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Introduction

There are two main approaches to ordinal analysis of formal theories: the fini-
tary Gentzen-Takeuti approach on one side, and the use of infinitary derivations
initiated by Schiitte on the other. Up to now these approaches where thought
of as separated and only vaguely related. But in the present paper we will show
that actually they are intrinsically connected. Using the concept of notations for
infinitary derivations (introduced in [Bu91]) a precise explanation of Gentzen’s
reduction steps on derivations in 1st order arithmetic Z (cf. [Ge38)]) in terms of
(cut-elimination for) infinitary derivations in w-arithmetic will be given. Even
more, Gentzen’s reduction steps and ordinal assignment will be derived from in-
finitary proof theory. In a forthcoming paper we will extend the present work to
impredicative subsystems of 2nd order arithmetic thereby explaining Takeuti’s
consistency proof for IT1{-CA in terms of the infinitary approach (with 2,1 1-rules)
from [BS88] (cf. [Bu97]).

Our general idea is that such investigations may perhaps be helpful for the un-
derstanding and unification of two of the most advanced achievements in con-
temporary proof theory, namely the methodically quite different work of T. Arai
([Ar96b], [Ar97a], [Ar97b]) and M. Rathjen ([Ra91], [Ra94], [Ra95]) on the ordi-
nal analysis of very strong subsystems of 2nd order arithmetic and set theory.

Content

In §1 and §2 essential material from [Bu91] is repeated in a somewhat modified
form, so that it fits exactly for the present purpose. §1 contains the definition
of operators R¢ and £ which make up a cut-elimination procedure for Z*° (the
infinitary Tait-style sequent calculus for w-arithmetic) due to Schiitte [Sch51],
Tait [Ta68] and Mints [Mi75]. In §2 we introduce a finitary Tait-style sequent
calculus Z* for pure number theory Z which differs from the usual version only
by a certain additional inference rule (E) & and the fact that cuts w a
labeled by the symbol Re (instead of Cutc). Every Z*-derivation h with closed
endsequent is considered as a notation for a certain Z*°-derivation h™ of the same

re

sequent. In other words, we define a translation h — h*> from Z* into Z*°. The
definition of A*° runs as usual only that cuts and E-inferences are not translated
literally but according to the intended meaning of the symbols R¢, E:
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r,c T,-C = Rc(hgo, h?o) > r = 5(h8°)
T Re Tt

From this interpretation and the properties of R¢ and £ (established in §1) one
immediately reads off a definition of ordinals o(h) < €9 and deg(h) < w such
that depth(h®>) < o(h) and sup{rk(C)+1 : C is cut-formula in h*°} < deg(h).
Formally the definition of o(h) and deg(h) proceeds by (primitive) recursion on
the build-up of h and does not refer to h*. Further by looking on the definitions
of Re and &€ (given in §1) we derive (via h — h) a definition which assigns
to each Z*-derivation h a certain inference symbol tp(h) (corresponding to the
last inference of h*°) and, for each i € [tp(h)|, a new Z*-derivation h[i] such that
(h[i])®° = h®(i), where (hoo(i))ie\tp(h)\
of h*°. The definition of tp(h) and h[i] also proceeds by recursion on the build-up
of h.

In §3 we describe the (Tait-style adaption of) Gentzen’s reduction procedure
and ordinal assignment (from [Ge38]) in terms of the notions introduced in §2.
Let Z denote the subsystem of Z* obtained by omitting the E-rule. So Z is just
ordinary 1st order arithmetic. We consider a (hypothetical) Z-derivation d of the
empty sequent. Let d’ be the Z*-derivation which results from d' by filling in
E-inferences in such a way that for each node v of d' (which originates from a
node of d) we have hgt*(d',v) = Hohe(d',v), where hgt*(d',v) is the number of
E’s below v, and Héhe is defined as in [Ge38]. Then o(d') is precisely the ordinal
O(d) which Gentzen assigns to d, and d'[0] (after deleting all E’s) coincides with
the result of a Gentzen reduction step applied to d.

is the family of immediate subderivations

Remark. The E-rule is also present in [Ar96a] (under the name “height rule”)
but there no interpretation of E as cut-elimination operator is given.

§1 Cut-elimination for the infinitary system z*

Preliminaries

We assume a formal language of arithmetic which has predicate symbols for prim-
itive recursive relations, but no function symbols except the constant 0 and the
unary function symbol S (successor). Atomic formulas are of the form pt;...t,
where p is an n-ary predicate symbol and t1, ..., t,, are terms. Literals are expres-
sions of the shape A or =A where A is an atomic formula. Formulas are built
up from literals by means of A,V,Vz,3z. The negation —C of a formula C is
defined via de Morgan’s laws. The rank rk(C') of a formula C' is defined as usual:
rk(C) := 01if C is a literal, rk(4pA A1) := rk(AgVA;) := max{rk(Ap), rk(A;)}+1,
rk(VzA) := rk(3zA) := rk(4)+1. By FV(#) we denote the set of all free vari-
ables of the formula or term 6. A formula or term 6 is called closed iff FV(6) = 0.
0..(t) (or 8(z/t)) denotes the result of replacing every free occurrence of z in 6
by ¢ (renaming bound variables of 8 if necessary). The only closed terms are the



numerals 0,50, 550, .... We identify numerals and natural numbers. By TRUEq
we denote the set of all true closed literals. Finite sets of formulas are called
sequents.

We use the following syntactic variables: s, ¢ for terms, A, B, C, D, F' for formulas,
[, A for sequents, «,f,v for ordinals, i,j,k,[,m,n for natural numbers (and
numerals).

As far as sequents are concerned we usually write Ay, ..., A, for {4y, ..., A, }, and
AT, A for {A}UTUA, etc.

Proof systems
A proof system & is given by
— a set of formal expressions called inference symbols (syntactic variable 7)

— for each inference symbol Z a set |Z|, a sequent A(Z) and a family of sequents
(AUD))iez)-

NOTATION

DA el

By writing  (Z) LA—(LE)

we declare 7 as an inference symbol with |Z| = I, A(Z) = A, A, (Z) = A,.

AO Al...Anfl . AL(LEI)

instead of —————=.

A A
Up to a few exceptions the sequents A(Z),A,(Z) are singletons or empty.

If |Z) = {0, ...,n—1} we write

Definition

The figure LIl (el)

r
Ze S and |Z| =1 and A(Z) CT and VeeI(I', CT', A, (2)).

T is called a (correct) S-inference iff

The infinitary proof system Z* (w-arithmetic)

(Axa) — if A € TRUE.

(Nagra) g Viga) o (k€ (01D
(W) 2D CER) e 2B g ey
(Cute) S5 (Rep) §

Note:

To avoid a possible misunderstanding we stress that |Rep| = {0} while |Ax4| = 0.

Inductive definition of Z°°-derivations
If T is a sequent, a an ordinal, Z € Z*°, and (d;);er a family of Z°°-derivations

I(d;)...(ieT)

such that — T T is a correct Z*-inference and VieI(o(d;) < «)



IT:T:«a
I'(d) :=T, last(d) :=Z, o(d) := «, d(4) := ¢;
max{rk(C)+1, deg(dy), deg(d if 7 = Cut
and deg(d) := {sup{Eleg;((dz;_: ie % o des(@) otherwise ¢
['(d) is called the endsequent of d, o(d) the ordinal of 4, last(d) the last inference
(symbol) of d, and d(7) the i-th immediate subderivation of d.

then the tree d:= { is a Z*°-derivation with

We use d,dy, ... as syntactic variables for Z*°-derivations.
Abbreviation A+ ' 1 <= TI'(d) CT & deg(d) <m & o(d) = a.

Cut-elimination for Z*°

Theorem 1 and Definition
Let C be given. We define an operator R¢ such that:
do F T,C & d; F), T, =C & tk(C) <m => Re(do,dy) FA#F T
Proof by induction on a#f:
W.lo.g. we may assume that I' = (I'(dg) \ {C}) U (I'(d1) \ {=C1}).
Case 1. C ¢ A(Z) where 7 := last(do):
Then A(Z) CT, and do(7) % T',C, A;(Z) with o; < «, for all i € |Z].
By IH we get R (do(i),d;) F&i#5 T, A;(Z) for all i € |Z].
. Re(do(i),d1) ... (7 € |Z])
Z:T:a#p
Case 1°. =C ¢ A(last(d)): symmetric to Case 1.
Case 2. C € A(last(dp)) and =C € A(last(dy)):
Then rk(C) # 0, since C' and ~C cannot both be true literals.
Case 2.1. C =VzA(z): Then -C = Jz-A(z), last(d,) = \/’io, and
do(7) Fi T',C, A(i) with a; < «, for all i € IN,
d;(0) F2o T, C, ~A(k) with 3y < .
By TH we get Rc(do(k),di) F#5 T, A(k) and Re(dg,dq (0)) Fa#50 T, = A(k).
Further rk(A(k)) < rk(C) < m.
Re(do(k),d1)  Re(do,di(0))
Cutagry : Tz ot '
Case 2.2.—2.4. C' = Jx A or AgAA; or AygVA;: analogous to Case 2.1.

Hence Re(dg,dh) = { is a derivation as required.

Hence R¢(do, dy) = {

Theorem 2 and Definition
We define an operator £ such that: d 2, ' = &£(d) F¥ T.

Proof by induction on «a:

W.l.o.g. we may assume that I' = I'(d).

Case 1. last(d) = Cutc:

Then rk(C) <m and d(0) Fp°, T',C', d(1) Fpty ) T, —~C with ag, a1 < a.
By IH we get £(d(0)) F<™° T, C and £(d(1)) F< ' T, =C.



Hence by Theorem 1 R (£(d(0)),£(d(1))) 2 °#<"" T, and

£() := {RC (iii(()){)‘,gbfi(l))) is a derivation as required.

LE(A@) ... (ig|Z))
T:T:w”

Case 2. otherwise: £(d) := { = where 7 := last(d).

Remark In the whole paper A¢.w¢ could be replaced by any ordinal function f
such that Yag, a1, a(ag, a1 < a = f(aog)#f(a1) < f(a)).

§2 The finitary system z*

Let Z be the formal system of pure number theory (Peano arithmetic). The
mathematical axioms of Z are the scheme of complete induction and finitely
many axioms of the shape VZ(Ag V ... V A,,) where Ay, ..., A, are literals. In our
sequent calculus the latter axioms are represented by a (prim. rec.) set Ax(Z) of
sequents such that

(i) Ae€eAx(Z)& Ae A = Ais a literal,

(i) A€ Ax(Z) = Az(i) € Ax(2),

(i) A€eAx(Z)&FV(A)=0 = ANTRUE, # 0.

Definition of the finitary proof system Z*
The inference symbols of Z* are

(a) A €ANZ), (Mo 322 (Vhoa) T2
(Ind") % (Re) &€ @ﬁc, (E) %

k . 0o
and /\Ao/\A1’VAg\/A1 asin Z°.

Z*-derivations

Z"-derivations are defined in a somewhat different style than Z°°-derivations. The
difference is that the nodes of a Z*-derivation h are labeled with inference symbols
only, while the endsequent I'(h) and the ordinal o(h) of h will be computed from
h by structural recursion. Actually Z*-derivations will be introduced as terms (in
prefix notation) built up from inference symbols Z which we consider as n-ary
function symbols, where |Z| = {0, ...,n—1}.

Inductive Definition of Z*-quasi-derivations

If 7 is an n-ary Z*-inference symbol and hy, ..., h,_1 are Z*-quasi-derivations then
h :=Thg...h,—1 is a Z*-quasi-derivation and

I(h) := A(Z) UU;,, (T(Ri) \ Ai(T))

O(ho)#o(hl) if 7 = RC
__Jo(ho)-w if 7 = Ind%*
o) =4 otro) fT=E

(sup;j.,, 0(hs)) +1 otherwise



max{rk(C), deg(ho),deg(h1)} ifZ =R¢

_J max{rk(F), deg(ho)} if 7= Ind%’
deg(h) = { dog(ho)=1 it T = E
Sup;.,, deg(h;) otherwise

Remark: The definitions of o(h) and deg(h) are motivated by the interpretation
h + h*> (introduced below) and Theorems 1,2.

Inductive Definition of Z*-derivations
If 7 is an nm-ary Z*-inference symbol and hy, ..., h,—1 are Z"-derivations then
h :=Thg...hp_1 is a Z"-derivation if the following conditions are satisfied

= I=N%a = y¢€FV(I(h),

~ I=Ind%" = y¢FV(I(h),

- I=V5,4 = FV(t) CEV(T(h),

—~ IT=Re = FV(C) CFV(T(h)).

A Z*-derivation h is called closed iff FV(T'(h)) = 0.

Remark: As one easily verifies the last two conditions in the above definition do
not restrict the set of provable sequents. They imply the following proposition:

If h = Zhg...hn—1 is a closed Z*-derivation with Z # AY_ 4, Ind%’t then hg,..., hp_1
are closed too. If h = A\Y_,ho or h = Ind%'hg is closed then FV(T'(ho)) C {y}-
Definition

Let Z denote the subsystem of Z* which arises by omitting the symbol E. Obvi-
ously Z is nothing else than the Tait-style version of pure number theory Z.

We use d,d; (h,h;) as syntactic variables for Z(Z*)-derivations.

Definition
In the usual way we define h(z/1), i.e. the result of substituting ¢ for z in h:

Axa(z/i) :== Axa_ (i)

(Veho) (/i) = VG ) ho(2/3), (Nahohi)(2/1) = Ao ayho(2/i)ha (2/),
(Acho)(2/7) == Ncho, (ANEho)(2/i) := /\%z(i)ho(z/i) ify # z,

(Ind33'ho) (2/i) := Indjz' ho, (Ind%'ho) (2 /i) = Ind%'t " ho(2/1) if y # 2,
(Rohohi)(2/i) == R (iyho(2/1)hn (2/1), (Eho)(2/i) := Eho(2/1).

Proposition If h is a Z*-derivation then also h(z/i) is a Z*-derivation and

L(h(2/i)) CT(h):(i), deg(h(z/i)) = deg(h), o(h(z/i)) = o(h).

Interpretation of Z* in Z*
For each closed Z*-derivation h we define its interpretation h™ € Z*° as follows:
Let h = Zhg...h,—1, T =T'(h), a = o(h):

0. (Axp)®™® := {m, where A is the “least” element of I' N TRUE,,
a:I:

. ho(y/i)>® ... (i€IN)
Avoa: T ’

L (Nt = {



2. (Rehoh1)® :==Re(hs®, hi°) ,
3. (Ehg)>® :=E&(h&) ,
y,n 00 . — en 3
4. (Ind%"hg)®> := {Rep T o with
e1 := ho(y/0)>, eiy1 := Rpciy(es, ho(y/i)>°) for i > 0, and e is the canonical
Z*-derivation with I'(eg) = {=F(0), F(0)}, deg(eg) = 0, o(eg) = 2rk(F).
heo .. b2,

5. Otherwise: (Zhg...hp—1)> := {ﬁ

Remark With the help of Theorems 1,2 one easily verifies that h* is a Z°°-
derivation with A 5t T'(h).
Definition of tp(h) and h[i] for closed Z*-derivations h and i € |tp(h)]
By (prim.) recursion on the build-up of A we define an inference symbol tp(h) €
Z and closed Z*-derivation(s) h[i] in such a way that tp(h) = last(h*) and
(h[i])®>® = h°°(i). The definition clauses for h = Rohohy and h = Ehgy can be
read off from the corresponding clauses in the definitions of R and €.
1.1. h=Axa: tp(Axa) := Axu where A is the “least” element of A N TRUE,.
1.2. h = Aghohi: tp(h) := Ag, hli] := h;.
1.3. h=ALho: tp(h) := Ag» hli] == ho(y/i).
14. h=\Eho: tp(h) == /&, h[0] := ho.
2. h=1Ind%"ho: tp(h) := Rep, h[0] := e, with

er := ho(y/0), eix1 := Rpgyeiho(y/i) for i > 0, and eg is the canonical

Z-derivation with T'(eg) = {=F(0), F(0)}, deg(eg) = 0, o(eg) = 14+2rk(F).
3.  h=Ehy:
3.1. tp(ho) = Cute: tp(h) := Rep, h[0] := ReEho[0]Eho[1],
3.2. otherwise: tp(h) := tp(ho), h[i] := Eholi].
4. h= Rch0h12
4.1. C & A(tp(ho)): tp(h) := tp(ho), h[i] := Reholi]hi.
4.2. =C & A(tp(h1)): tp(h) := tp(h1), h[i] := Rohoha[i].
4.3. C € A(tp(ho)) and =C € A(tp(hy)):

Then rk(C) # 0, since C' and =C cannot both be true literals.
4.3.1. C =VxzA: Then tp(hy) = V'ic for some k € IN .

tp(h) = CUtAm(k)a h[O] = Rcho[k]hl, h[l] := Rehohy [0]

4.3.2. C =3zA or AgAA; or AgVA;: analogous to 4.3.1.

Theorem 3
For each closed Z*-derivation h the following holds:

) ..D(h[i]) ... (i€ltp(h)])
I'(h)
b) tp(h) = Cute = rk(C) < deg(h),

tp(h) is a correct Z-inference,



c) deg(hli]) < deg(h) for all i € |tp(h)],

d) o(h[i]) < o(h) for all i € [tp(h)].

Proof by straightforward induction on the build-up of h:

We only consider two cases.

Abbreviation: hF% T’ & T'(h) CT & deg(h) <m & o(h) = a.

1. h = Rohohy with C =Yz A, tp(ho) = Ao tp(h1) = Ve, tp(h) = Cuta:
Let T :=T(h), a:=o(hg), 8 := o(h1), and m := deg(h).

Then ho %, T,C and hy F2, T, =C and rk(A(k)) < rk(C) < deg(h).

By IH we obtain holk] F&* T, C, A(k) with ay < a,

and hy[0] FP T, =C, ~A(k) with 3y < f3.

Hence h[0] = Roho[k]hy F&+#8 T, A(k) and h[1] = Rohohy[0] FO#P0 T, = A(k)
with ap#08, a#tbo < a#8 = o(h).

2. h = Ehg with tp(ho) = Cutc: Then tp(h) = Rep and h[0] = ReEho[0]Eho[1].
Let T':=T(ho) =T'(h), a := o(hg) and m := deg(ho)=-1 = deg(h).

By IH we have rk(C) < deg(ho) < m+1 and ho[0] 72, T',C', ho[1] Fy) T',—~C
with ag,a; < a. Hence Ehg[0] F%,° T, C and Ehe[1] F&" T, ~C.

From this together with rk(C') < m we get h[0] = RoEho[0]Eho[1] F& ' #«"' T
and w*#w* < w® = o(h).

Corollary

Let Z' be the set of all Z*-derivations h with T'(h) = 0 & deg(h) = 0.
a) h € Z = h[0] € Z' & o(h[0]) < o(h),

b) There is no Z-derivation d with T'(d) =
Proof:

a) heZt B° heZi &tp(d) =Rep =% h[0] € Z% & o(h[0]) < o(h).

b) By transfinite induction up to g¢ from a) we get Z° = (. Now assume that
d is a Z-derivation with T'(d) = (. Let m := deg(d). Then E™d = E...Ed € Z7.
Contradiction.

0.

Conclusion

In this section we have proved the consistency of Z in a Gentzen style manner
(i.e., by defining reduction steps on finite derivations in such a way that the
assigned ordinals decrease), but we have not yet achieved a literal reconstruction
of Gentzen’s original consistency proof in [Ge38]. This is contained in §3.

§3 Connection to Gentzen’s consistency proof

Notation:

If d is a Z-derivation and v a node (position) in d then :

(i) d|, denotes the subderivation of d determined by v. (Especially d|, = d.)
(if) hgt(d,v) is Gentzen’s height (Héhe) of v in d.

(iii) O(d,v) is the ordinal which Gentzen assigns to v in d.

(The definition of hgt(d,v) and O(d,v) can be found in the proof of Lemma 1.)



Definition
For each Z*-derivation h let ¢(h) denote the Z-derivation which results from h
by deleting all E’s.

Definition of a Z*-derivation 1, (d) for each Z-derivation d

1. Yn(Redody) := E"Roty(do )y (dy ), where [ := max{n,rk(C)},
2. ¢n(Ind%'do) := E""Ind% 4y (do), where 1 := max{n,rk(F)},

3. Otherwise: ¥, (Zdy . ..dm—1) := T, (dp) - . . Vn(dm—1)-

Proposition
L'(Yn(d)) = I'(d), deg(¥n(d)) < n, d(¥n(d)) =
Remark

As we will see below (cf. Lemma 5) 4, (d) has the following minimality property:
Vh(deg(h) <n & ¢(h) = d = o(¢n(d)) < o(h)).

The rest of this section is occupied with the proof of the following Theorem.

Theorem 4
For each Z-derivation d we have

a) o(to(d)) = O(d, ())-
b) If ['(d) = () then red(d) := ¢(1po(d)[0]) results from d by a Gentzen reduction
)

step, and O(red(d), ()) < O(d,?) .

Lemma 1

If n = hgt(d,v) then o(¢,(d|,)) = O(d, v).

Proof by induction on d|, :

1. d|, = Rodody: Then d; = d|,.;y and hgt(d,vx(i)) = | := max{n,rk(C)}.
Hence by IH o(¢;(d;)) = O(d,v+(i)), and thus o(¢,(d|,)) =
wi—n(0(thi(do))#0(Yu(d1))) = wi—n(O(d, v%(0))#O0(d, v(1})) =
2. d|, = Ind%do: Then dy = d|,.(oy and hgt(d,v+(0)) =1 :
Hence o(n(d],)) = wi—n(0(1(do)) - w) = wi—n(O(d, v%(0)) - w) = O(d, v).
3. d|, = Tdy...dr—1 otherwise: Then d; = d|,.(;y and hgt(d,vx(i)) = n. Hence
by IH o(¢n(di)) = O(d,v+(i}) and thus o(¢n(dly)) = (sup;cy 0(¢n(di))) +1 =
(sup; <, O(d, vx(i))) + 1 = O(d, v).

From Lemma 1 we get o(¢o(d|(y)) = O(d, ()), and thus Theorem 4a is proved.

O(d,v).
max{n,rk(F)}.

Abbreviation: E™h := E...Eh.
S

Definition (Nominal forms for derivations)

1. x is a nominal form. Cut(x) := 0, hgt*(x) := 0.

2. If a is a nominal form, m € IN, and h a Z*-derivation then E™Rgah and
E™Rcha are nominal forms.
Cut(E™Rgah) := Cut(a) U {C} , Cut(E"Reha) := Cut(a) U {-C},
hgt*(E"Rcah) := hgt*(E™Rcha) := m + hgt*(a).



We use a, b, ¢ as syntactic variables for nominal forms.

Definition

hgt(a) := sup{rk(C) : C' € Cut(a)},

a{q} := the result of substituting ¢ for * in a (¢ a nominal form or Z*-derivation).
Lemma 2

Yo (d) = a{h'} = n+ hgt*(a) = max{n, hgt(a)}.

Proof by induction on a:

1. a = #: n+ hgt*(a) = n = max{n, hgt(a)}.

2. a= Echaohlz

Then d = Redod; and ¢, (d) = E'""Reay(do)ipr(dy) with 1 := max{rk(C),n}.
This yields E™Roao{h'}h1 = a{h'} = E"""Roty(do)ei(dy) and then m = I—n
and ag{h’'} = ¢i(do). Hence n + hgt*(a) =1 + hgt*(ap) E max{l, hgt(ag)} =
max{n,rk(C), hgt(ag)} = max{n, hgt(a)}.

Corollary

o(d) = a{b{h'}} = hgt(a{b}) = hgt(a) + hgt*(b).

Proof: hgt(a{b}) = hgt*(a{b}) = hgt*(a) + hgt*(b) = hgt(a) + hgt*(b)

Definition
A Z*-derivation h is called regulariff for every subterm Ehg of h we have last(hg) €

{E,R¢, Ind%*}. — Obviously each 1, (d) is regular.
Clk] = {Ax(k) if C' = QuA with Q € {v,3}
Ay, if C = AgoA; with o € {A,V} and k € {0,1}
Lemma 3
Let h be a closed Z"-derivation.
a) If tp(h) = Rep then there are a, b’ such that h = a{h'}, h[0] = a{R'[0]} and
cither h' = E™Ind%'A" or h' = E™T'h" & tp(h") = Cutp.
b) If tp(h) = Cutp then there are b, C, hg, b1 such that hgt*(b) = 0,
h = b{Rchoh1}, h[i] = b{(Rchoh1)[i]}, and either
(1) tp(ho) = Ac: & tp(hn) = Vie & B = C[k] or
(2) tp(ho) = Ve & tp(h) = A & B = C[H].
c) If h is regular and tp(h) = A, or Vlé then there are c, ho[, h1] such that
C ¢ Cut(c) and
[h = c{Atho} & Rli] = c{ho(y/i)}] or [h = c{Achohi} & hli] = {h;}] or
[h = c{Veho} & h[0] = c{ho}]
Proof:
a) By definition of tp(h) one of the following cases holds:
1. h=E™Ind%'h: Then a:= *, h' := h.
2. h = E™h with last(h) # E, Ind:



2.1. tp(h) = Cutp & n >0 : Then a:=x, h' := h.

2.2. tp(h) = Rep: Then h = Rohohy and (w.l.o.g) tp(ho) = Rep. By IH ho =
ao{h'} with ho[0] = ag{h'[0]} and b’ = E™Ind%'h" or h' = E™T'h" & tp(h') =
Cutg. Now for a := E"Rcagh; we have h = a{h'} and h[0] = E"Rchg[0]hy =
E"Rcao{h'[0]}h1 = a{h'[0]}.

b) Assume that tp(h) = Cutp. Then one of the following cases holds:

1. h = Rehohy and [(tp(ho) = Ao & tp(hy) = Vic & B = C[k]) or (tp(ho)
\/I(cj & tp(h1) = A_ & B = C[k])]: The claim holds for b := *.

2. h=Rphyh} and (w.l.o.g.) tp(hy) = tp(h) & hli] = Rphyli]hi:

By IH there are bg, C, ho, hy such that hgt*(bo) = 0, h{ = bo{Rchoh1}, hyli] =
bo{(Rchoh1)[i]} and one of the subcases (1),(2) holds. Let b := Rpbgh). Then
h = b{Rchohi} , hli] = Rphg[ilhi = Rpbo{(Rchohi)[i]}hi = b{(Rchohi)[il},
and hgt*(b) = hgt*(bo) = 0.

c¢) Assume that h is regular, and tp(h) = A, with C' = VzA.

Then one of the following cases holds:

1. h =AY, 1ho: Then the claim holds for ¢ := x.

2. h = E"Rphyh] with (w.lo.g.) tp(h) = tp(hy) and D # C: By IH hj =
co{ ALho} and h[i] = co{ho(y/i)} with C & Cut(co). Let ¢ := E™Rpcoh). Then
ho= (Al aho} » lil = E"Rphb[ilh; = E™Rpcofho(y/i) bt = clho(y/i)} and
C ¢ {D} U Cut(cp) = Cut(c).

Theorem 5

Assume that T'(d) = 0 and let h := 1o (d).

Then tp(h) = Rep and one of the following two cases holds:

(1) h=a{E™Ind%"ho}, h0] = a{E™(Ind%"ho)[0]},

(1) h=a{E™*'6{Rehohi}} , h[0] = a{ E"RepgEb{Rehy by JEB{Rehohy }}
and either
(1) tp(ho) = Ac & tp(h) = Vi & ho = holk] & hy = m[0] or
(2) t(ho) = Ve & to(n) = Ao & hy = hol0] & hi” = K.

Moreover hgt*(6) =0 and hgt(a)+m+1 = rk(C) = max{hgt(b),rk(C)}
~ if b ==«
with €= {g if lbast(b) =Rp"’
Proof:
We have I'(h) = ) & deg(h) = 0 and therefore (by Theorem 3) tp(h) = Rep.
Further h is regular. Now let us assume that (I) does not hold.
Then according to L.3a) h = a{E™"'h"} with tp(h") = Cutp and
Rh[0] = a{(E™"'A")[0]} = a{E™(ER")[0]} = a{E™REA"[0]EA"[1]}.
By L.3b) we get h"" = 6{Rchoh1}, h"[i] = b6{(Rchohi)[i]} with hgt*(6) = 0, and
— in subcase (1) — tp(ho) = A¢ & tp(h1) = V¥ & B = C[k].
Putting things together yields



h[0] = a{E™RBER"[0]EA"[1]} = a{E" Rek Eb{Rcho[k]h1 }EO{Rchoh1[0]}}.

It remains to prove that hgt(a)+m+1 = rk(C) = max{hgt(b), rk(C)}.
Let b’ := b{R¢ * hi}. Then last(b’) = R and max{hgt(a), hgt(b’)} =

hgt(a{E™16'}) “°="? hgt(a) + hgt*(E™'b) = hgt(a)+m+1.

Hence hgt(a)+m+1 = hgt(b’) = max{hgt(b),rk(C)}.

Similarly we obtain rk(C') = hgt(a)+m+1.

Remark

With the above Theorem at hand the reader may now go through the relevant
parts of [Ge38] and convince him /herself that indeed red(d) := ¢(10(d)[0]) results
from d by a reduction step in the sense of [Ge38]. To facilitate this task let us
take a closer look at case (II)(1) with C' = VzA. In doing so we use the following
abbreviation: d = h :& d = ¢(h). Then by combining Lemma 3c with Theorem
5 and writing derivations as trees we obtain the following presentation of d and
red(d) which (apart from weakenings, contractions and permutations) is exactly
as in [Ge38] (pp. 34,35):

h hio i oo
00 k N
—— iz hoo(/k) Vag-a  Nua h1o
A\ Vie-a
'.c' L '.c' L [ [ ) €1
d=~ # red(d) ~ RVxA RVxA
o b b
b Hoéhenlinie
e Rack)
a S
a

In traditional notation with sequents displayed this is:

hio hoo
hoo hio hoo(y/k) Ty,—A(k) Io,A(y) hio
F07A(y) Fl,ﬁA(k) F07A(k) F17E|:I?—|A Fo,VxA F17—|A(k)
FE) 7Yx.A 1"1‘, Ei.xj'A -CO- -cl- .CO. .c1.
Iy o vz A,A(k) r,3z-A I,VzA I,3z-A,—A(k)
L,WVzA r,3z-A T,A(k) r,—A(k)
C b b
A, A(k) A,—A(k)
b Héhenlinie
A A
o
0 0

The relation hgt(a) < rk(C') = max{hgt(b),rk(C)} (proved above) implies that
our “Hohenlinie” coincides with Gentzen’s.



Now the last part of Theorem 4, i.e. the relation O(red(d), ()) < O(d,(}), im-
mediately follows from [Ge38]. But we think it may be useful to include an
independent proof here.

Lemma 4 n <k = o(t(d)) < wy_n0(ts(d)).
Proof:

Abbreviation: o, (d) := o(¢,(d)).

1. d = Redpd;y and | := max{n,rk(C)}:

L1. 1 < k: on(d) = wi—n(oi(do)#oi(dr)) %{ Wi—n (Wk—10k(do) #wr—10k(d1)) <
Wi—n(wr—1(ox(do)#or(d1))) = Wr—nox(d).
1.2. n<k<l:

on(d) = wi—n(01(do)#0i1(d1)) = wWi—nwi—k(01(do)F#0i1(d1)) = wWi—n0k(d).
2. d = Ind%": analogous to 1.

IH
3. d =T1dy...dy,,—1 otherwise: 0,(d) = (Sup;,, on(d;)) +1 <
(SUP; < Wk—nOk(di)) + 1 < wi—pn ((SUPjcr, Ok (di)) + 1) = wi—n(0k(d)).
Lemma 5
deg(h) <n = o(Ynd(h)) < o(h).

Proof: -
1. h = Ehg with deg(ho) < n+1: o(tnd(h)) = o(Pnd(ho)) L§'4

TH

w10(¥nt19(ho)) < wio(ho) = o(h).

2. h = Rohohy with max{rk(C), deg(ho),deg(h1)} < n:
KQ)<n

o(thnd(h)) = o(bnRed(ho)d(h1)) =" o(Rctnd(ho)thnd(hn)) =
0(tnd(ho)) #o(nd(hn)) < o(ho)#to(hn) = o(h).

3. h = Ind%"ho: analogous to 2.
4. h =Thg...hn—1 otherwise: immediately by ITH.

Proof of O(red(d), ()) < O(d, (}): Let h := 1o(d)[0].
From deg(to(d)) = 0 it follows by Theorem 3 that deg(h) = 0. Hence

Ofred(d), ()) "2 o(Yored(d)) = o(thod(h)) < o(h) & o(w(d) 2 O, ().
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