xF [x℄℄; 8xF [x℄ = F [�x:F [x℄℄ (1)The main axioms of the orresponding formalism are ritial formulasF [t℄! F [�xF [x℄℄ (2)Hilbert's approah (Ansatz) to transforming arbitrary (non-�nitisti) number-theoreti proofs into �ni-tisti (ombinatorial) proofs by means of the substitution method is desribed in [7℄. Cf. also the short andlively presentation by Hermann Weyl in [19℄. The approah is as follows.Take all ritial formulas (2) ourring in a given proof P . There is only a �nite number of them, soone always deals with a �nite system E of ritial formulas. Consider any substitution S of numerals foronstant epsilon-terms. If all ritial formulas (2) are true under S, it is alled a solving substitution forthe system E. Hilbert proposed a spei� plan for �nding a solving substitution by a series of suessiveapproximations, desribed below. If it sueeds and if the last formula of the proof P , i.e. the formula provedby P , is a onstant ombinatorial identity suh as 1 + 2 + : : :+ 10 = 55, replaing all free variables by anynumerals and then eah epsilon-term t by S(t) immediately yields a variable-free (�nitisti, ombinatorial)proof of the same identity. Moreover, it was noted by Akermann and stressed later by Kreisel that the samedevie allows one to extrat the numerial ontent of existential proofs, i.e. proofs of existential formulas9xF [x℄ with ombinatorial (free variable) F [x℄. Indeed, 9xF [x℄ is translated as F [�xF [x℄℄. If S is a solvingsubstitution for the proof P of suh a formula, and N = S(�xF [x℄) then S(P ) is a proof of F [N ℄. So N is anumerial realization of the existential quanti�er in 9xF [x℄.Hilbert's suggestion for �nding a solving substitution by a suessive approximation method is based onthe following idea of generating substitutions of numerals for losed epsilon-terms. The initial approximationS0 is identially 0. At every stage only a �nite number of epsilon-terms are assigned non-zero values. If1



approximations S0; : : : ; Si are already generated, and Si is not yet a solving substitution, then Si+1 is foundas follows. Fix appropriate ordering of the ritial formulas (2) and take the �rst formula in this orderingwhih is false under Si, i.e. for whihSi(F [t℄) = true; Si(F [�xF ℄) = falseThis means that the value Si(�xF ) is inorret: this value does not satisfy F , while F [Si(t)℄ is true underSi. Then the value of �xF is orreted by puttingSi+1(�xF ) = (the least N � t) (Si(F [n℄) = true)The problem stated by Hilbert was to prove termination of the sequene S0; S1; S2; : : : after a �nitenumber of steps for any system of ritial formulas (2). After von Neumann's [15℄ attak on this (see below)Hilbert [6℄ stated further problems:�nd a proof of termination for pure number theory, for analysis, and for analysis with the axiom ofhoie, when eah of these systems is suitably reformulated in the epsilon-alulus.The �rst attempt by Akermann [1℄ to prove termination for analysis was shown by von Neumann [15℄ toontain a serious defet onneted with the treatment of equality. Von Neumann introdued a devie allowingto avoid this defet, gave an exat formulation based on Hilbert's Ansatz and presented a termination prooffor the ase when the terms �xF [x℄ in ritial formulas involve only free-variable (ombinatorial) formulasF [x℄. This orresponds to number theory with the indution axiom for quanti�er free formulas.After Gentzen's proof [4℄ of ut-elimination and onsequently of onsisteny for arithmeti (with respetto losed equations) revealed the role of the ordinal �0, Akermann [2℄ was able to �nd a �nal formulationand to give a termination proof for full �rst order arithmeti (pure number theory). His formulation for �rstorder arithmeti, desribed also by Hilbert and Bernays [7℄, and used in all the subsequent researh, onsistsof Hilbert's Ansatz modi�ed in aordane with von Neumann's remarks plus the following stipulation: afterthe value of �xF was orreted, the values of all terms of greater omplexity (rank) are set to 0.Akermann's proof [2℄ is rather involved. On the other hand, there exists muh easier non-e�etivetermination proof of the substitution method for the �rst order arithmeti. It uses a very simple non-e�etive proof of the existene of solving substitution (f. [18℄, setion 5.1) and ontinuous dependeneof a solution of a system of ritial formulas from funtion parameters (f. [18℄, end of the setion 5.3).These ideas were elaborated by Mints in [10℄ for the �rst order arithmeti and in [11℄ for the theory ofhereditarily �nite sets into a non-e�etive termination proof whih uses ontinuity in Baire topology in thespae of number-theoreti funtions. A possibility to simplify a system of ritial formulas by substitutingomputable values of subordinate �-matries and a need for some restritions on the funtionals used waspointed out in [8℄, p. 259 (ii), 260.The existene of a solving substitution for the ase of analysis (seond order arithmeti) is proved as simplyas in the �rst order ase, but nothing similar to the simple termination proof is known for the seond orderase. G. Kreisel [8, 9℄ further investigated the substitution method for the �rst order ase and made it abasis for the no-ounterexample interpretation, the �rst published funtional interpretation produing non-trivial onstrutive results for non-onstrutive proofs. W. Tait [18℄ presented a �ner analysis of the rate oftermination in terms of relevant parameters based on his analysis [17℄ of reursion shemata.The next step was made in [12℄ where a Gentzen-type system PA� in the epsilon language for �rst orderarithmeti was proposed. The axioms of this alulus depend on a partiular system E of ritial formulas.Normalization (ut-elimination) steps for this alulus were de�ned and the following statements proved.Theorem 1. The sequent expressing existene of a solving substitution for the system E of ritial formulasis derivable in PA� by a derivation of speial form, alled f -derivation.Theorem 2. f -derivations an be normalized, i.e. the ut rule an be eliminated by a series of normalizationsteps.Theorem 3. A ut-free derivation of the sequent in Theorem 1 enodes a �nite sequeneS0; S1; : : : ; Sn (3)of suessive substitutions (in the sense of Akermann) terminating in a solving substitution for the originalsystem E of ritial formulas. 2



Hene the rate of onvergene (i.e. the value of n in (3) as a funtion of the system E) is determinedby theorems 3 and 2, and is measured by �0 . The derivation mentioned in Theorem 1 in fat formalizesthe non-e�etive proof of the existene of a solving substitution mentioned earlier. In this paper we applythe proof strategy expressed by Theorems 1-3 to the subsystem of the seond order arithmeti based on theomprehension shema for arithmetial formulas with prediate parameters. This system is alled EA in[16℄, and is obviously prediative: it an be easily embedded into rami�ed analysis of the level 1, and itsproof-theoreti ordinal is proved in [16℄ to be ��0 . This opens the way to the extension of our approah torami�ed systems where bound prediate variables have levels and range over prediate terms of lower levels.Present approah to the de�nition of the epsilon substitution for the seond order epsilon-terms has twoimportant new features. The values are losed arithmetial abstrats, and the passage to the new substitutionis done aording to the rank of some intermediate objet (anonial form, f. Setion 5). These de�nitionshave been found in the framework of the termination proof via ut-elimination whih is presented in thesetion 6. After this it beame possible to give a shorter non-e�etive proof whih is presented in the setion7. This researh was supported by Center for the Study of Language and Information, Stanford University,and by the NSF grant DMS-9206976, and its results with proofs appeared in the preprint [13℄ by the �rsttwo authors. Chapters 2 and 4 of the preprint were written by S. Tupailo, Chapter 3 was due to G. Mints.W. Buhholz wrote a new version of the ore parts of the paper with several tehnial improvements andsimpli�ations.1 The System EA�The formulation here is very lose to [7℄.1.1 The language L2�Let us desribe in detail the language of �-alulus.Basi Symbols0-variables (denoted by x; y; z; : : :);1-variables (denoted by X;Y; Z; : : :);the 0-ary funtion onstant 0 (zero), and the unary funtion onstant S (suessor);prediate onstants for n-ary omputable prediates (n � 1) inluding = (equality), add (addition) and prod(multipliation);the propositional logial onnetives :, ^, !;the epsilon symbol � and the appliation symbol App.De�nition 1 (Terms and formulas)1. Eah �-variable is a �-term (� = 0; 1).2. The onstant 0 is a 0-term.3. If t is a 0-term, then St is a 0-term.4. If t1,...,tn are 0-terms and p is an n-ary prediate onstant, then pt1 : : : tn is a formula.5. If t is a 0-term and P is a 1-term then AppPt is a formula.6. If A;B are formulas then :A, ^AB, !AB are formulas.7. If F is a formula and � is a �-variable then ��F is a �-term (�=0,1).To inrease readability, we sometimes use in�x notation for binary logial onnetives, insert parenthesesand use standard abbreviations like A _ B = :A! B.De�nition 2 (�-terms)If G is a formula and z is a 0-variable ourring free in G, then �zG is a �-term.�-terms (� = 0; 1), formulas and �-terms are alled expressions.Terms of the form ��F are alled �-terms.The 0-terms 0; S0; SS0; ::: are alled numerals. 3



Var denotes the set of all variables, IN denotes the set of all numerals.We de�ne 00 := 0; 01 := �z(z = 0).For eah term u we set �(u) := n 0 if u is a 0-term1 if u is a 1-term.Note 1. Instead of usual omputable funtions we use omputable prediates (their graphs) to simplifytehnial details. Computable funtions an be introdued in a familiar way via their graphs [14℄.Note 2. Lambda-symbols are not allowed to our inside other expressions. The result of their substitutioninto other expressions is understood via �-onversion (f. De�nitions 6,7 below), whih allows to treat themtogether with 1-terms.Syntati variables:e; u; v; w for expressions,�; � for variables,p for any prediate onstant and the symbols S;:;^;!;App,s; t for 0-terms,n for a numeral Sn0,P for 1-terms,T for 1-terms and �-terms,A;B; F;G for formulas.The set FV (e) of free variables of an expression e is de�ned in the standard way.De�nition 3FV (0) := ; and FV (�) = f�g for eah variable �,FV (pe1 : : : en) = FV (e1) [ : : : [ FV (en),FV (��F ) := FV (F ) n f�g,FV (�zG) := FV (G) n fzg.e is alled losed i� FV (e) = ;SubstitutionWe identify expressions whih are equivalent modulo renaming of bound variables. If u is a �(�)-term thene[�=u℄ denotes the result of substituting u for eah free ourrene of � in e, where bound variables in e arerenamed if neessary. If � is known from the ontext we write e[u℄ for e[�=u℄.The next series of de�nitions is needed mainly in the setion 3 below to determine omputations >frominside replaing losed �-terms by their values. The depth d(e) is a measure of nesting of losed �-subterms,taking into aount that 1-�-subterms an be substituted by �-terms, and this an inrease nesting by anarbitrary �nite amount. It uses the natural sum funtion # on ordinal numbers, whih is a ommutativeassoiative analog of the ordinal sum +:!�#!� = !max(�;�) + !min(�;�)De�nition 41. d(�) := d(0) := 02. d(pe1 : : : en) := d(e1)# : : :#d(en), for p 6= App3. d(AppPt) := ! � (d(P )#d(t))4. d(��F ) := � 1 + d(F ) if ��F is losedd(F ) otherwise5. d(�zG) := d(G)Note 1. d(e) < !!.Note 2. d(e) = 0 i� e does not ontain losed �-subterms.De�nition 51. An �-term e = ��F is alled anonial if it is losed and d(e) = 1 (i.e. d(F ) = 0).2. A �-term �zG is alled anonial if FV (G) = fzg and d(G) = 0.4



3. e is alled simple if d(e) = 0 and e is losed.4. e is alled arithmetial if e ontains no 1-variable.5. TRUE (FALSE) denotes the set of all true (false) simple formulas. [Note that a simple formula ontainsno variables and is onstruted from omputable atomi formulas by boolean onnetives. Every simple termis a numeral℄.6. IB0 := IN; IB1:= the set of all anonial arithmetial �-terms.The objets to be immediately evaluated are anonial �-terms, and the values of �-terms will be elementsof B�.To de�ne substitution e[Y=T ℄ for expressions e and �-terms T , we extend the `operation' App:De�nition 6App(T; t) := � G[t℄ if T = �zGAppT t otherwiseFor p 6= App we set p(e1; : : : ; en) := pe1 : : : en.De�nition 71. If e 2 Var [ f0g then e[Y=T ℄ := � T if e = Ye otherwise2. (pe1 : : : en)[Y=T ℄ := p(e1[Y=t℄; : : : ; en[Y=t℄)3. (��F )[Y=T ℄ := � ��F if � = Y��F [Y=T ℄ otherwise where it is assumed without loss of generality that � 62 FV (T ).4. (�zF )[Y=T ℄ := �zF [Y=T ℄ assuming that z 62 FV (T ).The next de�nition onerns a restrition on the seond order ritial formulas whih arise in the proessof translating EA-derivations (Setion 2 below) into EA�-derivations.De�nition 8 (Regular �-terms)A �-term �zG is alled regular if it an be obtained from a �-term without bound 1-variables by substitutionof �-terms for free variables and z 2 FV (G).1.2 Axioms and inferene rules of EA�The language of EA� is L2�.The only inferene rule of EA� is modus ponens: F F ! GG .Axioms of EA�Propositional axioms: all propositional tautologies of the language L2�,All substitution instanes of de�ning axioms for the prediate onstants, inluding the prediates of additionand multipliation:add(s; 0; s) and add(s; t; r)! add(s; St; Sr)prod(s; 0; 0) and prod(s; t; r) ^ add(r; s; r1)! prod(s; St; r1)Equality axioms: t = t and s = t! (F [s℄! F [t℄),Peano axioms for S: St 6= 0 and Ss = St! s = t ,Minimality axioms: �xF [x℄ = St! :F [t℄,Critial formulas:F [t℄! F [�xF [x℄℄,s 6= 0! F [�xF [x℄℄ with F := (s = Sx),F [T ℄! F [�XF [X ℄℄ with T being a 1-term or a regular �-term.Comment. Critial formulas of the seond kind are not present in [7℄. They are needed here to interpreteRobinson's axiom s 6= 0! 9x(s = Sx).This onludes the desription of EA�. Note that the formulass = t! (�xF [x; s℄ = �xF [x; t℄)are onsequenes of the equality axioms of EA�.Note: EA� is losed under the substitution rule: if F is derivable and u is a �(�)-term, then F [�=u℄ isderivable. Indeed, all axioms and inferene rules of EA� are losed under substitution.5



2 Embedding EA into EA�EA is the usual system of elementary analysis (i.e. seond order arithmeti with the axiom sheme ofarithmetial omprehension). The language L2 of EA is obtained from L2� by dropping the epsilon symbol� and adding the existential quanti�er 9. In the de�nition of terms and formulas ase 7 is replaed by:7. If F is a formula and � is a �-variable (� = 0; 1) then 9�F is a formula.Note that the only 1-terms of L2 are 1-variables.The universal quanti�er is de�ned via 9: 8�F := :9�:F .Axioms of EA(1) Propositional axioms: all propositional tautologies of the language L2,(2) De�ning axioms for the prediate onstants, inluding the prediates of addition and multipliation:add(x; 0; x) and add(x; y; z)! add(x; Sy; Sz)prod(x; 0; 0) and prod(x; y; z) ^ add(z; x; z1)! prod(x; Sy; z1)(3) Equality axioms: x = x and x = y ! (F [x℄! F [y℄),(4) Peano axioms for S: Sx 6= 0 and Sx = Sy ! x = y ,(5) Indution axioms: F [0℄! 8x(F [x℄! F [Sx℄)! 8xF [x℄,(6) First order existential axioms: F [t℄! 9xF [x℄,(7) Seond order existential axioms: F [T ℄! 9XF [X ℄,where T is a 1-variable or a �-term ontaining no bound 1-variables.Inferene rules of EA modus ponens F F ! GG9 ! F [�℄! G9�F [�℄! Gwhere �; � are both 0-variables or 1-variables and the standard proviso is satis�ed: the eigenvariable � doesnot our free in the onlusion 9�F [�℄! G.De�nition 9For any formula F of EA de�ne indutively an L2�-formula F �:F � := F for atomi F(:F )� := :F � and (F �G)� := (F � �G�) for � = ^;!(9�F [�℄)� := F �[��F [�℄�℄(�zG)� := �zG�Theorem 2.1a) If EA ` F then EA� ` F �.b) If EA ` F and F is losed then there exists an EA�-derivation of F � in whih all formulas are losed.Proof: a) Let EA0 be the set of all L2-formulas F with EA� ` F �.EA0 is losed under modus ponens and the existential rule 9 !. (Note that (9�F [�℄! G)� = F �[��F �[�℄℄!G�, and therefore losure of EA0 under 9 ! follows from the fat that EA� is losed under substitution.)The *-translation of any EA-axiom of kind (1){(4) is an EA�-axiom of the same kind.The *-translation of any existential axiom of EA is a ritial formula.Below we show that the *-translation of every indution axiom of EA is derivable in EA�. This will �nishthe proof of a).Observe that b) is an immediate onsequene of a): Given an EA�-derivation d of a losed formula F onesimply replaes every free �-variable in d by 0�.Now we onsider the *-translation A of an indution axiom.Obviously A is of the form G[0℄! G[u℄! G[e℄ with G[x℄ := G[x℄! G[Sx℄, u := �x:G[x℄, e := �x:G[x℄.Let e� := �y(e = Sy).We derive G[0℄! G[u℄! G[e℄ by ase distintion e = 0, e 6= 0. The �rst ase is settled by the equality axiom0 = e ! G[0℄ ! G[e℄. For the seond ase observe that e 6= 0! G[u℄ ! G[e℄ follows by propositional logi>from the minimality axiom e = Se� ! ::G[e�℄, the ritial formulas e 6= 0! e = Se�, :G[e�℄! :G[u℄and the equality axiom e = Se� ! G[Se�℄! G[e℄. 26



3 Computations with the �-SubstitutionsDe�nition 10An �-substitution is a funtion S suh thatdom(S) (domain of S) is a set of anonial �-terms,if e 2 dom(S) then S(e) 2 IB�(e) [ f?g.An �-substitution S is alled total if dom(S) is the set of all anonial �-terms.S := S [ f(e; ?) : e is a anonial �-term 62 dom(S)g is alled the standard extension of S.Comment. We onsider a funtion as a set of ordered pairs. So an �-substitution is a set of pairs (e; u) wheree is a anonial �-term and u 2 IB�(e) [ f?g. Hilbert's �nitist position allowed only for �nite �-substitutionsS. All (anonial) �-terms ��F not mentioned in S expliitly, have default value 0�(�). In fat the possiblevalue ? for a term indiates exatly this default value. The �-substitution proess is de�ned entirely in termsof �nite substitutions: the standard extension S of S is used only to simplify notation for omputations withdefault values. Essentially in�nite substitutions appear only in setion 7 below.3.1 Computation StepsLet S be an arbitrary �-substitution.De�nition 11 (Indutive de�nition of e ,!1S e0)1.1. If (e; u) 2 S and u 6=? then e ,!1S u1.2. If (e; ?) 2 S then e ,!1S 0�(e)2. If 1 � i � n, ei ,!1S e0i and e0i is not a �-term then pe1 : : : en ,!1S pe1 : : : ei�1e0iei+1 : : : en3. If (P; �zG) 2 S then AppPt ,!1S G[t℄4. If F ,!1S F 0 then ��F ,!1S ��F 05. If G ,!1S G0 then �zG ,!1S �zG0.Comment. Sine S is de�ned only for anonial terms whih do not ontain any proper losed �-subterms,omputations proeed from inside, and sine anonial terms are losed, no term ontaining variables isimmediately omputed aording to S: only its losed subterms an be replaed.Note. If e ,!1S �zG and e is not a �-term then either (e; �zG) 2 S or (e; ?) 2 S and �zG = 01.De�nition 121. e is alled S-reduible if there exists an e0 with e ,!1S e0. Otherwise e is alled S-irreduible or in S-normalform.2. ,!S denotes the transitive and reexive losure of ,!1S.Note. e is S-reduible i� e ontains anonial �-subterms in the domain of S. In partiular no defaultomputations are allowed unless S ontains pairs (e; ?).We are going to prove that ,!S is well-founded, i.e. every sequene of omputation steps is terminating,by showing that eah step dereases the depth d(e) (De�nition 4).Lemma 3.1 If e ,!1S e0 then FV (e0) = FV (e).Proof. Consider the ases in the de�nition of ,!1S . If the omputation is by 1.1 or 1.2, then FV (e) = ; =FV (e0). In the ases 4,5 use the indution hypothesis. The same works in ase 2 when p 6= App or p = Appbut the seond argument is hanged.Let now e = AppPt and e0 = App(P 0; t) with P ,!1S P 0 (reall the de�nition 6). Then P is an �-term, sine1-variables are not reduible.1. P is anonial. Then P 0 = �zG 2 IB1; FV (G) = fzg and e0 = G[t℄. Hene FV (e0) = FV (t) = FV (e).2. P is not anonial. Then e0 = AppP 0t and FV (e0) = FV (P 0)[FV (t) IH= FV (P )[FV (t) = FV (e): 2Lemma 3.2 For eah arithmetial expression e one has:a) d(e) < !,b) d(e[y=t℄) < (d(t) + 1) � !. 7



Proof. a) is obvious, sine App does not our in e and all lauses of the de�nition 4 exept 3 add only �niteamount.b) Indution on e. Let y 2 FV (e), sine otherwise d(e[y=t℄) = d(e) < !. Set � := (d(t) + 1) � !.1. If e = y then d(e[y=t℄) = d(t) < d(t) + 1 < �.2. If e = pe1 : : : en with p 6= App then d(e[t℄) = d(pe1[t℄ : : : en[t℄) = d(e1[t℄)# : : :#d(en[t℄) < �, sine by theindution hypothesis (IH) d(ei[t℄) < � and � is losed under #.3. If e = �xF then we an assume x 62 FV (t) and d(e[t℄) = d(�xF [t℄) � 1 + d(F [t℄) IH< 1 + � = �.4. If e = �zF , apply IH. 2Lemma 3.3 If e ,!1S e0 then d(e0) < d(e).Proof by indution on the de�nition of ,!1S .1.1, 1.2. If e is a anonial �-term then d(e0) = 0 < 1 = d(e).2. If e = pe1 : : : en; e0 = pe1 : : : e0i : : : en and ei ,!1S e0i , then:2.1. if p 6= App then d(e0) = d(e1)# : : :#d(e0i)# : : :#d(en) IH< d(e1)# : : :#d(en) = d(e)2.2. if e = AppPt and e0 = AppP 0t, then d(e0) = ! � (d(P 0)#d(t)) IH< ! � (d(P )#d(t)) = d(e).2.3. if e = AppPt and e0 = AppPt0, one proeeds as in the ase 2.2.3. Let e = AppPt and e0 = G[t℄. Note that 8� < !!(� � ! � ! � �).Then by Lemma 3.2 d(e0) < (d(t) + 1) � ! � ! � (d(t) + 1) � ! � (d(P )#d(t)) = d(e).4, 5. If e = ��F; e0 = ��F 0 or e = �zF; e0 = �zF 0 with F ,!1S F 0 then, sine FV (F ) = FV (F 0), we haved(e0) = j + d(F 0) IH< j + d(F ) = d(e) for some j = 0; 1. 2We are going to prove that ,!1S is loally onuent.Lemma 3.4 If e is arithmetial and t ,!1S t0 then e[t℄ ,!S e[t0℄.Proof is routine. 2Lemma 3.5 If e ,!1S e0 and e ,!1S e00 then there is an expression u suh that e0 ,!S u and e00 ,!S u .Proof by indution on e.1. If e 2 dom(S) then e0 = e00.2. Let e = pe1 : : : ei : : : en; e0 = pe1 : : : e0i : : : en and ei ,!1S e0i .2.1. e00 = pe1 : : : e00i : : : en with ei ,!1S e00i . Then by the IH one has e0i ,!S ui and e00i ,!S ui for some ui.Take u := pe1 : : : ui : : : en.2.2.e00 = pe1 : : : e0j : : : en with ej ,!1S e0j and i 6= j. Take u := pe1 : : : e0i : : : e0j : : : en.3. e = AppPt; e0 = G[t℄; e00 = AppPt0 with P ,!1S �zG and t ,!1S t0 . Thene00 ,!S G[t0℄ and, by Lemma 3.4 e0 ,!S G[t0℄ .The remaining ases are easy: apply I.H. 2Theorem 3.6 (Churh-Rosser Property)For eah expression e there exists a unique S-irreduible expression e� with e ,!S e�.Proof. By Lemma 3.3 omputations terminate, and together with Lemma 3.5 this implies uniqueness. 2De�nition 13 (Normal form jejS for expression e)The unique expression e� in the previous theorem is alled the S-normalform of e and denoted by jejS.De�nition 14 An expression e is S-omputable i� d(jejS) = 0Note.1. e is S-omputable i� jejS = jejS .2. If S is total then every expression is S-omputable.We prove next that ,!S is preserved under substitution. The main problem will be with �-terms.8



Lemma 3.7a) e ,!1S e0 implies e[�=u℄ ,!S e0[�=u℄.b) u ,!1S u0 implies e[�=u℄ ,!S e[�=u0℄.) e[�=u℄ ,!S jejS [�=jujS℄:Proof. We �rst prove a) and b) under the assumption that u is not a �-term.a) We use indution on the de�nition of ,!1S .The only non-trivial ase is e = AppPt; e0 = G[z=t℄; P ,!1S �zG.Then sine P is losed and FV (G) = fzg, one has e[u℄ = AppPt[u℄; e0[u℄ = G[z=t[u℄℄. Hene by the de�nitionof ,!1S one has e[u℄ ,!1S G[z=t[u℄℄ = e0[u℄.b) We use indution on e assuming � 2 FV (e). Again the only non-trivial ase is e = AppPt; P [u0℄ = �zG.Then e[u℄ = AppP [u℄t[u℄; e[u0℄ = G[z=t[u0℄℄ and by IH P [u℄ ,!S �zG; t[u℄ ,!S t[u0℄. Sine u is not a�-term, we have �zG 2 IB1. Hene there exists a anonial �-term Q suh that P [u℄ ,!S Q ,!1S �zG. Henee[u℄ ,!S AppQt[u0℄ ,!1S G[z=t[u0℄℄ = e[u0℄.Now we assume that u is a �-term. We have to onsider two additional ases.a') e = AppPt and P [u℄ = �zG. Then P = � (otherwise P ontains �) and thus u = �zG, e0 = AppPt0 witht ,!1S t0. Hene e[u℄ = G[z=t[u℄℄, e0[u℄ = G[z=t0[u℄℄ and t[u℄ ,!S t0[u℄ by IH. Sine t[u℄ is not a �-term, by b)we obtain e[u℄ ,!S e0[u℄.b') e = AppPt and P [u℄ = �zG. Then P = � (otherwise P ontains �) and thus u = �zG; u0 = �zG0 withG ,!S G0. Hene e[u℄ = G[z=t[u℄℄ and e[u0℄ = G0[z=t[u0℄℄. By IH t[u℄ ,!S t[u0℄. Sine t[u℄ is not a �-term, bya), b) we obtain G[z=t[u℄℄ ,!S G0[z=t[u℄℄ ,!S G0[z=t[u0℄℄.) By indution on the number of omputation steps, we obtain versions of a),b) with ,!1S replaed by ,!S :These imply ): e[u℄ ,!S jejS [juj℄ ,!S jejS [jujS ℄ . 2The next proposition lari�es the struture of normal forms for partial substitutions S, where someanonial �-terms are irreduible. It is needed in setion 6.3.Lemma 3.8a) If v is an S-irreduible subterm of e; d(v) > 0 and e ,!1S e0 then v is also a subterm of e0.b) If e[�=u℄ is S-omputable and � 2 FV (e) then u is S-omputable.) If e is S-omputable and e ,!S e0 then e ,!S e0.Proof. a) We use indution on the de�nition of ,!1S . Sine e is reduible, v has to be a proper subterm of eand thus e annot be a anonial �-term.1. Let e = pe1 : : : ei : : : en; e0 = pe1 : : : e0i : : : en and ei ,!1S e0i . Then the laim follows immediately from theIH.2. e = AppPt; e0 = G[z=t℄ with P ,!1S �zG. Then P is a anonial �-term 6= v, and therefore v is not asubterm of P . Hene v is a subterm of t and thus of e0 sine z ours free in G.3. The ases e = ��F; e0 = ��F 0 or e = �zF; e0 = �zF 0with F ,!1S F 0 follow immediately from IH.b) Assume for ontradition that d(jujS) > 0. Then jujS and hene jejS [jujS ℄ ontains an S-irreduible,losed �-subterm v. By Lemma 3.7 and Theorem 3.6 we have jejS [jujS℄ ,!S je[u℄jS , and therefore [by a)℄ vis a subterm of je[u℄jS . This ontradits the S-omputability of e[u℄.) It suÆes to prove the Lemma for one step redutions. Assume that e is S-omputable and e ,!1S e0 holds.By b) every anonial �-subterm v of e is S-omputable and therefore in dom(S). Hene e ,!1S e0. 2Let us establish some properties of regular �-terms (De�nition 8) needed in setion 5.Lemma 3.9a) If T is regular and T ,!1S T 0 then T 0 is regular.b) If T is a losed regular �-term with d(T ) = 0 then T 2 IB1.) If T is a losed regular �-term then jT jS 2 IB1.Proof. We have T = e[�1=u1; :::; �n=un℄ where u1; :::; un are �-terms and no bound 1-variable ours in e.a) Without loss of generality we may assume that either T 0 = e[u01; u2; :::; un℄ with u1 ,!1S u01 or T 0 =e0[u1; :::; un℄ with e ,!1S e0. In both ases one easily sees that T 0 is again regular. (Only if u01 2 IB1 a shortargument is needed.) 9



b) For ontradition let us assume that �i 2 FV (e). Then, sine T is losed, ui is a losed �-term and thus0 < d(ui) � d(T ). Hene none of �1; :::; �n ours free in e and we have T = e whih means that T is a losed�-term ontaining no 1-variables. Hene T 2 IB1, sine d(T ) = 0.) follows from a) and b). 24 The rank funtionThe rank will measure nesting of bound variables. We extend to the �-language a de�nition known forRami�ed Analysis [16℄.Set o(x) := 0, o(X) := !, o(App) := !, o(p) := o(0) := 0, for p 6= App.In the following � denotes elements from Var [ f�g.De�nition 15 De�nition of rk�(e)1. If � 62 FV(e) [ f�g then rk�(e) := 0.2. For � 2 FV(e) [ f�g we de�ne:rk�(e) := 8><>: o(e) if e 2 Var [ f0gmaxfo(p); rk�(e1); :::; rk�(en)g if e = pe1:::enmaxfo(�); rk�(F ); rk�(F ) + 1g if e = ��Frk�(G) if e = �zG .Note 1. rk�(e) < ! � 2.Note 2. rk�(e) is a measure of nesting of bound variables in subterms of e ontaining free variable � , andrk� takes aount of all �-subterms. More preisely,Lemma 4.1 rk�(e) = supfo(�); rk�(F )+1 : �; ��F our in eg (4)Proof by indution on e. De�neo(e) := supfo(�) : � ours in eg; rk1(e) := supfrk�(F )+1 : ��F ours in egNote that o(pe1:::en) = maxfo(e1); :::; o(en)g:1. e 2 Var [ f0g. Then rk�(e) = o(e); rk1(e) = 02. e = pe1:::en. Thenrk�(e) IH= maxfo(p);maximaxfo(ei); rk1(ei)gg == maxfo(p);maxi o(ei);maxi rk1(ei)g = maxfo(e); rk1(e)g.3. e = ��F . Thenrk�(e) = maxfo(�); rk�(F ); rk�(F )+1g IH= maxfo(�); o(F ); rk1(F ); rk�(F )+1g = maxfo(e); rk1(e)g4.e = �zG. Then rk�(e) = rk�(G) IH= maxfo(G); rk1(G)g = maxfo(e); rk1(e)g. 2Next Lemmas establish properties of rank.Lemma 4.2a) e arithmetial =) rk�(e) < !b) X 2 FV(e) =) ! � rkX(e).) ! � rk�(P ), for eah 1-term P .Proof. Easy indution on e; P .Lemma 4.3If d(e) = 0 and e is not a �-term then rk�(e) � supfrk�(e) : � 2 FV(e)g.Proof:1. e = 0: Then rk�(e) = 0. e = � 2 Var: Then rk�(e) = o(�) = rk�(e).2. e = ��F : Then, sine d(e) = 0, we have d(F ) = 0 and FV(e) 6= ;. Therefore10



maxfo(�); rk�(F )+1g � supfrk�(e) : � 2 FV(e)g and, by I.H., rk�(F ) � supfrk�(F ) : � 2 FV(F )g.Hene rk�(e) = maxfo(�); rk�(F ); rk�(F )+1g � supfrk�(e) : � 2 FV(e)g.3. e = pe1:::en. Sine ! � rk�(P ) for eah 1-term P , we haverk�(e) = maxfrk�(e1); :::; rk�(en)g IH� supfrk�(ei) : � 2 FV(ei)& 1�i�ng � supfrk�(e) : � 2 FV(e)g. 2Lemma 4.4If ��F is anonial then rk�(F ) � rk�(F ) and rk�(��F ) = maxfo(�); rk�(F )+1g.Proof:Sine ��F is anonial, we have d(F ) = 0. By 4.3 this yieldsrk�(F ) � supfrk�(F ) : � 2 FV(F )g and thus (sine FV(F ) � f�g ) rk�(F ) � rk�(F ).Hene rk�(��F ) = maxfo(�); rk�(F ); rk�(F ) + 1g = maxfo(�); rk�(F ) + 1g. 2The next two lemmas show that the rank does not inrease during omputation.Lemma 4.5rk�(e[y=t℄) < maxf!; rk�(t)+1g, if e is arithmetial.Proof: Let y 2 FV(e) and � 2 FV(e[t℄) [ f�g. (Otherwise rk�(e[t℄) = rk�(e) < ! or rk�(e[t℄) = 0.)1. e = y: rk�(e[t℄) = rk�(t).2. e = pe1:::en: Then rk�(e[t℄) = maxfo(p); rk�(e1[t℄); :::; rk�(en[t℄)g, and the assertion follows by I.H..3. e = �xF . Then o(x) = 0, rk�(e[t℄) = maxfrk�(F [t℄); rkx(F [t℄) + 1g and, by I.H.,rk�(F [t℄) < maxf!; rk�(t) + 1g and rkx(F [t℄) < maxf!; rkx(t) + 1g = !.The last equation holds by lause 1 in the de�nition of rank, sine x 62 FV(t) [ f�g.4. e = �zG. The assertion follows by I.H. 2Lemma 4.6If e ,!1S e0 then rk�(e0) � rk�(e).Proof by indution on the de�nition of ,!1S :Let � 2 FV(e0) [ f�g. (Otherwise rk�(e0) = 0.)1.1. If e is a anonial 0-�-term then rk�(e0) = 0, sine e0 2 IN.1.2. If e is a anonial 1-�-term then rk�(e0) < ! � rk�(e), sine e0 is arithmetial and � = �.2. e = pe1:::en or e = �yF :2.1. e = AppPt and e0 = G[z=t℄ with P ,!1S �zG. Thenrk�(e0) 4:5� maxf!; rk�(t)g � rk�(e) = maxf!; rk�(P ); rk�(t)g.2.2. otherwise: immediate from I.H.3. e = ��F and e0 = ��F 0 with F ,!1S F 0:rk�(e0) = maxfo(�); rk�(F 0); rk�(F 0)+1g IH� maxfo(�); rk�(F ); rk�(F )+1g = rk�(e). 2Substitution of a variable by an appropriate anonial value also does not inrease the rank.Lemma 4.7rk�(e[�=u℄) � rk�(e), for eah u 2 IB�(�).Proof by indution on e: Let e0 := e[�=u℄ and assume that � 2 FV(e) and � 2 FV(e0) [ f�g.Note that FV(e0) = FV(e) n f�g.1. e = �: Then � = � and rk�(e0) = 0 (if �(�) = 0) or rk�(e0) < ! = rk�(e) (if �(�) = 1).2. e = App�t and u = �zG: Then e0 = G[z=t[u℄℄ and thusrk�(e0) 4:5� maxf!; rk�(t[u℄)g IH� maxf!; rk�(t)g = rk�(e).3. e = ��F . Thenrk�(e0) = rk�(��F 0) = maxfo(�); rk�(F 0); rk�(F 0) + 1g IH� maxfo(�); rk�(F ); rk�(F ) + 1g = rk�(e).4. In all other ases the assertion follows immediately from IH. 2The next statement shows that our de�nition of rank is suitable: the rank dereases when the 'body' ofa anonial �-term is substituted by a anonial value.11



Lemma 4.8If ��F is anonial then rk�(F [u℄) < rk�(��F ), for eah u 2 IB�(�).Proof: rk�(F [u℄) 4:7� rk�(F ) 4:4� rk�(F ) < rk�(��F ). 2De�nition 16 rk(e) := rk�(e) is alled the rank of e.De�nition 17 (Trunation to a given rank)For eah �-substitution S and r 2 On we set S�r := f(e; u) 2 S : rk(e) � rg.Analogously we de�ne S�r, S<r, S>r.Lemma 4.9If S; S0 are �-substitutions with S�r = S0�r then jejS = jejS0 holds for all expressions e of rank � r.Proof:Sine all subterms of an expression e have ranks � rk(e), we have:rk(e) � r ) 8e0( e ,!S e0 , e ,!S0 e0 ).Together with Lemma 4.6 this yields the assertion by indution on d(e). 25 The H-proessLet us reall that ritial formulas are formulas of three types:F [t℄! F [�xF [x℄℄,s 6= 0! F [�xF [x℄℄ with F := (s = Sx),F [T ℄! F [�XF [X ℄℄ with T a 1-�-term or regular lambda-term.We assume that Cr0; :::; CrN (with N 2 IN) is a �xed sequene of losed ritial formulas.In this setion we de�ne a suessive approximation proess for �nding a solution of this system aordingto Hilbert's approah. It is useful to reall here a Comment from Setion 3. The H-proess will be arrangedin suh a way that all non-default values of �-terms are orret: S(�xF [x℄) is the least n satisfying F [n℄, andS(�XF [X ℄) is an arithmetial �-term T satisfying F [T ℄.De�nition 18F [[x=n℄℄ := F [x=n℄ ^ :F [x=n�1℄ ^ : : : ^ :F [x=0℄,F [[X=T ℄℄ := F [X=T ℄.De�nition 19Let S be an �-substitution:e ,!S TRUE (FALSE) :() jejS 2 TRUE (FALSE).F(S) := fF [[�=u℄℄ : (��F; u) 2 S&u 6=? gS is orret i� A ,!S TRUE for all A 2 F(S).S is solving i� CrI ,!S TRUE for I = 0; :::; N . Otherwise S is nonsolving.S := S [ f(e; ?) : e anonial �-term 62 dom(S)g is alled the standard extension of S, f. Setion 3.The de�nition of a term whose value is to be orreted (H-term) to a new value (H-value) and ofthe �-substitution H(S) to whih S is redued by this hange of value, is given in terms of the standardextension S. In fat the �rst term of minimal rank is hosen, and all values of higher rank are anelled.Sine �-substitutions are de�ned only for anonial terms, all these operations are preeded by transformingarbitrary �-term ��F into its anonial form ��jF jS .De�nition 20Let S be an �-substitution suh that S is nonsolving. (Then jCrI jS 2 FALSE for some I � N .)Set rI := rk(��jF jS), where CrI = F0 ! F [��F ℄.Cr(S) := CrI , where I � N is suh thatjCrI jS 2 FALSE&8J � N [ jCrJ jS 2 FALSE ) rI < rJ _ (rI = rJ ^ I � J)℄.12



Let Cr(S) = F0 ! F [��F ℄:��jF jS is alled the H-term of S.The H-value v of S is de�ned as followsa) if �(�) = 1 and F0 = F [T ℄ then v := jT jS,b) if �(�) = 0, F0 = (s 6= 0), and F = (s = Sx) then v := jsjS � 1,) if �(�) = 0 and F0 = F [t℄ then v := the unique n 2 IN with jF jS [[n℄℄ ,!S TRUE.Remark: If e is the H-term and v the H-value of S, then v 2 IB�(e). (For �(e) = 1 f. Lemma 3.9.)The next de�nition is entral for the substitution method.De�nition 21 If S is nonsolving thenH(S) := (S n f(e; ?)g)�rk(e) [ f(e; v)g, where e is the H-term and v the H-value of S.Let us prove that H(S) is indeed a orret �-substitution if S is orret and nonsolving.Lemma 5.1Let S be an �-substitution suh that S is orret and nonsolving,and let e be the H-term, v the H-value of S. Then the following holds:a) (e; ?) 2 S,b) jejH(S) = v 6= 0�(e),) H(S) is orret.Proof:Let Cr(S) = F0 ! F [��F ℄. Then e = ��jF jS .a) Assumption: (e; w) 2 S and w 6=?. Then, sine S is orret, by Lemma 3.7 F [��F ℄ ,!S jF jS [w℄ ,!STRUE.On the other hand, sine Cr(S) ,!S FALSE, we have F [��F ℄ ,!S FALSE. Contradition.b) By Lemma 3.7b we have F [e℄ ,!S FALSE and F [v℄ ,!S TRUE. Hene, by 3.7b, v 6= jejS = 0�(e).The equation jejH(S) = v holds, sine (e; v) 2 H(S).) Let (��A;w) 2 H(S) with w 6= ?. Then (��A;w) 2 S or ��A is e and w is v. One has jA[[w℄℄jS 2 TRUE: inthe �rst ase sine S is orret, and in the seond ase by de�nition of H(S) and Lemma 3.7. By Lemma4.8 one has rk(A[[w℄℄) < rk(e), and by Lemma 4.9 jA[[w℄℄jH(S) = jA[[w℄℄jS . 2De�nition 22The H-proess (for Cr0; :::; CrN ) is de�ned as follows:S0 := ;, Sn+1 := �H(Sn) if Sn is nonsolving; otherwise .The H-proess terminates i� there exists an n 2 IN suh that Sn is solving.The next de�nition determines when the substitution S itself, (and not S) ontains suÆient information toompute all neessary values. An important instane is the provable inorretness of S.De�nition 23Let S be an �-substitution.S is omputationally inonsistent (i) i� A ,!S FALSE for some A 2 F(S).Otherwise S is omputationally onsistent ().An expression e is S-omputable i� d(jejS) = 0.S is omputing i� all formulas A 2 F(S) are S-omputable.S is deiding i� S is omputing and the ritial formulas Cr0; :::; CrN are S-omputable.Remark1. A losed formula A is S-omputable i� A ,!S TRUE or A ,!S FALSE.2. e is S-omputable i� jejS = jejS .3. If S is omputing and  then S is orret.The next de�nition requires that all steps for omputing H(S) are possible in terms of S itself.13



De�nition 24Let S be an � substitution. We say that the H-rule applies to S i�(1) S is , deiding, nonsolving, and(2) if Cr(S) = F [t℄! F [�xF ℄ then there exists an n 2 IN with jF jS [[n℄℄ ,!S TRUE.Lemma 5.2Let S be , deiding, nonsolving, and Cr(S) = F [t℄! F [�xF ℄. Thena) jtjS 2 IN and F [jtjS ℄ ,!S TRUE.b) If the formulas F [i℄ (i < jtjS) are S-omputable then the H-rule applies to S.Proof:a) Sine Cr(S) ,!S FALSE and Cr(S) is S-omputable, we have F [t℄ ,!S TRUE. Now the assertion followsby the Lemmas 3.7b and 3.8b.b) Let m := jtjS . Sine F [m℄ ,!S TRUE and sine F [0℄; :::; F [m�1℄ are S-omputable, forn := minfk : F [k℄ ,!S TRUEg we have n � m and jF jS [[n℄℄ ,!S TRUE. 2Lemma 5.3If the H-rule applies to S then H(S) is orret.Proof: (f. proof of 5.1)Let (��A;w) 2 H(S) with w 6= ?. We have to prove jA[[w℄℄jH(S) 2 TRUE. But rk(A[[w℄℄) < rk(e) (with ethe H-term of S) and therefore jA[[w℄℄jH(S) = jA[[w℄℄jS . If (��A;w) 2 S then jA[[w℄℄jS 2 TRUE, sine S isorret. Otherwise ��A = e and w = H-value of S. We treat the ase where Cr(S) = F [T ℄ ! F [�XF [X ℄℄and leave the two other ases to the reader. Then ��A = e = ��jF jS and w = jT jS. Sine S is deiding,F [T ℄ is S-omputable and therefore (by Lemmas 3.7 and 3.8) jF [T ℄jS = j jF jS [ jT jS ℄ jS = jA[[w℄℄jS . SinejCr(S)jS 2 FALSE and S is deiding, we have jF [T ℄jS = jF [T ℄jS 2 TRUE. 26 Termination proof via Cut-eliminationIn this setion we apply the general shema from [12℄ for reduing the termination problem for theH-proess to the ut-elimination problem in some speially devised sequent alulus with a kind of !-rule.The termination proof is onstrutive and uses indution up to ��0 . In the sequel we use r as syntativariable for ordinals (< ��0).6.1 The system �EAThe original in�nite derivation onstruted for a given system E of ritial formulas represents the treeof all �nite �-substitutions: empty substitution is put at the bottom, and all one-omponent extensions ofS are plaed above S (the rule Cut below). The branh of this tree is terminated (f. Axioms below) whena provably inorret substitution, solution, or a substitution admitting H-rule is reahed. This 'bottom-up'view of the inferene rules is helpful below.The Cut-elimination proess introdues steps of the H-proess into this tree in the form of the rulesFr;H. The rule Fr temporarily 'freezes' the default value of e, whih may be hanged by the rule H intonon-default values.De�nition 25A sequent is a funtion � suh that dom(�) is a set of anonial �-terms, and �(e) 2 IB�(e) [ f?; ?Æg foreah e 2 dom(�).So a sequent is almost the same as an �-substitution. A omponent (e; ?0) of a sequent S indiates thatthe default value for e is �xed and will not be hanged in the extensions of S to be onsidered. By identifying? and ?Æ we assoiate with every sequent � an �-substitution whih is also denoted by �. A sequent �is alled orret (, deiding, omputing) if the assoiated �-substitution has the respetive property. Ananaloguous onvention is followed with respet to notations like jej�, ,!�, et.14



Abbreviation:(e; u);� := f(e; u)g [�, if e 62 dom(�).� � r :() 8(e; u) 2 �(rk(e) � r) ( () � = ��r). In the same way we de�ne \� � r".De�nition 26�f := f(e; u) 2 � : u =?Æg; �t := f(e; u) 2 � : u =?g: �xed and temporary part of a sequent.The system �EARules of inferene:(Cut) (e; ?Æ);� : : : (e; u);� : : : (u 2 IB�(e))� (CutFr) (e; ?);� : : : (e; u);� : : : (u 2 IB�(e))�(Fr) (e; ?);�� (H) (e; v);��rk(e)(e; ?);� ,if the H-rule applies to (e; ?);�, ande is the H-term, v the H-value of (e; ?);�.Axioms:(AxF) �, if � is i(AxS) �, if � is , deiding, and solving(AxH) (e; ?Æ);�, if the H-rule applies to (e; ?);� and e is the H-term of (e; ?);�.In the above rules and axioms e always denotes a anonial �-term not in dom(�).We all e the main term of the respetive inferene.De�nition 27 By a dedution in �EA we mean a dedution (i.e. wellfounded tree) aording to the rules ofinferene of �EA from axioms of �EA and additional sequents. By a derivation in �EA we mean a dedutionin �EA from axioms of �EA only.By h(d) we denote the height of the dedution d, i.e. h(d) := supfh(du) + 1 : u 2 Ig where (du)u2I is thefamily of immediate subdedutions of d.If I is an inferene then rk(I) denotes the rank of its main term.If d is a dedution, and X is one of the symbols Cut, CutFr, Fr, H, and ./ is one of the symbols <;�; >;�;=thenX(d) ./ r :() rk(I) ./ r for every X-inferene I in d.Hene \Cut(d) < r" means that all uts in d have rank < r, and \X(d) < 0" means that there are noX-inferenes in d.6.2 Cut-eliminationCuts will be eliminated in the usual way beginning with the maximal rank r. Eliminated uts will bereplaed by CutFr and H with the same main term, i.e. with the same rank. More preisely, a ut will bereplaed by CutFr and then moved (permuted) up the derivation until one enounters AxS with a main terme traeable to the main formula (e; ?) of CutFr. Then the AxS is replaed by the rule H, and the derivation ofthe orresponding right premise of the ut is plaed over the rule H. After all uts of rank r are eliminated,these CutFr will be pruned to Fr. So �nally uts of rank r will be replaed by Fr of rank r. This motivatesthe followingDe�nition 28 Let d be a dedution.d is an r-dedution i� Cut(d) < r & CutFr(d) < 0 & Fr(d) � r & H(d) � r.d is an r+-dedution i� Cut(d) < r & CutFr(d) = r & Fr(d) > r & H(d) � r.Lemma 6.1Every r+-derivation d of � an be transformed into an r-derivation d0 of � with h(d0) � h(d) by pruningeah CutFr to Fr. 15



Proof is obvious. 2Lemma 6.2 (Properties of �xed and temporary parts of a sequent)a) If � is a sequent in an r+1-dedution of ; then �t > r and �f � r.b) If � is a sequent in an r+-dedution of a sequent � then(1) ��r n�t � �,(2) (�f)�r � �,(3) �t � r ) �t � r.Proof.a) is proved by the bottom-up indution on the given dedution. This statement is obviously true for ;, andis inherited from onlusion to the premise of a rule: temporary part �t is inreased only by Fr whih hasrank � r+1 > r, and �f is inreased by Cut whih has rank < r + 1 (i.e. � r).b)(1) The only nontrivial ase is (H). Let � = (e; ?);� and � = (e; v);��rk(e). Then ��r n�t � ��r � �,sine r � rk(e).(2) Going from � down to � the only points where some (e; ?Æ) ould vanish are Cut-inferenes. But eahCut in an r+-derivation has rank < r.(3) holds, sine Fr(d) > r and CutFr(d) = r, so that formulas added to �t are of the rank � r. 2Appliability of the standard ut-elimination transformations in our ase is seriously restrited by non-admissibility (in general) of the weakening rule: adding omponents to a sequent an fail to produe asequent.De�nition 29 Two sequents �;� are multipliable if � [ � is a funtion. In this ase we write � �� for� [ �, and say that � �� is de�ned.Lemma 6.3Let d be an r+-derivation of �. Let � � r be a orret sequent suh that � �� is de�ned and(�f)�r � �; �t � r. Then there exists an r+-derivation d �� of � �� with h(d ��) � h(d).Proof by indution on d:We distinguish ases aording to the last inferene of d.1. Cut with main term e: Then rk(e) < r.(a) e 62 dom(�): d �� is obtained from (du ��)u2IB�(e)[f?Æg by the same Cut.(b) (e; ?) 2 �: This annot happen, sine �t � r and rk(e) < r.() (e; u) 2 � with u 2 IB�(e) [ f?Æg:Then ((e; u);�) �� = � ��, and therefore the Cut is pruned: the derivation d �� := du �� has endsequent� ��.2. CutFr with main term e. Then rk(e) = r and (e; ?Æ) 62 �. Hene (e; ?Æ) 62 �, sine (�f)�r � �.(a) e 62 dom(�): As (a) above.(b) (e; u) 2 � with u 2 IB�(e) [ f?g: as () above.3. Fr with main term e: Then ((e; ?);�) �� is de�ned, sine � � r < rk(e).4. H with main term e: Then rk(e) � r, and � = (e; ?);� is derived from �0 := (e; v);��rk(e).>From � � r � rk(e) it follows that �0 := � n f(e; :::)g is still orret, and that (�0f)�r � �0.>From e 62 dom(�0) and �0 � (e; v);� it follows that �0 ��0 is de�ned.Sine �0 � r � rk(e), we also get �0 ��0 = (e; v);��rk(e) ��0 = (e; v); (���0)�rk(e) and ��� = (e; ?);���0.So d �� is obtained from d0 ��0 by an H-inferene of the same kind.5. Axioms: If � is an axiom then � �� is an axiom of the same kind. 2We ontinue to investigate admissibility of weakening .De�nition 30 (�0; :::;�n) is an r-path (for �n) if it is a path in some r-dedution of �0 = ;.Lemma 6.4Let (�0; :::;�n) be an r+1-path for � := �n. Let � � r be a orret sequent suh that ��r � �.Then � �� is de�ned, and there exists a dedution of � from � �� onsisting only of Fr- and H-inferenesof ranks > r. 16



Proof by indution on n: Let n > 0 and �0 := �n�1.� �� is de�ned, sine ��r � � = ��r. Note that �0�r � ��r, and therefore by I.H. there is a dedution of� from �0 ��. We now show that either �0 �� = ��� or �0 �� derives from ��� by a Fr- or H-inferene ofrank > r. For this we distinguish ases aording to the topmost inferene in (�0; :::;�n), i.e. the inferenefrom � to �0.1. Cut : We have � = (e; u);�0 and rk(e) � r. Then the Cut is pruned. Indeed, (e; u) 2 � and thus� �� = �0 ��.2. CutFr : This annot happen.3. Fr with main term e, and � = (e; ?);�0: Then rk(e) > r and � �� = (e; ?);�0 ��.4. H with main term e, and � = (e; v);��rk(e); �0 = (e; ?);�:Then �0�� is derived from ��� by H. Indeed rk(e) > r, ��� = (e; v); (���)�rk(e), and �0�� = (e; ?);���.The H-rule applies to �0 �� (f. De�nition 24), sine the H-rule applies to �0, and � is orret. 2Appliability of the ut-redution transformation is restrited more or less to subderivations of `good'derivations of an empty sequent ;.Lemma 6.5Let d be a derivation ending with a ut C of rank r suh that the immediate subderivations of d are r+-derivations, and there exists an (r+1)-path for the endsequent � of d.Then there exists an r+-derivation d0 of � with h(d0) � h(d) + ! + h(d).Proof. Let e be the main term of C, and du the immediate subderivations of d.We transform d as follows:(1) The ut C is turned into an inferene CutFr by hanging every sequent (e; ?Æ);�0 of d?Æ into (e; ?);�0.The only rules that are damaged by this transformation are axioms AxH of the form (e; ?Æ);� whih nowbeome (e; ?);�. At eah of these points we extend the dedution by the orrespondingH-inferene, obtainingthereby the new top sequent (e; v);��r.(2) We onsider now one suh top sequent � := (e; v);��r.By Lemma 5.3 � = ��r is orret, and by 6.2a,b(1) we get ��r = ��r n�t � �.(3) By Lemma 6.4 � �� is de�ned, and there exists a dedution of � from � �� onsisting only of Fr- andH-inferenes of ranks > r.(4) To derive top sequents ��� in (3) we onsider now the subderivation dv of �0 := (e; v);� in the originalderivation d.�0 � � is de�ned, sine � � � is de�ned and (e; v) 2 �. By Lemma 6.2b(2),(3) (applied to d?Æ) we have((e; ?Æ);�)f�r � (e; ?Æ);� and ( ((e; ?Æ);�)t � r ) ((e; ?Æ);�)t � r ). By 6.2a (applied to the (r+1)-pathfor �) we have �t > r. Hene (�f)�r � �0 and �t � r. Now by Lemma 6.3 there is an r+-derivation dv ��of �0 ��, i.e. of � ��.(5) The struture of d0 is the following: to some tops of the dedution d0?Æ of (e; ?);� (whih is an r+-dedution) one-branh dedutions from Lemmma 6.4 are added, and the tops of the latter dedutions arer+-derived by Lemma 6.3. Hene the entire derivation is an r+-derivation. 2Now ut redution is iterated in the standard way.Lemma 6.6If d is an r+1-derivation of �, and � has an r+1-path then there exists an r+-derivation d0 of � withh(d0) � !h(d)+1.Proof by indution on h(d):If h(d) = 0, i.e. d onsists of an axiom, the assertion is obvious. Assume h(d) > 0.Let I be the last inferene of d. Let (du)u2I be the family of immediate subderivations of d, and �u theendsequent of du. Then by I.H. for eah u 2 I we have an r+-derivation d0u of �u with h(d0u) � !h(du)+1 �!h(d). Let d+ be the derivation of � whih is obtained from the family (d0u)u2I by I.Obviously h(d+) � !h(d) + 1.1. I is not a ut of rank r: Then d+ is an r+-derivation of �.2. I is a ut of rank r: In that ase we apply Lemma 6.5 to d+, and obtain an r+-derivation d0 of � withh(d0) � h(d+) + ! + h(d+) < !h(d)+1. 2 17



Lemma 6.7If d is an !-derivation of �, and � has an !-path f in whih all uts are of rank � r (with r < !) thenthere exists an r+-derivation d0 of � with h(d0) � �h(d)+1.Proof by indution on h(d):1. Suppose that d ends in a ut of rank r + n. Let du be the !-subderivations of its premises. By I.H. eahdu an be transformed into an (r+n)+-derivation d0u. By replaement of du by d0u for all u the derivation dis turned into a derivation  with h() = supu(h(d0u) + 1) � supu(�h(du)+1 + 1) � �h(d) + 1.To the derivation  we apply Lemma 6.5 and obtain an (r+n)+-derivation 0 of � with h(0) � h()+!+h() <�h(d)+1.Now n appliations of Lemmata 6.1,6.6 yield the laim.Note that for eah i 2 IN f is an (r+i+1)-path, and (� < �h(d)+1 ) !�+1 < �h(d)+1).2. Suppose that d ends in some other inferene I. Again by I.H. eah immediate subderivation du transformsinto an r+-derivation d0u. By replaement of du by d0u for all u the derivation d is turned into an r+-derivationd0 with h(d0) = supu(h(d0u) + 1) � supu(�h(du)+1 + 1) � �h(d)+1. 2Lemma 6.8 (Cut-elimination)Let d be an r-derivation of ; with r < ! + ! and h(d) < �0.Then there exists a 0-derivation d0 of ; with h(d0) < ��0 .Proof: w.l.o.g. r = ! + n. Then n appliations of 6.6,6.1 yield an !-derivation dÆ of ; with h(dÆ) < �0. TodÆ we apply 6.7, 6.1 and obtain a 0-derivation d0 of ; with h(d0) � �h(dÆ)+1 < ��0 . 2The next Lemma says in fat that a ut-free derivation of the empty sequent is a protool of a terminatingH-proess.Lemma 6.9A 0-derivation d of ; onsists of exatly one branh and the following holds:(a) all sequents in d are orret;(b) the top sequent of d is an axiom AxS, and all other inferenes in d are of the kind Fr or H.Proof.(a) Proof by bottom-up indution: H : f. Lemma 5.3. Fr : If � is orret and e 62 dom(�) then (e; ?);� isorret.(b) Sine d is a 0-derivation, there are no Cut- or CutFr-inferenes in d. Hene d is linear. By bottom-upindution we obtain �f = ; for eah sequent � in d. Sine d is wellfounded, there exists a top sequent �.This has to be an axiom. By (a) � is not i. Sine �f = ;, � annot be an axiom AxH. 26.3 Constrution of the original derivationHere we onstrut the tree of �nite �-substitutions mentioned at the beginning of the setion 6. Generalidea here is the same as in [12℄. At eah stage leaves of the tree are extended (by the bottom-up appliationof Cut) to make them \more omputed" till the axioms are reahed. Subterms of the non-omputed (butneeded) �-terms of maximum rank are omputed till these maximum �-terms an be redued to a anonialform and then omputed. Note that the following de�nitions are stated for a given substitution S, and notfor its ompletion S.De�nition 31 Let S be an �-substitution and � a �nite set of losed formulas.�S(�) := maxfrk(jAjS) : A 2 �; d(jAjS) > 0g [ f0g�S(�) := !! � r +#S(�; r) where r := �S(�),#S(�; r) := dr(jA1jS)# : : :#dr(jAnjS), where � = fA1; :::; Ang without repetitions,dr(F ) := � 0 if rk(F ) < rd(F ) otherwise .Note that �S(�) < ! + !; #S(�; r) < !!; �S(�) < !!+1 � 3.18



Lemma 6.10 (One step of extension)Let S be an �-substitution and � a �nite set of losed formulas.Let e = ��F 62 dom(S) be a anonial �-subterm of a formula jA0jS with A0 2 �; rk(jA0jS) = �S(�).Let u 2 IB�(e) [ f?g, S0 := S [ f(e; u)g, and �0 := if u =? then � else � [ fF [[u℄℄g.Then �S0(�0) � �S(�) and �S0(�0) < �S(�).Proof:(a) Sine S � S0, we have jjwjS jS0 = jwjS0 and thus rk(jwjS0) � rk(jwjS), d(jwjS0 ) � d(jwjS) for eah w.Let r := �S(�) and r0 := �S0(�0).One easily sees that r0 � r. Indeed, rk(jF [[u℄℄jS0 ) � rk(F [[u℄℄) < rk(e) � r, and for remaining terms wourring in � f (a) .Let r0 = r (for r0 < r the laim is trivial: �S0(�0) < !! � (r0 + 1) � !! � r).For eah A 2 � we have rk(jAjS0) � rk(jAjS); d(jAjS0 ) � d(jAjS) and thus dr(jAjS0) � dr(jAjS).Moreover jA0jS is S0-reduible and rk(jA0jS) = r. Hene dr(jA0jS0) < dr(jA0jS) (Lemma 3.3).Finally dr(jF [[u℄℄jS0 ) = 0, sine rk(jF [[u℄℄jS0) < r. 2Lemma 6.11 (Rank redution)Let � be a sequent, L a �nite set of losed formulas, and r := ��(F(�) [ L) (f. De�nition 19).Then there is a dedution d of � by uts of ranks � r from omputing sequents � ontaining � and omputingall formulas in L. Moreover h(d) � ��(F(�) [ L).Proof by indution on ��(F(�) [ L):Let � := F(�) [ L. If � omputes all formulas in � we are done.Otherwise there exists a anonial �-subterm e = ��F of a formula jA0j� with A0 2 �; rk(jA0j�) = r.Let u 2 IB�(e) [ f?Æg and �0 := (e; u);�. Then F(�0) = if u =?Æ then F(�) else F(�) [ fF [[u℄℄g.By the Lemma 6.10 r0 := ��0(F(�0) [ L) � r and ��0(F(�0) [ L) < ��(F(�) [ L).Hene (by I.H.) there exists a dedution du of �0 by uts of ranks � r0 from omputing sequents � ontaining�0 and omputing all formulas in L, and h(du) � ��0(F(�0) [ L).A ut with main term e yields the desired dedution d. 2Lemma 6.12There exists an r < ! + ! and an r+1-derivation d of the empty sequent ontaining only axioms and uts.In addition we have h(d) < !!+2.Proof:First apply Lemma 6.11 to the empty sequent and the set L := fCr0; :::; CrNg. Let r := �;(L), and onsideran arbitrary top sequent � of the resulting r+1-dedution dÆ whih is not an axiom. Then � is , deidingand nonsolving. Sine the only inferenes in dÆ are uts of rank � r, we have �t = ; and rk(e) � r for eahe 2 dom(�). Let e be the H-term of �. Sine � is deiding, e is �-omputable (f. Lemmas 3.7 and 3.8b).Together with Lemma 5.1a and �t = ; this implies (e; ?Æ) 2 �. Sine � is not an axiom AxH, it followsthat Cr(�) is of the form F [t℄ ! F [�xF ℄ and e = �xA with A := jF j�. By Lemma 5.2 A[n℄ ,!� TRUE forn := jtj�.Now let L0 := fA[n�1℄; : : : ; A[0℄g. Then ��(F(�) [ L0) � r. Apply Lemma 6.11 to �, L0 and onsiderany  top sequent � of the resulting r+1-dedution. � ontains � and omputes all formulas in L0. NowLemma 5.2b yields that � is an axiom AxH with main term e. 2Theorem 6.13 . The H-proess terminates.Proof. Combine Lemmata 6.12, 6.8, 6.9. Cf. [12℄.6.4 Produing a substitution in terms of �nite prediates6.4.1 SoundnessLemma 6.14 Let S be a orret and total �-substitution. Then all losed axioms of EA� exept mayberitial formulas are satis�ed by S. Modus ponens rule preserves truth under S.19



Proof. All instanes of propositional tautologies and de�ning axioms for prediate onstants are satis�edby S by the Lemma 3.7. Modus ponens preserves truth under S, sine values of omposite formulas arealulated aordingly to standard boolean rules. Equality axioms are satis�ed, sine by Lemma 3.7: ifjtjS = jujS for 0-terms t, u then je[t℄jS = je[u℄jS for any expression e.Consider a minimality axiom �xF [x℄ = St ! :F [t℄: Assume j�xF [x℄ = StjS 2 TRUE and let n := jtjS .Then (�xjF jS ; n+1) 2 S and by orretness and Lemma 3.7 we have jF [[n+1℄℄jS = j jF jS [[n+1℄℄ jS 2 TRUE,in partiular j:F [t℄jS = j:F [n℄jS 2 TRUE. 26.4.2 �-free derivationLet d* be a losed derivation in EA�, and let S be a orret, total, and solving �-substitution for thesystem Cr0; :::; CrN of ritial formulas of d*. (For example S = Sn, where Sn is produed by the H-proessfor Cr0; :::; CrN , f. De�nition 22.) Sine S is orret and total, all axioms of d* exept ritial formulasare satis�ed by S and modus ponens rule preserves truth under S. Sine S is solving, ritial formulas aresatis�ed, too. Hene all formulas in d* are true under S.Closed formulas are onstruted by propositional onnetives >from atomi formulas of the form pe1 : : : enand App(�XF )e1 where ei are numerals or losed 0-�-terms possibly preeded by several S, and �XF is alosed 1-term. Let M be the maximum of all numerals, inluding all values jujS of all 0-terms u mentionedin all omputations above needed to verify the axioms of the derivation d*.Replae exterior ourrenes of 1-epsilon-terms �XF in d* by �nite prediatesfn �M j jApp(�XF )njS 2 TRUEgand exterior ourrenes of 0-epsilon-terms u by their S-values. We obtain an �-free derivation from formulaswhih are true under the standard interpretation of prediate onstants and boolean onnetives, and therule (Appfn1; : : : ; nkg(n) is true ) def() (n ours among n1; : : : ; nk) :Note that thereby an EA� derivation d* of a formula F [�xF ℄ (= (9xF )�) or F [�XF ℄ (= (9XF )�) with Fquanti�er- and �-free is transformed into a derivation of F [n℄ or F [P ℄ for some numeral n or �nite prediateP .7 Non-onstrutive proof of terminationIn this setion S, Sn; ::: always denote �-substitutions with fe 2 dom(S) : S(e) = ?g = ;. For eah pair (e; u)we set rk((e; u)) := rk(e).De�nition 32 Let S be an �-substitution suh that S is orret and nonsolving.Let e be the H-term and v the H-value of S.We set rk(S) := rk(e) and �(S) := (e; v).Note that if S is orret and nonsolving, then aording to our general assumption on S we have e 62 dom(S)and H(S) = S�rk(e) [ f(e; v)g.De�nition 33 An �-substitution S is alled r-substitution (r 2 On) i� S is orret and rk(�) < r for allpairs � 2 S, i.e. S = S<r.De�nition 34 Let r 2 On. An r-proess is a sequene (Si)i<� suh that:{ 0 < � � !,{ S0 is an r-substitution,{ if i < � and Si is nonsolving and rk(Si) � r then i+ 1 < � and Si+1 = H(Si),{ if i < � and (Si is solving or rk(Si) < r) then � = i+ 1.(In this ase Si is the last substitution, and S� = Si+1 is not de�ned.)20



Remark1. For eah r-substitution S there is a unique r-proess (Si)i<� with S = S0.2. If (Si)i<� is an r-proess thena) for all i < �, Si is orret and (Si)<r = S0 ,b) for all i with i+1 < �, Si is nonsolving and rk(Si) � r.The values of rank r are preserved in an r-proess.Lemma 7.1If (Si)i2� is an r-proess and i � j < � then (Si)�r � Sj .Proof: If i+1 < � then Si+1 = (Si)�rk(e) [ f(e; v)g with rk(e) � r, and therefore (Si)�r � Si+1. >From thisthe laim follows by indution on j. 2An in�nite r-proess if it existed, would neessarily introdue values of rank > r .Lemma 7.2 If (Si)i2! is an r-proess then 8k9i � k( rk(Si) > r ).Proof:Assumption: k 2 IN&8i � k( rk(Si) = r ). | We write jejn for jejSn .(1) For eah anonial �-term e there is an n suh that 8i � n( jejn = jeji ).Proof:1. rk(e) = r and e 62 Si2! dom(Si): Then jeji = 0�(e) for all i.2. rk(e) = r and e 2 dom(Sn): By Lemma 7.1 it follows that jeji = jejn for all i � n.3. rk(e) < r: Then jeji = jej0 for all i.4. rk(e) > r: By assumption we have 8i > k(e 62 dom(Si)) and therefore jeji = 0�(e) for all i > k. 2(2) For eah expression e there is an n suh that 8i � n(jeji = jejn).Proof by indution on d(e). If d(e) = 0 then jeji = e = jejn. Assume now that d(e) > 0 and let u be someanonial �-subterm of e. By (1) there is an m suh that juji = jujm for all i � m. Let e0 result from e by`ontration' of u. Then e ,!1Si e0 for all i � m, and by I.H. there is an n � m suh that je0ji = je0jn for alli � n. Hene jeji = je0ji=je0jn = jejn for all i � n. 2 (2).By (2) there is an n � k suh that jF jn+1 = jF jn and j��F jn+1 = j��F jn for eah ritial formula F0!F [��F ℄from the list Cr0; :::; CrN . So espeially for the H-term e = ��jF jn of Sn we have jejn+1 = j��jF jn+1jn+1 =j��F jn+1 = j��F jn = jejn. (Note that j��F jS = j ��jF jS jS). But, sine Sn+1 = H(Sn), this is a ontraditionto Lemma 5.1b. 2Eah in�nite r-proess an be extended to an in�nite r + 1-proess.Theorem 7.3Let (Si)i2! be an r-proess. Then (by adding pairs of rank r) S0 an be extended to an (r+1)-substitutionS+ suh that the (r+1)-proess beginning with S+ is in�nite.Proof: Again we set jejn := jejSn .S+ := Si2!(Si)�r. By Lemma 7.1 S+ is a funtion. We show that the r + 1-proess beginning with S+ isan aelerated version of the given in�nite r-proess (Si)i2! . (f. (2) below).(1) S+ is orret.Proof: Let (��A; u) 2 (Si)�r. Then for eah v 2 IB�(�), rk(A[v℄) < rk(��A) � r and therefore jA[v℄ji =jA[v℄j0 = jA[v℄jS+. Hene jA[[u℄℄ji = jA[[u℄℄jS+. Sine Si is orret, we have jA[[u℄℄ji 2 TRUE.Let (S+i)i<� be the (r+1)-proess starting with S+. Abbreviation: jej+n := jejS+n .The following proposition (2a) together with (1) yields the theorem.(2) For every i 2 ! holds(a) i < �,(b) there exists j 2 ! suh that S+i is an extension of Sj by some pairs of rank r.Proof by indution on i:I. i = 0: (a) trivial. (b) Take j := 0.II. i! i+1: 21



By I.H. i < �, and there is a j suh that S+i = Sj ℄	 with 8� 2 	( rk(�) = r).(The symbol ℄ indiates disjoint union).Let � be the �nite set of all pairs � 2 S+ of rank r whih are used in the omputation of jCrI j+0 ; :::; jCrI j+i(I = 0; :::; N) as well as �(S+0); : : : ; �(S+i).Let k := minfl � j : � � Sl&rk(Sl) > rg (f. Lemma 7.2). We have k � j&� � Sk&rk(Sk) > rCASE A: k = j.(a) Then S+i = Sk ℄	, and 	 is not used in the omputation of jCrI j+i sine Sk already ontains �. HenejCrI j+i = jCrI jk for I = 0; :::; N . Sine Sk is nonsolving and rk(Sk) > r, it follows that S+i is nonsolving,�(S+i) = �(Sk), and rk(S+i) � r + 1. Hene i+ 1 < �.(b) S+i+1 = (S+i)�rk(S+i)℄f�(S+i)g = (Sk ℄	)�rk(Sk)℄f�(Sk)g = (Sk)�rk(Sk)℄f�(Sk)g℄	 = Sk+1℄	.CASE B: j < k. Then rk(Sk�1) = r. Otherwise (Sk)�r = (Sk�1)�r and rk(Sk�1) > r, so that k is notminimal.Hene in the step from Sk�1 to Sk all pairs of rank > r are removed. It follows that S+0 = Sk ℄� where �onsists of pairs of rank r whih are not used in the omputation of jCrI j+0 ; :::; jCrI j+i and �(S+i).Proposition. S+l = Sk+l ℄ �, for l = 0; :::;minfi+ 1; � � 1g (�).Proof by indution on l: Let l < minfi+ 1; � � 1g and S+l = Sk+l ℄ �.By the de�nition of �, all pairs of rank r whih are used in the omputation of jCrI j+0 ; :::; jCrI j+i and �(S+i)are ontained in � � Sk. Sine l � i, we have �(S+l) = �(Sk+l) and rk(S+l) = rk(Sk+l). Sine l+1 < �, thesubstitution S+l is not terminal, and we have rk(S+l) � r+1. Hene S+l+1 = (S+l)�rk(S+l) [ f�(S+l)g =(Sk+l ℄ �)�rk(Sk+l) ℄ f�(Sk+l)g = (Sk+l)�rk(Sk+l) ℄ f�(Sk+l)g ℄ � = Sk+l+1 ℄ �.(a) The above proposition (�) yields jCrI j+i = jCrI jk+i sine 	 is not used in the omputation of jCrI j+i.Hene S+i is nonsolving, sine Sk+i is nonsolving. Now by (�) we also have �(S+i) = �(Sk+i) andrk(S+i) = rk(Sk+i). Assume rk(Sk+i) = r; then �(Sk+i) 2 S+ � S+i and thus �(Sk+i) 6= �(S+i), sine�(S+i) 62 S+i. Contradition.Hene rk(S+i) = rk(Sk+i) � r+1 and thus i+ 1 < �.(b) As in the proof of (�) we get S+i+1 = Sk+i+1 ℄ �. 2Theorem 7.4The 0-proess � beginning with the empty substitution ; terminates in a solving substitution.Proof: Obviously it suÆes to prove that � is �nite (terminates).For ontradition we assume that � is in�nite.Below we de�ne substitutions Sr for all r 2 On suh that:(1) S0 = ;,(2) Sr is an r-substitution,(3) the r-proess starting with Sr is in�nite,(4) Sq � Sr, for all q < r.Let R := maxfrk(CrI ) : I � Ng + 1. Then rk(S) < R for eah substitution S. But on the other handrk(SR) � R, sine by (3) the R-proess starting with SR is in�nite. Contradition.De�nition of Sr by trans�nite reursion on r:S0 := ;,Sr+1 := (Sr)+ (f. Theorem 7.3),Sr := Sq<r Sq, if r 2 Lim.In parallel with that de�nition we prove by trans�nite indution on r that Sr satis�es the above onditions(2),(3),(4). The suessor step is settled by theorem 7.3. Now assume r 2 Lim.Then (4) is trivial, and (2) follows >from I.H.(2),(4), sine eah partiular value (e; u) in Sr is veri�ed byomputation in some Sq; q < r.For (3) assume that the r-proess for Sr is �nite. Then it uses information only from Sq for �nitely manyq < r, hene there is a q < r suh that Sq is �nite whih ontradits I.H.(3). 2
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