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Introduction

In recent years a renewed interest in ordinal notations around the Bachmann-
Howard ordinal ¢, , (0) has evolved, amongst others caused by Gerhard Jéger’s
metapredicativity program. Therefore it seems worthwile to review some im-
portant results of this area and to present detailed and streamlined proofs for
them. The results in question are mainly comparisons of various functions
which in the past have been used for describing ordinals not much larger than
the Bachmann-Howard ordinal. We start with a treatment of the Bachmann

hierarchy ((ba)agrgﬂ
o+ 2 = Q (a < Tqyqp) which are defined by transfinite recursion on « re-

from [Ba50]. This hierarchy consists of normal functions

ferring to previously defined fundamental sequences (a[¢])e<r, (With 7, < Q).
The most important new concept in Bachmann’s approach is the systematic use
of ordinals o > €2 as indices for functions from €2 into 2. Bachmann describes
his approach as a generalization of a method introduced by Veblen in [Veb08];
according to him the initial segment (¢q)q<ne is just a modified presentation
of a system of normal functions defined by Veblen. But actually this connec-
tion is not so easy to see. At the end of §1 we will establish the connection
between (¢q)a<ne and Schiitte’s Klammersymbols [Sch54] for which the rela-
tion to [Veb08] is clear (cf. [Sch54, footnote 4]). In §2 we give an alternative
characterization of the Bachmann hierarchy which instead of fundamental se-
quences (a[¢]) ¢, Uses finite sets Koo C Q of coefficients (“Koeffizienten”). For
a < eq+1, Ka is almost identical to the set C(«) of constituents (i.e., ordinals
< Q which occur in the complete base Q Cantor normal form of «) in [Ge67],
where it was shown how to construct a recursive system of ordinal notations on

the basis of Bachmann’s functions.

In the 1960s, the Bachmann method for generating hierarchies of normal func-
tions on Q was extended by Pfeiffer [1964] and, much further, by Isles [1970].
These extensions were highly complex; especially the Isles approach was so com-
plicated that it was practically unusable for proof-theoretic applications. There-
fore Feferman, in unpublished work around 1970, proposed an entirely different
and much simpler method for generating hierarchies of normal functions 6,
(v € On) (see e.g. [Fef87]). Aczel (in [Acz??]) showed how the 6, (o < Tqy1)
correspond to Bachmann’s ¢,. (Independently, Weyhrauch [Wey76] established
the same results for o < eqy1.) In addition, Aczel generalized Feferman’s defi-
nition and conjectured that the generalized hierarchy (6,) matches up with the
Isles functions. This conjecture was proved by Bridge in [Bri72], [Bri75]. In §3 of
the present paper we show how Feferman’s functions 6, (o < I'gy1) can also be
defined by use of the Ka’s. Together with the content of §2 this leads to an easy



comparison of the hierarchies (gzba) which becomes par-

and (ea)a<Fsz+1 -~ -~
ticularly simple if one switches to the fixed-point-free versions: ¢, (8) = 0,(5)

for all @ < Tqq1, B < Q (Theorem 3.7).

a<loqq

In §84,5 we deal with the unary functions ¥ : eq41 — Q and ¢ : eqy1 — Q
which play an important role in [RW93]. We show that 01, ,(8) = 9(Qa + )
(for @ < eqy1, 8 < Q) and refine a result from [RW93] on the relationship
between ¢ and . In §6, largely following [Wey76], we show how the Bachmann
hierarchy below eqy1 can be defined by means of functionals of finite higher

types.

Preliminaries. The letters «, 8,7, 9,&, 7, ( always denote ordinals. On de-
notes the class of all ordinals and Lim the class of all limit ordinals. We are
working in ZFC. So, every ordinal « is identical to the set {£ € On : £ < a},
and we have B < a & f € a and < a & f C a For X C On we
define: X <(<)a & Vo € X(z<(<)a) and a < X & Iz € X(a < x),
e, X <ae X Caoaand a < X & (X < a). By H we denote the class
{y€0n:Va,B <y(la+8 <v)} = {w* : @ € On} of all additive principal num-
bers (Hauptzahlen), and by E the class {« € On : w®* = a} = {e, : @ € On}
of all epsilon-numbers. A normal function is a strictly increasing continuous
function F' : On — On. The normal functions ¢, : On — On (a € On)
are defined by: ¢o(8) := w?, and ¢, := ordering (or enumerating) function of
{B: V¢ < a(ee(B) = B)}, if @ > 0. The family (¢a)acon is called the Veblen
hierarchy over Aé.w®. An ordinal « is called strongly critical iff ¢, (0) = a.
The class of all strongly critical ordinals is denoted by SC, and its enumerating
function by Aa.T'y,. It is well-known that Aa.T',, is again a normal function, and

that I'q = Q, where € is the least regular ordinal > w.

61 Fundamental sequences and the Bachmann hierarchy

The following stems from Bachmann’s seminal paper [Ba50], but in some minor
details we deviate from that paper. We start by assigning to each limit number
a < I'gii a fundamental sequence (aff])e<r, with 7, < Q. The definition of
a€] is based on the normal form representation of « in terms of 0, +, -, F', where
(Fy)acon is the Veblen hierarchy over Az.Q%, ie., Fy(B) := QF, and F, :=
ordering function of {f : V& < a(Fe¢(B) = B)}, if a > 0. The relationship

between F,, and ¢, for a > 0 is given by
Q+1 if0<a<
Fo(8) =pa(a+ ) with a:= ¢ 1 ifa=0
0 ifQ<a
From this it follows that I'q41 is the least fixed point of Aa.F,(0).

For completeness note, that Fy(8) = ¢o(Q208).



Abbreviations.
1. A:=Tqq; =min{a: F,(0) = a}.
2. aly & HK(y=af)

3. a=xp7+ 0% o a=7+0&0<n< Q& Q.
4. y=xr Fo(B) & o, <v=F.(8).

Propositions.

(a) For each 0 < § < A there are unique v, 3,7 such that § =xg v + Q2°7.
(b) For each ¢ € ran(Fp) N A there are unique «, 8 such that § =xr Fo(B).
() d <A = (§=nr Fu(B) & 8 <d=F,(3)).

Definition of a fundamental sequence (\[{])¢<-, for each limit number
A<A

1. A =nr 7+ Q% & ran(F):

1.1. n € Lim: 7y :=n and \[¢] := v + Q5. (14€).

1.2. 7 =no+1: 7\ := 7qe and A[¢] := v + QPny + QP[¢].

2. A =NF Fa(ﬁ):

2.1. B € Lim: 7y := 75 and \¢] := F,(B[£])

0 ifp=0

Fo(Bo)+1 if B = Bo+1

2.2.0. a = 0: Then 8 = fBo+1. 7y := Q and \[¢] := Q- (1+€).

2.2. B & Lim: Let A~ := {

2.2.1. a = qp+1: 7y :=w and A[n] := FO(LLH)()\_).
222, a € Lim: 7y 1= 7o and A[{] := Fe(A7).

3. 7a == w and A[0] := 1, A[n+1] := Fp ) (0).
Definition.

For each limit A < A we set A\[1T)] := A.
Further 7o := 0, 0[¢] := 0 and 7441 := 1, (a+1)[§] := a.

Lemma 1.1.
A= Fo(B) < A& BeLlim&l<{<ts = M| =nr Fu(B[€]).
Proof: Cf. Appendix.

Lemma 1.2. Let A € Lim N (A+1).

(a) E<n <7 = A[E] <Al

(b) A = supe,, Al¢].

() me Limn (ra+1) = ] € Lim & 7yp = 1 & V& < n(A[n][€] = A[€]).

(d) £ <ma & A[g] <6 < A[E+1] = N[¢] < 4[1].

The proof of (a),(b),(c) is left to the reader. The proof of (d) will be given in
the Appendix.



We now introduce a binary relation < which corresponds to Bachmann’s —
(cf. [Bab50] p.123,130) and is essential for proving the basic properties of the
Bachmann hierarchy. The advantage of < over — is that its definition does not

refer to the functions ¢, but only to the fundamental sequences (a[¢])e<r, -

Definition of <!, <« and <
w i1, =0
To oOtherwise’

L B<la & a<A&Be{aff]: &< 12}, where 72 ::{
2. < (<) is the transitive (transitive and reflexive) closure of <!.

Lemma 1.3. Let a < A.

(a) o € Lim & €+1 <74 = a[f]+]1 < af¢+1].

(b)ae Lim&&<n< (ra+1)NQ = af€] < aln].

()f<a= +lkKa.

n<w&n<a = n<La.

Proof :

(a) By induction on ¢ we prove: af¢] < § < afé+1] = alé] +1 K 6.

1. § = 6o+1 with a[€] < o: Then either of€]+1 = 6 or af€]+1 < §o < 6.
2. 6 € Lim:
By Lemma 1.2a,d, al¢] < §[2] < a¢+1]. Hence af¢]+1 < 6[2] < 4.
(b) Induction on 7:
Lon =m0t < mo: ale] £ al] <" alpo] +1 £ aly].
2. n € Lim: Then 7., = 1 and a[¢] = an][¢] <* afn).
(c) We may assume 8 <! a, i.e. B = af¢] with & < 72.
Then either 75 =1 & f+1=a or 72 € Lim & af¢] +1 % alé+1] <t a.
(d) Induction on n:
1. Using Lemma 1.2a we get 0 < « by transfinite induction on a.
2. n+l<a = n<o¢&nga = n<Ka (:C>) n+l < a.
Definition.
An Q-normal function is a strictly increasing continuous function f : Q — Q.
A set M C Qis Q-club (closed and unbounded in 1) iff
VX CM(X #0 & sup(X) < Q= sup(X) € M) and Vo < Q38 € M(a < B).

It is well-known that M C Q is Q-club if, and only if, M is the range of some

Q-normal function. Hence the ordering function of any 2-club set is Q2-normal.

The collection of Q-club sets has the following closure properties:

1. If f is Q-normal then {8 € Q: f(8) = B} is Q-club.

2. If (Mg)e<a is a sequence of -club sets with 0 < a < € then (., M¢ is
Q-club.

3. If (M¢)e<q is a sequence of €2-club sets then also {a € Q:a € (., M} is
Q-club.



Drawing upon 1.-3. and upon the above assignment of fundamental sequences

we now define Bachmann’s hierarchy of Q-normal functions ¢, (o < A).

Definition. ¢, : Q — € is the ordering function of the Q-club set R,,

where R, is defined by recursion on « as follows:

Ry:=HnNAQ,
Rot1:={B€Q:a(B) =B},

ﬂ£<_’_ Rog if 7, € QN Lim
R, = °

{BeQNLim:pe ﬂ5<5Ra[§]} if 7, =Q

Notes.

1. In Lemma 1.5d we will show that R, = {8 € 2 : ¢4 (0) = B} if 7o, = Q.

2. As mentioned above, our definition of the Bachmann hierarchy (and of F,)
diverges in some minor points from [Ba50]. As a consequence of this, Bach-
mann’s ordinals H(1) = ¢r,1)+1(1) and ¢r,, ,,(1)(1) are ¢r,(0)(0) and ¢A(0),
respectively, in the present paper. For more details cf. [Acz72, Note on p.35].

Lemma 1.4.

(a) ap K a = Ry C Ry,-

(b) ap K @ = ¢q,(0) < 9o (0).

(c)n<anNwé& B eRy = wn<pe Lim.

Proof :

(a) It suffices to prove R, C Ry, for ag <! a.

1. o = ap+1: Then R, ={8 € Q: ¢, (8) = 8} C Raq,.

2. 7o € QN Lim: Then ag € {af¢] : € < 7o} and thus Ro = (e, Rajg € Ray-
3. Ta =2 fER,=>w< B E ﬂ5<ﬂRa[g] = fp € ﬂ5<wRa[g] C R,,, since
a0 € {ale] : € < w}.

(b) L a=ao+l: §:= ¢a(0) € Ra = $ae(0) < ¢ay(5) = B

2. apt+l < a: oy K « 1':3>C apt+l € o (:a>) Ry C Ryy+1 =

P00 (0) € Gy 11(0) < 6a(0).

(¢) We have 1 < ¢(0) < ¢1(0) < ... and ¢x+1(0) € Lim. Hence wn < ¢p41(0).
Further: n < a = n+1 <L« (:a>) Ry CRut1 C{B: dpnt1(0) < 5 € Lim}.

Lemma 1.5. For each a € Lim N (A+1) the following holds:
(a) £ <n < (Ta+1)NQ = Ry C Raje] & dafe)(0) < dapn(0).
b) £ < (Ta+1)NQ = & < ga(0).

c) A€ LimN (1o+1)NQ = Ry = ﬂg<A R

d) 7o =Q = Ro={B € Q:¢u(0) =5}

(
(
(
() n<w = @am)(0) < Pal(0).



Proof :
(a) follows from Lemmata 1.3b, 1.4a,b.

(b) follows from (a).

(c) By Lemma 1.2c we have 7,3 = A and a[)][{] = a[¢]. Hence, by definition,
Rap) = MNecr Rafg-

(d) R = {B€QNLim: B € Neey Ratg} LB E€Q: BE Rupy} Y

= {8 € Q: dajp(0) = A}

(e) follows from Lemma 1.4b.

Schiitte’s Klammersymbols

In [Sch54], building on [Veb08], Schiitte introduced a system of ordinal no-
tations based on so-called ‘Klammersymbols’. A Klammersymbol is a matrix
(300'.'_'.5& With 0 < ag < a1 < ... < an < Q and &, ...,&, < Q. Two
Klammersymbols are defined to be equal if they are identical after deleting

all columns of the form (OE)) This means that one can identify the Klam-

mersymbol (go -+ &n ) with the ordinal Q°&, + ... + Q%&. Under this
0 ... Qp
identification the <-relation between ordinals induces a well-ordering < on
the Klammersymbols. To each Q-normal function f and each Klammersym-

bol A an ordinal fA < § is assigned by =<-recursion: f(g) = f(§), and for

& > 0, the function Az.f (g SRR ) is the ordering function of the set
A1 ... Op

{B€Q: V<V < al[f( B & .bn) B]}. In this subsection we
Qo (1 g ... Qp
will locate the values ¢gA within the Bachmann hierarchy, i.e., we will prove

B & ... & B
%( 0 1+ag... 1+an> = daeng,+. 4906 (6)-

Lemma 1.6. Assume o =np 7 + Q& with 6, < Q.

(@) £<& = 7+ QE+1ILy+OM(EH]) Lo

(D) <& &g <6 = 7+ QEF Q0T <« .

(c) BE Ra & VE<&i[dypqne(B) =B & Voo < 61(dy1ammerasns(0) =5)].
Proof :

(a) Let & := v+ QO+ = —14 (£ +1), and n; := —1 +&;. Then a[n] =
Y+ (EFT), ] = 7+ Q%€ = a, and n <y < 74, Hence v+Q% (64+1) < a
by Lemma 1.3b. For the first inequality one needs the following auxiliary lemma
(to be proved by induction on 6;): Q%|y; = 41 +1 <K 1 + Q%

(b) 7 + Q¢ + Qoot! 2 v+ QO+ Q% =+ QO (E41) % v+ Q¢ =a.
(¥) Let 7y := v+ Q% & We have §; = § +n with (6y < § € Lim or § = §g + 1).

Further, v, + Q%+ <« v + Q0 <y + Q0 <L <y + QOF7,



(¢) We have to show:

BERy & VE<&[BER, Lgser1 &V <01(B € Rypgserqiotr)]-

“=7: Cf. Lemma 1.4a and (a), (b).

“«<=": We distinguish the following cases:

1. & €e Lim: B e ﬂ§<£1 R 0o (11¢) = Ra-

2. & = &+1:

2.1. 61 =0: Then B € Ry gs1¢y41 = Ra-

2.2. 6, = o+1: B € Rypqsrgyrapott = Ra.

2.3. 81 € Lim: Since 01 < Q, we then have 7, = 0; and «[¢] = 74+ Q€+ QIHE,
From V€ < 01(8 € Ry paogorasn) weget 5 € MNeor, Rajern < Ne<r, Batg) =
R,.

Definition. Due to the fact that every ordinal can be uniquely represented
in the form Qa + § with 8 < Q it is possible to code the binary function
(o, B) = da(B) (a <A, B < Q) into a unary one by

¢(Qa+B) :=¢a(B) (a <A, B<Q).
Using ¢(-), the values of the Klammersymbols can be presented in a particularly
nice way (cf. Theorem 1.8a below).
Lemma 1.7. Assume & =nf 1 + Q& with 0 < a3 < Q.
(a) Az.@{y1 + Q¢ + ) enumerates
Q:={B€Q:V{ <&V < an[p{n + QM€+ Q% B) = B}
(b) Tf ar = g+ 1 then Q = {8 € Q: VE < &1y + Q€ + Q%0 3) = ]}
Proof :
There are §; and v such that a; = 1+ §; and v, = Qy. Let a := v 4 Q91&,.

From (the proof of) Lemma 1.6¢c we get
Ry ={B€Q:VE< &[Ny + Qe+ B) = &
Voo < d1(¢(Qy + Qg+ QI 8) = B) ]}
={B€Q:V{ <&Vao < anfp(m + QM+ Q% B) = B}, and
R = {8 € Q: ¥ < &1l + Q€ + Q2 B) = B}, if a1 = ap+1.
On the other side, Ax.¢(y1 + Q21 & + x) = Az.¢p(Qa + x) enumerates R,,.

Theorem 1.8. For ap < ... < oy, < 2 and &g, ..., &, < Q:

0 14aqg...1+a,
Proof :

(a) W.lo.g. ap =0.

(b) ¢o<ﬁ S0 .- o ):¢Qa"§n+u~+ﬂaofo(6)'



Lon=0: ¢(Q%) = ¢(Q0+ &) = ¢o(éo) = o (%O)

2. n>0: Wlo.g. & > 0.

By Lemma 1.7a, Az.¢(Q&, + ... + Q*1& + z) is the ordering function of

{B €N VE<&Vag < ar[p(Q¥E, + ...+ QU E 4 Q0 F) = S]]

Combining this with the above given definition of ¢gA (for Klammersymbols A)
the assertion is established by induction on 297§, 4 ... 4+ Q2&.

ﬂ gO fn @ 1+a, 1+ag 0 _
(b) ¢0<0 1+ao...1+an) = p(QiTang, + 4 QI +093) =
= ¢(Q(QE, + ...+ Q) + 6).

Lemma 1.9. For &,...,&, < Qlet p"THE,, ..., &) == (7, + ...+ Q0%).

Then the following holds:

(i) ¢"*1(0,...,0,8) = ¢o(B).

(i) If0 <k <nand & > 0, then Ax.p" (&, ..., &, 0,...,0,2) enumerates
{B€Q:VE <&@ (&ns o, 41,6, 8,0,...,0) = B)}.

Proof of (ii):

By definition, "t (&,, ..., &, 0,2) = ¢y + Q¥ 4+ Q02) with

o= QR QR

Therefore by Lemma 1.7a,b, Az.¢"t1(&,, ..., &, 0, ) enumerates

{B € Q:VE <&lo(y + Q¢ +QF18) = B]}.

Note.
©"*1 (n > 1) is known as the n+1-ary Veblen function.
Usually it is defined by (i), (ii).

§2 Characterization of ¢, via K«

In [Ge67] the Bachmann hierarchy (¢4) restricted to a < eq41 is studied, and
thereby, as a technical tool, the sets C(a) and ND(«a) (of constituents and
nondistinguished constituents of «) are defined. From Lemmata 3.1, 3.2 and
Theorems 3.1, 3.3 of this paper one can derive the following interesting result
which provides an alternative definition of the Bachmann hierarchy not referring

to fundamental sequences:
(G) Ro={y€Ry:Cla) <y& ND(a) <7y &

VE < a(C(§) <v=¢:c(v) =)} (@ <eap).
In the following we will directly prove an analogue of (G), namely Theorem 2.4,

and then exemplarily derive Gerber’s Theorems 4.1, 4.3 (our 2.7, 2.8) from that.



Definition of Ko for o < A
0 if o € {0,902}
1. Ka::{{a} ifae LimNQ
Kayg ifa=ap+l <
2. Q< a=xp7y+ 9 &ran(Fy): Ka:= KyUKBUKnD.

0 if € =0

3. A< a=nr Fe(n) < At Ka:=K'¢ U Kn with K'¢ = {{w}UKf iFE>0

4. KA = {w}.

Remark. K(ap+1) = Kap.

Lemma 2.1. A€ Lim&1<{<7\, = K\¢ =K\1JUKE¢.

Proof :

L. A =nxr 7+ Q% & ran(F):

1.1. n € Lim: 7y = n and \[¢] = v + QP (1+€).

E<n = KM{|=KyUKBUKE.

1.2. 7 =no+1: 7\ = s and A[¢] = v + Q%o + QF€].

KA[E] = Ky U K(Q0) UK(Q°[€]) = Ky U K (@7n0) U K(Q[1]) U KE.

2. X =nr F.(B):

2.1. B € Lim: Then by Lemma 1.1, A\[{] =xr Fo(5[¢]) and thus KA[§] =
K'aUKQBE) E K'aUKB[1]UKE = KA[1]UKE.

K'aUKpB if 8= Bo+1& By < Fo(Bo)
KpB otherwise '

Hence KA = K'aUKfB =K aUKM\".

2.2. B ¢ Lim: Then KA~ = {

2.2.0. @ =0: Then A = QPoF! 7y = Q and \[¢] = QP (14€).

Hence KA[¢] = KBy U K&.

22.1. a = ap+l: Then 7y = w and, for £ < w, KA¢] = K(FS™ () =
K'aUKM and K¢ = 0.

Further KA\[w] = KA=K'aUKA = K'aUKX UKuw.

2.2.2. a € Lim: For & < 1), = 7o, We have

K€ = KFag(A) = Kalé] U {w} UKA™ 2 Ka[1] U {w} UKA~ UKE.
Further KA = Ko U {w} UKA™ 2 Kafl] U {w} UK\~ U K7,.

3. A=A: For 1 <¢ <w we have KA[¢] = {w}, whence KA[¢] = KA[1]U K¢.

Lemma 2.2.

(a) a € Lim & aff] <6 < al¢+1] = Kalf] C K.
M) o<a& Kéi<&eLimnNr, = 6 <alf.
Proof :

(a) Induction on ¢:

1. § = a[¢]: trivial.



2. 0 =09 + 1 with a[¢] < dp: Then Ka[¢] g Koy = K¢.

3. al§] < 0 € Lim: Then, by L.1.2d, a[¢] < 4[1]. Hence Ka[¢] g Ko[1] 2§1 K.
(b) Assume «[0] < §. Then by Lemma 1.2a,b,c there exists ¢ < 7, such that
al¢] <6 < al[¢+1]. By (a) and Lemma 2.1 we get K( C Ka[{] C Ké < ¢ €
Lim. Hence 6 < a[C+1] < af].

Definition.

k() := max(Ka U {0}). kT (a):=max{k(af[l])+1,k(a)}.

Lemma 2.3.

(a) k(a) < kT (a) < k(a)+1;

(b) kT (a+1) = k(a) + 1;

(c) k™ (a) < ¢a(0).

Proof :

(a) By Lemma 2.1, k(o) = max{k(a[1]),k(74)} and thus
kT (o) = max{k(a[l]) + 1,k(7a)} (%).

(b) kT (a+1) = max{k(a)+1,k(a+1)} = k(a)+1.

(¢) Induction on «:

L. kT (0) =1 < ¢0(0).

2. a > 0: By IH and Lemma 1.5¢, k(a[1]) < ¢o117(0) < ¢4(0). By Lemma 1.5b,

k() < $(0). Hence k*(a) & max{k(a[1]) + 1, k(ra)} < ¢a(0).

Theorem 2.4. R, ={B€ Ry:k"(a) <B&VE< a(KE< B = ¢e(B) =B)}
Proof :

“C”: Assume 3 € R,. By Lemmata 1.4a, 2.3a,c we get k¥ (a) < 8 € Ry. The
second part is proved by induction on a. So let § < a & Kd < 8 € R,.

1. a=0+1: B € Rsyq implies ¢5(8) = .

2. a=00+1& 0 < ap: Fromd§ < ap & Ké < 8 € Ry, C R,, we obtain
¢s(B) = B by IH.

3. a € Lim& 7o < Then f € N, Rajg and § <o

From this we get 3¢ < 7,(8 € Rqj¢) & 0 < a[€]) and then ¢5(5) = 3 by TH.

4. 7 = : By Lemmata 1.4c, 1.5¢ we get 3 € Lim N Ry 3. From § < o and
Ko < p e LimnN7, we get 0 < a[f] by Lemma 2.2b. Now we have 3 € R,
and § < a[f] < o & K§ < 8 which by IH yields ¢5(8) = 5.

“2”: Assume (1) k*(a) < B € Ry, and (2) V6 < a(KS§ < 3= B € Rsy1).
From k™ (a) < 8 we get (3) Ka[l] < B.

1. o = 0: trivial.
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2. a=qp+1:

From ap < a & Kag = Ka[l] < 8 by (2) we obtain 8 € Ryy4+1 = Ra.

3. a € Lim & 74 < 2 By Lemma 2.1 and (1) we have 7, < k(a) < . From
0 < &< 74 <0 by Lemma 2.1 and (3) we conclude o[f] < a & Kal§] C
Ka[l]U K¢ < 3, and then by (2), 8 € Rqj¢+1. Hence 3 € ﬂ£<m Ryjg = Ra.

4. 75, =Q: From 0 < a & KO =0 < 8 by (2) we get 8 € Ry, thence 3 € Lim.
Similarly as above we obtain 8 € ﬂ§<5 Rq¢)- Hence 3 € R,.

The fixed-point-free functions ¢,

Definition.

aa(ﬁ) = ¢a(6 + 2016) where

0 otherwise

R, :=ran(¢,)
Notation. From now on we mostly write ¢paf3, paf for ¢ (3), ¢, (5)
Theorem 2.5.

(a) ¢,, is order preserving.

(b) Ry = {¢aB : KaU{B} < ¢paB} ={v € Ry \ Ray1: Ka <~}

(c) paf = min{y € R, : Vn < B(pan < v) & Ka U {B} <~}

Proof :

(a) If B1 < B2 then B1 + iafy < Ba or B + iafy = Ba.

In the latter case taBy = tafBy = 1.

(b) The first equation follows immediately from the definition, since k(a) < ¢a0
and n+1 < ¢a(n+1) for all n < Q. The second equation follows from the first,
since pafS € Rot1 < B = pap.

(c) Let X := {y € R, : V¥ < B(¢pan < ) & Ka U {B} < ~}. By (a) and (b)
we have ¢ga € X. It remains to prove Vy € X(¢af < v). So let v € X, i.e.
v = ¢ad with Vn < B(da(n + tan) < ¢pad) & KaU {8} < ¢pad ().

To prove: ¢af < pad, ie. B+ iaf < 4.

From Vn < B(¢a(n + tan) < ¢ad) we get 5 < §. Therefore if § < § or iaf = 0,
we are done.

Assume now =6 & iaf = 1. Then § = 8 = By + n with ¢pafy € Ka U {B}.

1. 0 < n: Then 5 := Bo+(n—1) < f = n+1 and therefore § = n+ian (2) 0=p.
Contradiction.

2. n.=0: Then ¢af € KaU {5} (2 pad = paf. Contradiction.
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Corollary 2.6.

(a) § <a& KEU{n} < gap = ¢&n < gap.

(b) KaU {8} < das.

Proof :

(8) € <a & KEU{n} <daf '€ Ry = d6n <" d6das 2 Gap.

(b) follows immediately from Theorem 2.5c.

Lemma 2.7. Let v; = ¢a;3; (i = 1,2).
(a) 71 <2 if, and only if, one of the following holds:
(i) a1 <as & Kag U{B1} < 72;

(i) a1 = a2 & f1 < Bo;

(i) ag < a1 &v1 < KasU{B2}.
(b) m=m = a1 =az & B = Po.
Proof :
(a) Let Q(au, b1, a2, B2) := (1) V (i) V (4i1).
To prove: v1 < v2 < Q(aq, f1, s, B2).
From Theorem 2.5a and Corollary 2.6 we get the implications
(1) Q(a1,B1,02,82) = M <72 and (2) Qag, f2,a1,B1) = 72 <M.
Obviously, (3) ~Q(a1, B1, a2, B2) = Q(az, B2, a1,82) V (a1 = az & B1 = Ba).
From (2) and (3) we get: —Q(a1, 1, a2,82) = —(71 < 72).
(b) Proof by contradiction. Assume y1 = v2 & a1 < as. Then by Lemma 2.6b
we have a1 < ag & Koy U{B1} < v1 = 2. Hence 71 < 72 by Lemma 2.6a.

Lemma 2.8. For each v € Ry N ¢ (0) there exists o < A such that v € R,.

Proof :

Assume w < 7. Then KA < v € Rp. Let ay be the least ordinal such that
Kay < v & Ras,. Then by Theorem 2.4 there exists @ < a; such that Ka <
v & Ray1. By minimality of a; we get v € R,. Hence v € R, by 2.5b.

The following will prove useful in §4.

Theorem 2.9. Let ¢(Qa+3) := daB (a < A, B < Q). Then for all a < A+,
dla) =min{y € Ry : V€ < a(KE <y = ¢(&) <) & Ka < v}
Proof :
#(Qa + ) = $af *2° min{y € Ry : Vi < B(dan <) & KaU{B} <7} &
min{y € Ry : V¢ < aVn(KEU{n} <y = ¢én <) &
vy < Ban < ) & Kau{g} <7} @

min{y € Ry : V¢ < aVn(KEUKn <y = ¢(Ql+n) <) &

Vn < B(KaUKn<y=¢{Qa+n) <v)& KaUKB <y} =
min{y € Ry : V¢ < Qa+B(K¢ < v = ¢{¢) <) & K(Qa+ B) < v}

(x) For & = 8 = 0 the equation is trivial. Otherwise it follows from the fact

that for 1 <y € Ry we have Vnn < Q(Kn <y < n <7).
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§3 Comparison of ¢, ¢, with 0,0,

In this section we will compare the Bachmann functions ¢, with Feferman’s
functions 6,. We will prove that ¢paf = fa(a + §) for all a < A, § < Q,
where @ := min{n : k™ (a) < fan}. This result is already stated in [Acz??,
Theorem 3] ! and, for a < eq41, proved in [Wey76].

Before we can turn to the proper subject of this section we have to do some
elementary ordinal arithmetic.
0 if « € {0,Q}
Definition FE,(a)={ {a} ifa e E\ {Q}
Uicn Balas) ify=w*#. . #w ¢E
Definition. A set C C On is nice iff
0€ C &VnVay,...,a,(w¥#...#w* € C < {ag,...,a,} CC).

Lemma 3.1.

(a) Eq(Q+ a) = Eo(Q-a) = Eq(Q%) = Eq(a).

(b) @ =xr v+ Q0 = Eo(a) = Ea(y) U Ea(B) U Ea(n).
(c) If C is nice and Q2 € C then Va(a € C < Eq(a) C O).
(d)a<eq1 &I €E = (Ey(a) <d & Ka <9).
Proof :

(a) Let a =w* 4+ ...+ w* with oy > ... > .

| Eq(e) if Q< ap
L EQ(Q_FQ) o {EQ(Q)UEQ(Q) if Q > (&%)
1.

2. Eq(Qa) = Bo(w™ 4+ ...+ w? ) = U, Ba(Q + i) = Ui, Pal) =
Eq(a).

3. Fo(Q9) = Eo(w?®) = Eo(Q- a) £ Eq(a).

(b) Let n = w™ 4 ...+ w™ with ng > ... > 0.

Then Q81 = w8 . (W0 4 ... 4 W) = B0 4 4 W +mm

Hence En(ﬂﬁn) = Uigm Eq(QB +m0) = Uigm(En(B) U Eq(m:)) =

= Eo(B) UU, < Ea(mi) = Ea(B) U Eq(n).

(¢) 1. «€{0,2}: Eq(a)=0C C and a € C.

2. a € E: Eg(a) ={a}.

Ja=w# . .. HFw €E: Ey(a) = Eq(ap)U...U Eq(ay,) and therefore:
Eola) CC & Vi <n(Bo(e) CC) & Vi<n(a;e0) “B*° aec.

(d) 1. a €{0,92}: Eq(a) =0= Ka.

2. a< Eq(a)<dea<ide Ka<é.

3. 0 < a=wp 7+ P Egla) < 8 € Boly) UE(B) U Ealn) < 6 &
KyUKBUKn<§& Ka <d.

Actually Aczel’s Theorem 3 looks somewhat different, but it implies the above
formulated result. A proof of Theorem 3 can be extracted from the proof of
Theorem 3.5 in [Bri75].
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Basic properties of the functions 6,

The functions 6, : On — On and sets C(a, ) C On are defined simultaneously
by recursion on « (cf. [Bri75, p.174], [Bu75, p.6], [Sch77, p.225]). Instead of
giving this definition we present a list of basic properties which are sufficient for

proving Theorems 3.6, 3.7 below. — Notation: a8 := 6,(5).

(01) 0, : On — On is a normal function and In, := ran(6,)
(02) (i) Ing=H,

(i) Ing41 ={B €Iny : a € C(e, B) = B = baf},

(iii) Ing = e, Ing if @ € Lim.
(03) 0af) = Q.

(04) In, NQ={8€Q:C(a, 5)NQ C 3}
(05) {0} U B C C(a, B), and if a > 0 then C(«, 8) is nice and Q € C(«, ).
(06) £ <a<A&Q<n<bn = (§n€C(e,f) & 08 e Cla,B)).

Remark. (04)-(06) are only needed for the proof of Lemma 3.3c (via 3.2 and
3.3a,b). Having established 3.3c we will make use only of (61)-(03) with (62i1)
replaced by 3.3c.

Lemma 3.2.

(a) a < a(Q+1) & Q< B = (B € Ingt1 < B =0apb).

b)0<a<A = Fu,f)=0a(Q+1+p5).

Proof :

(a) “<”: immediate consequence of (62ii) (and (61)).

“=7: Assume f € In, and (a € C(a, ) = B = 6af). For = Q the claim
follows directly from (63). Otherwise:

000 P Q< Bem, = 0@+ <B=a< 8B acCla,f) = 5 =bas.
(b) Let J :={B: Q < 8}. We prove ran(F,) = In, N J which is equivalent to
the claim VS(Fa(8) = 0a(Q + 1+ 3)).

The proof proceeds by induction on «.

L.a=1lran(Fy)={8: =0} ={8: Q</3—wﬂ} InlﬁJ

2. a=ap+1 with 1 < ag: ran(F,) ={8: 8 = Fao( )} E
={B:8=000(Q+1+5)} ={8: Q< B = Hozoﬂ} = Ina NnJ.

(¥) a0 < A = ap < Fuy (0) B0, (241) B VS > Q(8 = a0 & 8 € Iny).

(92111)

3. a € Lim: ran(F,) = ﬂ§<aran(F5) ﬂ§<a1ngﬁJ In, N J.

Lemma 3.3. For a < A we have:

(a) § <adn<F(n) <A = (§nella,f) & Fe(n) € Cla, B)).
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(b) Vo < a(d € Cla, B) & Ko C C(o, B)).

(¢) Ingt1 ={f€ln, : Ka < =0 =0ap}

Proof :

(a) For £ = 0 the claim follows from Lemma 3.1a, ¢ and (65).
Assume now £ > 0 and let y := F¢(n).

Then &,m1 < v = 0&n with n; = Q+1+n.

By (65) and Lemma 3.1a,c we have (n € C(a,f) & m € C(a, 5)).
Hence: &,ne Cla,B) < &,m € C(o, B) @ v e C(e, B).

(b) Induction on §: Assume § < a, and let C' := C(«, ).

1. 6€{0,Q}: 6 € C & Ké=1.

2. §=06+1: 6 € C & d € C,and K§ = Kdy.

3.0 € LimnNnQ: K§={d}.

4.5 =xp v+ QP ¢ran(Fy): 6 € C & E,(5) c ¢ %

& Eo(7)UEL(B)UE,(n) C C %5 y,8,n e C & KyUKBUKy C C « K& C C.
5. 6= Fén: 6cCYenecBrkeuknccY Ksco.

(x) w=1001 € C.

(c) follows from (02i7), (64), (b) and the fact that Ka C .

Theorem 3.4. a <A = In, ={feH:VE<a(KE< B = 066 =0)}.

Proof by induction on a:

1. @ =0: By (02i) we have Ing = H.

2. a=ao+l: Ing 2 {B €Tng, : Kag < 8= B = OB} =

={feH:VE<aKE<B=p0=00) & (Kag < = B ="0aP)}.
3. «a € Lim: Then, by (02ii), In, = (e, Ine and the assertion follows
immediately from the IH.

Definition. @ := min{n : k™ (a) < fan}.
Lemma 3.5. a<A& Ka<6af = (Oala+ ) =0< 0af =p).
Proof :

“=": This follows from 8 < faf < fa(a + B).
“=": If Ka < 8 = 60aB then @ < kT (a) < k(a)+1 < 3 € Hand thus a+ 8 = 3.

Theorem 3.6. If « <A, then R, = {y€ Q:k"(a) <~ eln,},
and thus V8 < Q(¢af = fa(a + B)).
Proof by induction on «a:
For 8 < Q we have:

24 |+ TH+3.5
BER, & kT(a) < BEH&V<a(KE<B=9f=p) &
kT (o) <BEH&VE<a(KE<B=08=5) & kT(a) < B € In,.
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The functions 6,

In [Bu75] the fixed-point-free functions , are introduced, which are more suit-
able for proof-theoretic applications than the ,’s. By definition, 6, is the
<-isomorphism from {n € On : Su(a) < 1} onto In, where In, :=In, \ Ingi1,
p(a) == min{n : fan € In,}, Sp(a) ;= min{€: pla) < Qeq1}

As we will show in a moment, Su(a) =0 for all & < A, and therefore, if « < A
then 0, is the ordering function of In,. On the other side, by Theorem 2.5, ¢,,
is the ordering function of R, = {7 € Ry \ Rat1 : Ka < 7}. Using Theorem

3.6 one easily sees that R, = In, N €. So we arrive at the following theorem.

Theorem 3.7. a3 = fap for all a < A, 3 < Q.

Proof :

I. From o < A by Lemma 3.3c and (03) we obtain V3 € Q(k(a) < 8 =
fa(B+1) € In, N Q). Hence Su(a) = 0, and In, NQ is unbounded in Q. This
implies that 0, [ is the ordering function of In, N €.

II. As mentioned above, ¢, is the ordering function of R,. So it remains to
prove that R, = In, N Q. First note that

(1) kT(a) < k(a)+1 =kT(a+1) and (2) Vy € Iny(k(a) <) (by 3.3c).

Then for v < Q we get: v € Ry < k(o) <y € Ry & v & Rot1 3 &(1

k(o) < v €Ing & (k(a) <vy=~v ¢ Ingy1) @ v € In,.

64 The unary functions ¥* and y*

As we have seen above, 0, is the ordering function of In, = In, \ Ingy (if
a < A). From this together with (02i7) and (64) one easily derives the following

equation
(1) 80 =min{B: C(a,f)NQC B & a € C(a, f)}
which motivates the definition of Jor in [RW93]:
(2) Ya:=min{f:C(a,f)NQC L& acCla, )} (a<eqqr)
where C(a, ) is the closure of {0,Q2} U 3 under +, Aé.wé and 9]a.
On the other side, by Theorems 3.7, 2.9 we have:
(3) 0a0 = ¢(Qa) =min{B € H: V¢ < Qa(KE < B = ¢(&) < B) & Ka < B}.

In the light of (1)-(3) the following theorem suggests itself.

Theorem 4.1.
a<egrr = Ya=min{feE:V{ < a(K{<B=0<p)&Ka< F}.
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Proof :

I. From [RW93,1.1 and 1.2(1)-(4)] we obtain

da € E&VE < a(Eq(§) < da = 9€ < Ya) & Eq(a) < da.

IT. Assume 8 € E & VE < a(Eq(§) < 8= 0¢€ < B) & Eq(a) < 6.

We will prove that Ja < 5.

For this let Q := {y : Eq(y) C 8}. Since 8 € E, we have Q C 3. Moreover,
as one easily sees, {0,Q} C Q and Q is closed under +, A\é.w® and 9¥]a. Hence
C’(a,ﬁ) C @ and thus C(o, /) NQ C QN QO C B. It remains to show that
o € C(a, B). But this follows immediately from Eq(a) € 8 € C(a,3) and
[RW93, 1.2(4)].

From I. and II. we get

Ya=min{f € E: V¢ < a(Ey(&) < B = Y€ < B) & Eq(a) < B},

which together with Lemma 3.1d yields the claim.

Relativization

Comparing the recursion equations for Ja and ¢{(a) in Theorems 4.1, 2.9 one
notices that these equations are almost identical. The only difference is that in
the equation for Yo there appears E where in the equation for ¢(a) we have R
(i.e. H). In order to establish the exact relationship between ¥ and ¢ we go
back to the definition of the Bachmann hierarchy in §1 and replace the initial
clause “Ry := H N Q” of this definition by “Ry := X N Q" where here and in
the sequel X always denotes a subclass of {1} U Lim such that XN Q is Q-club.
Then the whole of §§1,2 remains valid as it stands. To make the dependency on

X visible we write RX, R%, ¢%, o=, 6™ (a), ¢ (a) instead of Ry, Ras, .. ..

Remark.

Theorems 4.1, 2.9 yield 9a = ¢"(a) and 9(Qa+3) = ¢=(8) (a < eqr1, B < Q)
The previous explanations motivate the following definition.
Definition.

Pa=min{B € X: V< a(KE< B= 026 < B) & Ka < B} (a<A).

Theorem 4.1 now reads: da = ¥« for a < eqy;.

Further, by Theorem 2.9 we have

(90) ¥*(Qa + B) = G,(B), if B < Q.

Therefore, properties of ¥* can be proved by deriving them from corresponding
properties of ¢. But for various reasons it is also advisable to work directly from
the above definition.

Let us first mention that for 8 < € the set {{ < o : K& < 8} is countable too,

and therefore 9%a < Q. Moreover, directly from the definition of 9% we obtain:
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(W) Ka < 9*a eX,

(92) ap < a & Kag < 9*a = 9oy < 9*a,

(93) BeX& Ka< B <9 a = I < a(KE< B <95,

and then

(94) P*ap = a; = ag = a; [from (91),(92)],

(95) BeEX& B <IN = FE < A(B =09%¢).

Proof of (9¥5): If B < w then B € {90,91}. Otherwise we have KA < 8 < 9¥A,

and the assertion follows by transfinite induction from (93).

Note on Klammersymbols. As we mentioned above, §§1,2 remain valid

if ¢ is replaced by ¢*. So by Theorem 1.8, for A = (20 5{; and o =
0 ... Qp

Qe + ... 4 Q& we have ¢fA = ¢*(a) from which one easily derives
QTOXA = ¢*(a) 2, whence (by Theorem 2.9) ¢7§A = ¥*a. Via Theorem 4.1 this
fits together with Schiitte’s result QST%A =Ya in [Sch92].

The function *

In [Bu86] (actually already in [Bu81]) the author introduced the functions
Yo : On — Qy41 and proved, via an ordinal analysis of ID,,, that ¢peq, +1 =
Oco, ., (0). In [BS88] ordinal analyses of several impredicative subsystems of
2nd order arithmetic are carried out by means of the 1,’s. The definition of
1, in [BS88] differs in some minor respects from that in [Bu86]; for example,
A.wt is a basic function in [BS88] but not in [Bu86]. In [RW93] Rathjen and
Weiermann compare their ¥ with ¢gleqy1 from [BS88] which they abbreviate
by . In §5 we will present a refinement of this comparison which is based on
Schiitte’s definition of the Veblen function ¢ (below I'g) in terms of v, given in
§7 of [BS8S].

Similarly as Theorem 4.1 one can prove

Ya=min{f € E: V¢ < a(KE < = 9E < B)}, for a <eqyr.

This motivates the following

Definition of "« for a < A+1

Yo :=min{B € X : V¢ < a( K¢ < = 5¢ < B)}.

For the rest of this section we assume X to be fized, and write 9,1 for 9%, ¢ .
Remark. Immediately from the definitions it follows that va < da.

Before turning to the announced exact comparison of ¥ and ¥, we prove a
somewhat weaker (but still very useful) result which can be obtained with much
less effort. This corresponds to [RW93, p.64] which in turn stems from [BS83]
and [BS76].

2 pA is the ‘“fixed-point-free version’ of @A defined in [Sch54,§3].
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Lemma 4.2. For a < A.

(a) ap < a = Pag < Yo

(b) ap < a & Koy < o = Ppag < Pa.

(c) Ya <ypla+l) & Ka < pa.

(d) a € Lim = va = sup, ¥¢.

(e) Yo = min{y € X : V¢ < a(KE < € = € < 1)}

Proof :

(a), (b) follow directly from the definition.

(c) “=7: Assume —(Ka < ¢a). Then from va € X & V€ < a(K¢ < Ya =
Y€ < Ya) we conclude Ya € X & V€ < a+1(KE < Ya = Y€ < pa), and thus
P(a+1) < ya.

“<”: From o < a+1 & Ka < pa < ¢(a+1) we conclude Yo < p(a+1) by (b).
(d) By (a) we have v := supg, ¥§ < Y. Assume v < ta. Then v € XN va,
and therefore by definition of o there exists £ < o with K¢ < v < €. Hence
by (c), 3¢ < a(y < (€+1)). Contradiction

(e) 1. We have ¢ € X and, by (a),(b), V& < a(K& < € = € < pa).

2. Notice that (K¢ < € = € < ) implies (K{ < v = ¢€ < ). Therefore, if
v EX&VE < a(KE<PE = P& <) then y € X&VE < a(KE <y = 9YE<7)
which yields ya < 7.

Definition.

Let o < A with Ka < ¥A.

Then by Lemma 4.2d there exists £ < A such that Ka < 1€, and we can define
B(a) == min{¢ < A : Ko < g€},
R

h(a) := g(a) + Q. (Note that h(a) < A. )

)

Lemma 4.3. Assume a < A & Ka < ¥A.

(a) Y0 < Ka = vg(a) < Ka <¢(g(a)+1).

(b) Kg(a) < vg(a).

(¢) Kh(a) < 9h(a).

(d) ap < a0 & Koy < ph(a) = h(ag) < h(a).

Proof :

(a) From 90 < Ka and Lemma 4.2d it follows that 0 < g(«) & Lim.
Therefore g(a) = g(a)+1, which yields the assertion.

(b) Follows from (a) and Lemma 4.2c.

(¢) K(g(a) + 9%) C Kgla)UKa 2" p(g(a) + 1) < p(g(a) +Q°).

19



(d) From ap < a & Kag < ¢h(a) by (a) we obtain ap < a & glag) <
h(a) = g(a) + Q% and then h(ag) = g(ag) + 2% < h(a). This together with
Kh(ag) < ¢h(ag) (cf. (¢)) yields ¥h(ap) < ¢h(a) by Lemma 4.2a,b.

Theorem 4.4. a < A & Ka < YA = Ya < ph(a).

Proof by induction on a:

By Lemma 4.3a,d, Ka < ¢h(a) € X & V€ < a(KE < ph(a) = ¢Ph(§) < ph(a)).
Hence by TH, Ka < ¢h(a) € X & V€ < a(K§ < ph(a) = 9¢ < ¢h(a)) which
yields da < h(a).

Corollary 4.5.

(a) a=Q*< A& Ka < ypa = da=a.

(b) Yeai1 = Yeai1 & IA = PA.

Proof :

(a) Ka < pa &k a=0% = gla)<a=0% = h(a) =gla)+ Q2% =« S
da < Ya < Ja.

(b) are instances of (a).

Note. In the appendix of [Btz13] it is shown that ¥SCA equals Bachmann’s

©F., +1(1)(1). In the present context this equation can be derived as follows

Cor.4.5 (90) — L.4.6 . ,
PSCA TOE 9SOA ST GRE(0) = ¢R°(0) =T ¢R(0) = ‘pr,, . ) (1).

Lemma 4.6.

(a) Kq/:(Z)&YﬁQ:Rff = ¢f = §+a.
(b) SCNQ = RY.

Proof :

(a) Induction on « using Theorem 2.4 and the fact that K+ = () implies
K(y+a)=Ka and kT (y + a) = k() for all a.

(b) By definition we have Vo < Q(¢2 = ¢, ), which together with Lemma 1.5d
yields SCNQ ={a € Q:¢Z(0) =a}=RE.

Corollary 4.7.
(i) Ky=0&YNQ=RE = oL :Ef_m and VYo = 9% (Qy + a).
(i) ¢f =ot ,, ¢5° =98, VPa=99(Q+a), and
93Ca = 9802 + ) = 9E(Q2 + a).
Proof :
(i) follows from Lemma 4.6a by Theorem 2.5b and (90).

(ii) follows from Lemma 4.6, (i), and EN Q) = RY.
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85 Exact comparison of ¢ and v

Let X C H be fixed such that X N Q is Q-club.
As before we write 9,1 for 9%, %,

In this section we always assume o < A and Ka U {8} < ¢A.

Lemma 5.1.

(a) ap < a & V€(ap <€ <a—= P =1P(E+])) = Yag = Yo

(b) Yag < Ya = Fag(ag < a1 < a & Koy < Yag = payg).

Proof :

(a) follows from Lemma 4.2a,d by induction on a.

(b) From 9o < ¥a by Lemmata 4.2a, 5.1a we obtain

(o <€ < a&Pé <P(é+1)). Let aq := min{€ > ap : Y& < P(E+1)}.

Then ap < a3 < a and, by (a) and Lemma 4.2¢, Ko < ha; = .

Lemma 5.2.

(a) va<yeX = Ylatl) <~.

(b)yeXNyYA = Fa(Ka < pa=7).

() Qv &< Q*& K(y+9) <yp(y+0) = Ky <.

(d) Q%y &y <P(v+ Q%) = Ky <.

Proof :

() X2y <dla+l) = I <atl(K{<y<YE) = v < Yo

(b) By Lemma 4.2a,d it follows that ¥a < v < ¢(a+1) for some a < A.

By (a) it follows that Ya = .

(¢) Induction on §: Since Q%|y & § < Q“ we have Ky C K (v + 0). Therefore,
if vy = (v +§) then Ky < ¢y, If vy < (v + 0), then by Lemma 5.1b there
exists dp < § such that K (v + dp) < (v + do); thence, by TH, K~y < 1.

(d) By Lemma 5.1b there exists § < Q% such that K (v +0) < ¢(y +9).

Hence Kv < 9 by (c).

Lemma 5.3. § =xp 7+ Q% & K(Q%) < (v + Q) = K(Q%) < 6.
Proof :

For 1§ = (v + Q*F1) the claim is trivial. Otherwise, by Lemma 5.1b there
exists 0; with § < 0; < y+QTt and K§; < 81 = 5. Then §; = v+ QB+ 5y
with £ < 8 < Q and 02 < Q% Hence K(Q%5) C Ké; < ¢§. Now assume
B >0. Then KaUKp = K(Q%38) < 1¢ which together with £ < 8 <  yields
K(Q%¢) C KaUKE¢ < 96.

Definitions.

p 0 ifa=0
L wa'{wa ifa>0

2. If @ < 8 then —a + 8 denotes the unique v such that a + v = 8.

The following definition is an extension and modification of the corresponding
definition on p.26 of [BS88].
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Definition of [a, 5] < A

By Lemma 4.2a,d there exists n < A such that
P(QH ) < KaU{B} <9(Q+ (7+1)).

Let v := Q2t1y, Then ¢y < Ka U {8} < ¢(y + Q*T1).
If Qa4+ <w then [a,f]:= 4, else

[, B] := 7 4+ Q¥(1+€) with & := { —y+ 8 if Ka <y
B otherwise

Remark. w < Qa+ 8 = w < [o, 3]

Lemma 5.4. (a) Ko, 8] < ¥]a, 8] 5 (b) K(Qa+ B) < ¢la, B].

Proof :

Assume w < Qa + B (otherwise Kla, 8] = @ and K(Qa + 8) = (). Then
[, B] =xp 7 +Q%(14+€) with ¢y < KaU{B} < ¢(y+Q+!) and € < § < dy+&.
(a) By Lemmata 5.2d and 4.2a,b we obtain Kv < vy < 9], ].

KQ*(1+€) = KaUKE & € < B8 < Q & KaU{B} < v(y+ Q2 =
KQ0(148)) < 9y + 9o+,

o, 8] =np 7+ Q(146) & K(Q°(146)) < w(y + QT ¥
K(Q(14€)) < ¢la, f].

(b) By (proof of) (a) we have KaU {¢{} C K|a, 8] < Yo, 8] and ¢y < ¢[a, 5].
From this together with 8 < ¢y+¢ and ¢[a, 8] € X C H, we obtain K (Qa+4) =
KaU{B} <¢[a,p].

Lemma 5.5.

Qag + o < Qar + 1 & K(Qag + Bo) < Ylar, fi] = o, Bo] < [aa, Bi].
Proof :

1. Qo + 1 < w: Then [ag, Bo] = Bo < B1 = [ag, P1]-

2. Qoo+ Bo < w < Qag + B1: Then [ag, Bo] = Bo < w < [aa, B1].

3. w < Qag + PBo: Then [ay, Bi] =nF 7 + QY (1+ &) (¢ =0,1), and

o < Kag U{Bo} < ¢lan, Bil.

3.1 a:=ap=a; & By < br:

3.1.1. 49 < 71: Then [, Bo] = Yo + Q%(1+&) < Yo + QT <y < [a, B1]-
3.1.2. v := 9 = 71: Toprove &y < &. Wehave§; = { _‘1&7 +h: if Ka< 12}7.

f otherwise
Hence &y < & follows from By < f.

3.2. ag < ap: From 1&70 < ¢Ylag, B1] and 0 < ag we get o < [aq,B1] =
v + Q%1 (14&;), and then v + Q* < [ay, B1]. Further we have [ag, Bo] =
Yo + Q0 (1+&) < 7o + QT < g + Q.
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Lemma 5.6. 9(Qa + 8) < ¢([a, B]) < YA.

Proof by induction on Qa + 5:

Let 7o := ¢[a, B].

To prove: v € X & K(Qa+ 8) <4 & V¢ < Qa+ (K < v = 9¢ < 7).

1. By definition of ¢ and Lemma 5.4b we have vy € X & K(Qa + ) < 7.

2. Assume Q€+ 1 < Qa+ 8 & K(Q€ 4+ n) < 9. Then, by L.5.5, [£,1] < [«, 5]
From this by Lemmata 5.4a, 4.2a,b and the TH we obtain ¥(Q26 +n) < [, n] <
Yl B] = 0.

Definition of § < A for § < A 3

1. If § < w then 0 := 6.

2. Ifw < 6 =xF Y+QY(1+€) then § := Qo+ with 3 := {W)’ +¢ if Ka < Cal
& otherwise

Remark. w <6 = w < 4.

Lemma 5.7. [o, 8] = Qa + B.

Proof :

[a, B] =nF v + Q¥(14+&) with £ = { v+ B if Ka < Uy
B otherwise

Hence [Oé,,@} = Qo+ ,5) with B = {2/)7 +¢ gt}i(:wiedyy Obviously B = 0.

Lemma 5.8. Let 4,8 < A.

(a) K6 <9pd &6 =Qa+ 8 = §=a,j|

(b) K6 <5 = 095 < 6.

() KE<Yd & K& <8 &5=0 = §=10".

Proof :

(a) 1. 6 <w: Then Qa+ B =08 =6 < w and thus [a, 8] = B = 4.

2. Otherwise: Then w < ¢ =np v+ Q%(1+E) with 8 = by +& i Ka < 1/J’Y_
& otherwise

The latter yields ¢y < Ka U {8}. From K& < d by Lemma 5.2c we get
K~ < 4y and then ¢y < ¥d. Now we have KaUKE C K§ < d € H & vy < d
which implies Ko U {8} < ¢d < (y + Qo).

It follows that [a, 8] = v + Q*(1+€) where £ := {ng +5 iftﬁ(a < v,
otherwise

Obviously € = ¢ and therefore [, 5] = 6.

(b) Take a, 3 such that § = Qa + 3. Then by Lemma 5.6 and (a) we obtain
05 = 9(Qa + ) < Pla, B] = 3.

This definition is closely related to clause 5 in Definition 3.6 of [RW93]. But be

aware that § there has a different meaning than here.
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(c) By (a) there are a, 8,a’, 8’ such that
S=Qa+B&5=[n,fland d = Qo' + B & = [, B].
Therefore from & = §’ one concludes o = o/ & 8 = 8’ and then 6 = §’.

Theorem 5.9. § < A & K& < 6 = 9§ = 1))6.

Proof by induction on 4:

By Lemma 5.8b we have 9§ < 1. Assumption: 96 < 6. Then by Lemma 5.2b
there exists v s.t. Ky < ¢y = 95 < ¢6. Hence v < 6 and therefore, by IH,
Yy = 95. From 90 = 1y = 95 & K§ < 96 & K~ < ¢y by (94) and Lemma 5.8c
we obtain § = . Contradiction.

Corollary 5.10.

(a) 9(Qa + B) = ¢Pla, B].

(b) Ka < Qo = 9(Qa) = Q2.

Proof :

(a) Let § := [a, B]. Then by L.5.4a K§ < 14, and therefore ¥(Qa + 53) 57
06 = 3 = pla, A].

(b) a < A & Ka < ¢Q°Tt = 9(Qa) = la, 0] = »(Q%(1 +0)) = Q2.

86 Defining the Bachmann hierarchy by functionals of higher type
This section is based on [Wey76, (3.2.9)-(3.2.11),(3.2.15)].
Convention. n ranges over natural numbers > 1.

Definition. Let M be an arbitrary nonempty set.
1. M :=M. 2. M™"!:= set of all functions F : M" — M™.

Notation. If 1 <m <n and F; € M? for m < i < n,
then FnFn—l v Fm = n(Fn—l) . (Fm)-

Abbreviation: Id"™! := Idy» € M1

Assumption.

V is an operation such that for every family (X¢)ecq with 0 < o < Q the
following holds: V¢ < a(Xe € M') = Ve, X € ML

Definition. If n > 1 and V¢ < a(F; € M™™!) then

VecaFe € M is defined by (VecoFe)G = Veco(FeG).

Lemma 6.1. If 0 <a <Q&VE < a(F; € M) & H € M"| then
(V§<QF£) [¢] H = V5<Q(F£ o H)

Proof :

For each G € M"™ we have
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(VecaFe) o H)G = (Veco Fe)(HG) = Veco(Fe(HG)) = Veca((FeoH)G) =
(Veca(FeoH))G.

Definition. For F € M"™! and o < Q we define F(® € M"*! by
(i) FO = 1d""; (i) Fle+tD) .= FoF(®); (iii) F(*) := Ve, FUHE) if o € Lim.

Definition.

(i) Let I, € M? be given;

ii) For m > 2 we define I,,,;1 € M™ by I,, .1 F := F(©),
+ +

Definition of [o],

For m > 2 and a < eqy1 we define [a],, € M™ by recursion on a:
(i) [0]m :=Id™; (ii) If & =xp v + 7, then [a]m = ([Blms1lm)™® o [V]m.

Lemma 6.2. For m > 2 and a < eq41:

(a) [a+1]m = Ly, o [a]m;

(b) @€ Lim = [a]m = Vecr(o) [al€]]m

Proof :

(@) Y+ 4+ 1) = (0] 41Tm) V0[] = I Vo[l = Lo (L o[]m) =
L o [y + Q7] -

(b) Induction on a:

1. a =xp v+ QP with € Lim: Then 7(a) = n and a[¢] = v + QP (14€).

[a]m = ([[/B]]m+11m)(n) o[Vlm =
(Ve<n([Blm+1Ln)F9) 0 [7]m =
Ve<n(([Blm+1Lm) ) 0 [Vlm) = Vey[alé]lm
2. a =nr v+ QP (n+1) with 8 = Bo+1:
Then 7(a) = Q and a¢] = vy + QPn + QP (1+€).
[e]m = ([Blm+1La) " 0 [V]m
(IBo+ ms1Tm) © ([Blmns1Lm) ™ © [y =
(Lnt1([Bolmt1Im)) o [y + Q%] =
(Ve<al([Bolm+11m) 1+£)) ofv+ Qﬂn]]m =
Ve<a(([Bolm+1Lm) ) o [y + @nln) = Vecalalé]ln
3. a =nr 7+ Q% (n+1) with 8 € Lim:
Then 7(a) = 7(B) and a[¢] = v + QPn + QP
[e]m = ([Blm+1Ln) ™ 0 [Y]m =
([Blmt11m) © ([Blimt11m) ™ © [Vl =

)

—

([Blmt1Lm) o [y + 2P0 =

(VE<T ([[ﬁ[ mt1lm)) o [v + Qﬁnﬂm =
Veer@) (([BElm+11m) © [y + Q%nlm) = Vecr@ [al€]]m
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Corollary 6.3. For X € M and a < €q+1 the following holds:
(i) [0]X = X;

(i) [Jat+1]2X = L([a)2X);

(iii) [afoX = Vecra)([@f€]]2X) if a € Lim.

Now we fix M, Iy and V as follows:

1. M := set of all 2-club subsets of €.

2. I: M= M, LL(X):={8ecQ:enx(8) =4},

where eny is the ordering function of X.

3. IfV€ < a(Xe € M) then

- X ﬂ§<aX€ ifa<Q
ST BeqnLim: feNes Xe) ta=0

Then by transfinite induction on « from the above Corollary and the definition

of RX we conclude

Theorem 6.4. RX = [a]2X, for all @ < eqy1 and X € M.

Appendix

This appendix is devoted to the proof of Lemmata 1.1, 1.2d.

Lemma Al.

(a) A€ Lim = 0 < A[0].

D)7+ <Q¥&n<Q = v+ 0 <o

(¢) A =xr 7+ QPn g ran(Fp) & Q% < A = Q¥ < \[0].

Proof of (c):

From Q% < XA = v+ Q% by (b) we get Q% < v+ Q8. If n € Lim then
MOl =7+ QF If1 <np=mnot+l then v+ QF < v+ 0Py < N0 If p =1
then 0 < 7 (since A ¢ ran(Fp)) and therefore Q9! < 5 which together with
Q% < XA =7+ QF yields Q% < v < \0)].

Lemma A2. X =yp F,(08) & 0< B8 = F,(8[n]) < An].

Proof :

1. B € Lim: F,(B[n]) = A[n].

2. = fo+1:

2.1. a=0: F,(B[n]) = QP < QP.(1+n) = A[n].

2.2. a>0: F,(B[n]) = Fu(Bo) < A7 < Aln].
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Lemma A3. F¢(pu) <A< Fe(p+l) = Fe(u) < A0].

Proof :

0. A=Fe(pu+1):

0.1. ¢ =0: A= QHFL \[€] = Q1 (14€), A[0] = Fo(p).
0.2. (> 0: Fe(u) <A™ < Fepop(A7) = A0].

L A< Fe(p+1):

L1. A =nr v+ Q%7 & ran(F):

Fe(p) € ran(Fy) & Fe(p) < A "3 Fe(u) < Al0].

1.2. A =nr Fo(B): Then o < ¢ and thus F,,(F¢(p)) = Fe(p) < Fo(B). Hence
Fe(u) < B and therefore F.(11) < (0] < Fa(B[0]) < AlO].

—1 if vy & ran(Fp)

Definition. r(y):=< a if v =xr Fa(f)
v ify=A

Lemma A4.

(a) 7(Fa(B)) = max{a,r(8)}.

(b) A[0] <8 <X = 7(8) <r(N).

() A=nr Fa(B) & BE Lim& A\~ <n< X = A~ <q[l].

Proof :

(a) 1. B < Fu(B):

Then 7(Fo(8)) = o and (r(8) = —1 or § =nw Fp,(f1) with Gy < ).

2. B = Fu(B): Then B =nr Fp,(81) with a < o =7(8) = r(Fu(B)).

(b) 1. A =nr v + Py & ran(Fp):

L1.n€ Lim: v+ Q% = \[0] <6 < v+ QP b s ¢ ran(Fp).

1.2. 1 = no+1:

Y+ QP00 < A[0] <6 <+ Q8 (o+1) & ran(Fy) & QP y = & & ran(Fy).

2. A =nF Fo(B): If A < Fux1(0) then also 6 < Fu11(0) and thus 7(§) < a =
r(A). Otherwise there exists p such that Fiy1(pn) < A < Fyy1(p+1). Then by
L.A3 we get Fpi1(p) < A[0] < 6 < Fap1(p+1) and thus § & ran(Fayq), ie.
r(0) < a=r(}\).

3. A=A r(0) < A=r(A).

(¢) For 8 = 0Vn = no+1 the claim is trivial. Assume now 8 = Gp+1 & n € Lim.

Fa(Bo) <n < Fa(Bo+1) "B% X~ = F(Bo)+1 < 5[0] + 1 < n[1].

Lemma 1.1. A=xr Fo(f) & e Lim& 1 <& <13 = A¢| =~r Fa(BlE]).

Proof :
We have A[§] = Fo(BlE]) & B[0] < B[¢] < 8. By L.A4b this yields A\[¢] =
Fa(B[E]) & r(B[E]) < r(B) <, whence A[§] =nr Fu(BE])-
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Lemma 1.2d. (41 <7y & A[€] <8 < AE+1] = M¢] < o[1).

Proof by induction on d#A:

If 7(6) < r(A[]) then, by L.Adb, A¢] < §[0]. (Proof: 6[0] < A[§] < &
r(A[E]) < 7(9).)

Assume now that r(A[¢]) < r(d) ().

L. A =xr 7+ Q% & ran(F).

1.1. 5 € Lim:

T+ QP (146 = N€] < 0 < Ag+1] =7+ QP (1+€) + Q° = A[¢] < 5[0].
L2, =no+1: v+ Q%o + Q7€) = A[¢] < 0 < Alg+1] = v+ Q%o + Q7[E+1] =
§ = (v + DPno) + 6o with QP[¢] < dp < QP[E+1] =

310] =+ 970 + 8ol0] with 07[¢] < 8,[0] = Alg] < 5[]

L.A4b
=

2. A =xr FalB) & B € Lim: Then (1) N¢] = Fa(B[€]), and (2) A[¢] < & < A.
From « %) r(A[€]) (2 r(9) (Q)EA% r(A) = a we get 7(d) = a, i.e. d =nxr Fu(n)
for some 7. Now from A[€] < 6 < A[¢+1] we conclude B[¢] < 1 < Bl¢+1] and
then, by TH, BI¢] < 1[0]. Hence A¢] < Fa(ul0]) < 4[0].

3. A =xr Fa(B) & B & Lim:

3.1. a = 0: Then B = Bo+1, and A[¢] = QP (1+€) < 6 < QP (14€) + QP
implies A[§] < 4[0].

3.2. o= ag+1: Then A[§] = F5T(A7).

Hence, by (1), 6 =~r F¢(n) with ag < (.

321 ap < AT < Fe(n) = A[E+1] = F5? (A7) < Fe(n). Contradiction.

3.2.2. ¢ = ap: Then from F5IH(A7) = A[¢] < 8 = Fu,(n) < A[¢+1] we conclude
FS (A7) <n< )\[f].L A;As we will show, this implies F§ (A7) < n[1], thence
FSH A7) < Fe(nl1)) < o[1].

Proof of F§ (A7) < n[1]:

(i) € = n+1: Then the claim follows by IH from A[n] = F5 (A7) <n < A[n+1].

(i) € =0: A~ <y <A "B A= <.

3.3. a € Lim: A[¢] = Fy¢ (A7), and by (f) we have 6 =nr F¢(n) with a[¢] < C.
3.3.1. alf+1] < ¢ A7 < Fe(n) = Fuep(A7) < Fe(n) = 4. Contradiction.
3.3.2. af¢] < ¢ < a¢+1]:

(i) n € Lim: Then A~ < §[1] = F¢(n[l]) (for 8 =0, A~ = 0. If 8 = Bo+1, then
Fo(Bo) < 0 < Fo(Bo+1) and thus, by L.A3, F,(Bo) < 4[0]).

all] < C& AT <O[1] = NE] = Fog(A™) <4[1].
(ii) n € Lim: By IH «[¢] < ([1]. Further A= <4~
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Proof of A= < §7: Assume 8 = Bo+1.
Fo(Bo) <d=Fe(n) & (<a=0<n=n=n+l
Fo(Bo) < Fe(no+1) & ¢ < = Fu(fo) < Fe(mo)-
From a[¢] < ¢[1] and A~ < 0~ we conclude A\[§] = Fijg) (A7) < Feppy(67) < 4[1].

3.3.3. ¢ = a€]: This case is similar to 3.2.2(ii):

M) = Fe (A
A = Fe(A

) < Fe(n) < Fo(B) = A~ <n< Fo(f) =
L.A4c L.A2
) < Fe(nl]) < o[1].

4. X = A: This case is very similar to 3.3, but considerably simpler.
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