
Relating ordinals to proofs in a perspiious wayWilfried BuhholzMathematishes Institut der Ludwig-Maximilians-Universit�at M�unhenTheresienstr. 39, D-80333 M�unhen, Germanyemail: buhholz�rz.mathematik.uni-muenhen.deIntrodutionContemporary ordinal-theoreti proof theory (i.e., the part of proof theory onerned with ordinal analysisesof strong imprediative theories) su�ers from the extreme (and as it seems unavoidable) omplexity andopaity of its main tool, the ordinal notation systems. This is not only a tehnial stumbling blok whihprevents most proof-theorists from a loser engagement in that �eld, but it also alls the ahieved resultsinto question, at least as long as these results do not have interesting onsequenes, suh as e.g. foundationalredutions or intuitively graspable ombinatorial independene results. The question is, what have we gainedby having shown that the proof-theoreti ordinal of a ertain formal theory S equals the ordertype k � kof some spei� term ordering � (disregarding for the moment possible appliations of the abovementionedkind). I would say, as long as the ordering is simple and natural (as e.g. the standard orderings of ordertype "0 or �0) or ours already elsewhere in mathematis or theoretial omputer siene, we have obtaineda result of pure mathematis whih is interesting and noteworthy by itself. But I'm not sure if the latteran (already) be said about Rathjen's ([Ra95℄)and Arai's ([Ar96℄,[Ar97℄) most impressive and admirablework on �12-CA and beyond. Rather I think, that extensive e�orts should be made aiming at a substantialsimpli�ation and deeper understanding of that work, espeially of the used ordinal notation systems (termorderings, resp.). The purpose of the present paper is to present as an example a partiularly nie pieeof ordinal-theoreti, imprediative proof theory (far below �12-CA) where suh a simpli�ation and deeperunderstanding has already been ahieved. The paper is more or less a ondensation and improved presentationof parts of [Bu81℄, [Bu86℄, [Bu87℄ providing an ordinal analysis \from above" for the theories ID� of iteratedindutive de�nitions by means of the so-alled 
�+1-rule. Speial e�orts have been made to let the assignmentof ordinals to derivations not appear as an ad ho approah but as a quite natural and perspiuous proedure.x1 Ordinal funtions and ordinal notationsAround the early seventies Feferman suggested the following de�nition of ordinal funtions �� for generatinglarge segments of reursive ordinals, whih was intended to replae the extremely omplex Bahmann-Pfei�er-Isles de�nition proedure for hierarhies of normal funtions. This de�nition brought a new impetus into prooftheory and was the starting point of a rather suessful development.De�nition (Feferman 1970)Let �0 be a �xed ountable ordinal.By trans�nite reursion on � one de�nes sets C(�; �) and ordinal funtions ��:C(�; �) := least set X � � [ f
� : 0 < � < �0g suh that 8�; � 2 X(� + � 2 X)and 8�; � 2 X( � < � =) ��(�) 2 X ),�� enumerates f� > 0 : C(�; �) \ �+ � �g where �+ := minf
�+1 : � < 
�+1g and 
� := ��.Dediated to Solomon Feferman on the oasion of his 70th birthday. I am deeply indebted to Sol for theenouragement and stimulation he gave me over many years through his interest in my work.1



A simple ardinal argument shows that C(�; �) has essentially the same ardinality as � (namely ard(C(�; �))= maxf�0; ard(�)g), no matter how large � is. This yields 8� < 
�+1( ��(�) < 
�+1 ) , for any � (seeLemma 1.1 below). Hene the funtion ��:��(
�) maps On into 
�+1, i.e., it is a so-alled ollapsing funtion.Important ontributions to the further investigation of the �-funtions were made by Weyhrauh, Azel and(most important) Jane Bridge. Azel generalized the de�nition and onjetured relationships between the ��'sand the Pfei�er/Isles funtions. These onjetures were established by Jane Bridge in her Ph.D. thesis. Shealso obtained partial results on the reursiveness of the notation system assoiated with �� [Br75℄. Startingfrom Bridge's thesis, reursiveness of the full �-notation system was established in [Bu75℄. There also a variant�� of �� was introdued whih has the advantage that the <-relation between �-terms an be haraterized ina partiularly simple way. This opened the way to a suessful use of these ordinal funtions in proof-theory.Later it turned out that in proof-theoreti appliations atually only the values of �� at initial ordinals 
�are used, whih led to the idea to de�ne diretly funtions  � orresponding to ��:��(
�)De�nition (Buhholz 1981)Let �0 be a �xed ountable ordinal. �(�) := minf� � 
��+1 : C(�; �) \ 
�+1 � �g (� < �0)C(�; �) := losure of � under + and all  ��� (� < �0).
��+1 := � 1 if � = 0
� if � > 0Remark C(�;  �(�)) \ 
�+1 =  �(�)Before we start to prove some basi fats about these ordinal funtions  � , we establish a general Lemmawhih also applies to stronger systems of ordinal funtions.De�nitionGiven a ountable set F of ordinal funtions and an ordinal � letCl(F ;�) := the losure of � under + and all funtions in F .Let < be the lass of all unountable regular ardinals.Lemma 1.1If F is a ountable set of ordinal funtions, then for eah � 2 <the set f� < � : Cl(F ;�) \ � � �g is losed unbounded in �.Proof:unbounded: Let �0 < � be given. We set �n+1 := minf� : Cl(F ;�n) \ � � �g, � := supn<! �n. Sine8� < �( ard(Cl(F ; �)) < � ), we obtain (by indution on n) �n < �, and then �0 � � < � and Cl(F ;�)\� �Sn<! Cl(F ;�n) \ � � Sn<! �n+1 � �.losed: If � = sup(X)&8�2X(Cl(F ; �) \ � � �) then Cl(F ;�) \ � � S�2X Cl(F ; �) \ � � S�2X � = �.Theorem 1.2 (Basi properties of  �)(a)  �(�) < 
�+1 (ollapsing property)(b)  �(0) = 
��+1, and  �(�) is losed under +() �0 < � & �0 2 C(�0;  �(�0)) =)  �(�0) <  �(�)(d)  �(�0) =  �(�1) & �i 2 C(�i;  �(�i))| {z }normalform ondition (i = 0; 1) =) �0 = �1Proof:(a) Obviously C(�; �) = Cl(f ��� : � < �0g;�). Hene f� < 
�+1 : � � 
��+1 & C(�; �) \ 
�+1 � �g 6= ;(by Lemma 1.1), and therefore  �(�) = minf� � 
��+1 : C(�; �) \ 
�+1 � �g < 
�+1.2



(b) Obviously C(0;
��+1) = 
��+1, and therefore  �(0) = 
��+1. �(�) is losed under +, sine  �(�) = C(�;  �(�)) \ 
�+1.() C(�0;  �(�)) \ 
�+1 � C(�;  �(�)) \ 
�+1 �  �� and therefore  �(�0) �  �(�) whih impliesC(�0;  �(�0)) � C(�;  �(�)). From �0 < � & �0 2 C(�;  �(�)) we onlude  �(�0) 2 C(�;  �(�)).By (a) we have  �(�0) < 
�+1 and thus  �(�0) 2 C(�;  �(�)) \ 
�+1 �  �(�).(d) If �0 < �1 then the assumption �0 2 C(�0;  �(�0)) together with () yields  �(�0) <  �(�1).Lemma 1.3C(�;  0(�)) = C(�; 1)Proof by indution on �:Let us assume that C(�;  0(�)) = C(�; 1), for all � < � (IH). We have to prove  0� � C(�; 1). Let � > 0(otherwise  0(�) = 1 � C(�; 1)). As we will show below the IH implies that � := C(�; 1) \ 
1 is in fat anordinal. Obviously 
1 =  1(0) 2 C(�; �) and C(�; �) \ 
1 � C(�; 1) \ 
1 = � and thus  0(�) � �.Claim:  2 C(�; 1) \ 
1 )  � C(�; 1).Proof by side indution on the de�nition of C(�; 1):1.  =  0(�) with � < � & � 2 C(�; 1):By the above IH we have C(�;  0(�)) = C(�; 1). Hene  =  0(�) � C(�; 1) � C(�; 1).2.  = 0 + 1 with 0; 1 2 C(�; 1) \ 
1:Then by SIH 0; 1 � C(�; 1) whih (together with 0 2 C(�; 1)) yields 0 + 1 � C(�; 1).DisgressionOf ourse the above de�nition of  � an be generalized in the same way as Azel [Az℄ generalized Feferman'sde�nition, namely by inorporating a ountable set G of ardinal valued ordinal funtions into the de�nition ofC(�; �). For the simple ase G = f�x:
xg this is equivalent to setting, for any �; � 2 On,  �(�) := minf� �
��+1 : C(�; �) \ 
�+1 � �g where C(�; �) := Cl( �� ; �) with  �� : On� �! On; (�; �) 7!  �(�).A more substantial extension of the �= -approah was developed by Sh�utte (unpublished), Pohlers [Po87℄and, most important, J�ager [J�a84℄. In addition to the  � 's whih are ollapsing funtions for suessorregulars, now also ollapsing funtions for limit regulars, i.e. weakly inaessible ardinals, are introdued.In order to be able to treat both kinds of ollapsing funtions uniformly J�ager denoted the  -funtion for aregular ardinal �, i.e. one with values below �, by  �. In this notation the former  � beomes  
�+1 .De�nition (J�ager 1984): �(�) := minf� > �� : C(�; �) \ � � �gC(�; �) := Cl(�xy:Ix(y);  �� ; �) with  �� : <� �! On; (�; �) 7!  �(�)I� := ordering funtion of l(f� 2 < : 8� < �(I�(�) = �)g),where l(A) := fsup(X) : X nonempty subset of A g (topologial losure of A)�� := � 0 if � = I�(0)I�(�) if � = I�(�+1) with �; � < � .Later Rathjen developed further extensions up to the use of large large ardinals ([Ra90℄, [Ra94℄, [Ra95℄). Inthe �rst of these extensions Rathjen assumed the existene of a weakly Mahlo ardinal M and utilized thefat that the regular ardinals are stationary in M .De�nition (Rathjen 1990) �(�) := � minf� 2 < : � 2 C(�; �) & C(�; �)\� � �g if � =Mminf� 2 On : � 2 C(�; �) & C(�; �)\� � �g if � < MC(�; �) := Cl(�x:!M+x;  ��;�) with ( ��)(�; �) :=  �(�) for � 2 < \ (M+1) and � < �.3



Let us see how the \Mahloness" of M is used for obtaining the ruial property 8� < "M+1( M (�) < M ).Aording to Lemma 1.1 the set f� < M : C(�; �) \M � �g is losed unbounded in M . If � < "M+1 then� 2 C(�; �) for suÆiently large � < M . Hene also X := f� < M : � 2 C(�; �) & C(�; �) \M � �g is lubin M (if � < "M+1). Sine < is stationary in M , we obtain X \< 6= ;, and thus  M (�) = min(X \<) < M .The general strategy behind these extensions is that one tries to produe notations for more and more regularardinals �, whih in turn gives more and more ollapsing funtions  �. In J�ager's de�nition the regulars areprovided by the hierarhy (I�)�2On. In de�ning this hierarhy one already assumes the existene of a weaklyMahlo ardinal M , but one does not exploit this assumption to the same extent as it is done in Rathjen'sapproah. Atually the limit ordinal  
1(supn Æn) (Æ0 := 0, Æn+1 := IÆn(0)) of [J�a84℄ is \muh" smaller thenthe limit ordinal  
1("M+1) of [Ra90℄.Now we return to the simple system of  -funtions  � (� < �0) de�ned above. In order to avoid sometehnial ompliations we will even assume �0 = !. But we want to stress that no essential new diÆultieswould emerge when in all what follows the assumption \�0 = !" would be replaed by \�0 < !CK1 ".From now on �; �; �; � range over numbers < !.Below we will introdue a system of ordinal notations based on the ordinal funtions  � . The anonial way forthat is to onsider the set T of all terms whih are generated from the onstant 0 by means of funtion symbols�; D0; D1; ::: for the ordinal funtions +;  0;  1; :::. Then one looks for a (primitive) reursive haraterizationof the relation <o:= f(a; b) 2 T�T : o(a) < o(b)g, where o(a) 2 On is the anonial interpretation of a 2 T.It turns out that the relation <o has a partiularly simple haraterization when it is restrited to the subsetOT � T of those terms a 2 T whih are in \normalform" (i.e. o(b) 2 C(o(b);  �(o(b))) for eah subterm D�bof a, and o(an) � : : : � o(a0) for eah subterm a0� : : : �an of a).De�nition o(a) := ordertype of (fx 2 OT : x <o ag; <o), OT0 := fa 2 OT : a <o D10g.It an be proved that every a 2 T has a (unique) normalform a� 2 OT suh that o(a�) = o(a) whih yields(}) fo(a) : a 2 Tg = fo(a) : a 2 OTg.Obviously fo(a) : a 2 Tg = C(
! ; 1), and thus by Lemma 1.3 fo(a) : a 2 T & a <o D10g =  0(
!). So,fo(a) : a 2 T & a <o D10g is a segment of On, and the equation (}) implies o(a) = o(a) for eah a 2 OT0.(Of ourse we will never have o(a) = o(a) for all a 2 OT, sine T is ountable and thus o(a) < 
1 � o(a) forany a 2 OT nOT0.) The proof of (}) itself is rather tedious (f. [BS88℄ or [Se98℄) and we will not disuss ithere. Having a loser look one will realize that atually (}) is not of great importane, sine in all (existing)proof theoreti appliations of the  � 's one an on�ne to terms from OT, and the only drawbak when onedispenses with (}) is that e.g. instead of saying \the proof theoreti ordinal of ID� is  0("
�+1)" one has tosay \the proof theoreti ordinal of ID� is the ordertype of D0D�+10 in (OT0; <o)". Usually one avoids thetrouble with having to distinguish between o(a) and o(a) (for a 2 OT0) by following Sh�utte and inorporatingthe normalform ondition into the de�nition of C(�; �), i.e., by losing C(�; �) only under e ��� (instead of ���) where ( e ���)(�) := n �(�) if � < � and � 2 C(�;  �(�))unde�ned otherwise . Then fo(a) : a 2 OTg = C(
! ; 1) iseasy to prove and together with Lemma 1.3 it yields o(a) = o(a) for all a 2 OT0.Now we de�ne the set T of terms, a linear ordering � on T, for any a 2 T and � < ! a set G�a of subtermsof a, and the set OT of ordinal terms (i.e. terms in normalform) in suh a way that, for all a;  2 OT,(a)  � a , o() < o(a) [,  <o a ℄ and (b) G� � a , o() 2 C(o(a);  �o(a)).(Here G�a �  abbreviates 8x 2 G�a(x � ).) 4



Indutive de�nition of T1. 0 2 T.2. If a 2 T and � < !, then D�a 2 T; we all D�a a prinipal term.3. If a0; :::; an are prinipal terms and n � 1, then (a0�:::�an) 2 T.Notation For prinipal terms a0; :::; an�1 and n � 0 we set a0�:::�an�1 :=8<: 0 if n = 0a0 if n = 1(a0�:::�an�1) if n > 1So every a 2 T an be uniquely written as a = D�0a0� : : :�D�n�1an�1 with n � 0 and a0; :::; an�1 2 T.Further we de�ne: (a0�:::�an�1)� (b0�:::�bm�1) := a0�:::�an�1�b0�:::�bm�1,and a � n := a�:::�a| {z }n for prinipal terms ai; bi; a.De�nition of o : T �! Ono(D�0a0� : : : �D�n�1an�1) :=  �0o(a0) + : : :+  �n�1o(an�1)De�nition of a � b for a; b 2 T1. 0 � b :() b 6= 02. D�a � ~a � D�b � ~b :() � < � or ( � = � & a � b ) or ( � = � & a = b & ~a � ~b )Remark. � is a linear ordering on T, but it's not a wellordering (e.g. : : : � D0D0D10 � D0D10 � D10).De�nition of G�a1. G�(a0�:::�an�1) := Si<nG�ai, 2. G�D�a := � fag [G�a if � � �; if � < �Indutive de�nition of OT1. 0 2 OT.2. a 2 OT & G�a � a ) D�a 2 OT.3. a0; :::; an 2 OT (n � 1) prinipal terms with an� : : :�a0 =) (a0�:::�an) 2 OT.The elements of OT are alled ordinal terms. We identify n 2 IN with the ordinal term D00�:::�D00| {z }n .Abbreviation. 
0 := ! := D01, 
� := D�0 for � > 0.Theorem 1.4 For a;  2 OT we have(a)  � a , o() < o(a), [i.e.,  � a ,  <o a ℄(b) G� � a , o() 2 C(o(a);  �o(a))Proof by indution on the length of  simultaneous for (a),(b):We only prove \)". The reverse impliation of (a) follows from \)", sine � is total. The reverse diretionof (b) is more diÆult to obtain, but sine it is not needed for the proof of (a) nor for any proof in this paper,we omit it here.(a) Let  = D�0 �1�:::�m, a = D�a0 �a1�:::�an with prinipal terms 1; :::; m; a1; :::; an.1. � < �: From m � : : : � 1 � D�0 we get by IH o(m) � : : : � o(1) � o(D�0) =  �o(0) < 
�+1 andthus o() < 
�+1 � 
� � o(D�a0) � o(a).2. � = � and 0 � a0: By IH o(0) < o(a0). Sine D�0 2 OT, we have G�0 � 0 and thus by IHo(0) 2 C(o(0);  �o(0)). Hene  �o(0) <  �o(a0) by Theorem 1.2(). Now o() � o(a) follows as in 1.(using that  �o(a) is additively losed).3. � = � & 0 = a0 & 1�:::�m � a1�:::�an: Immediate by IH.(b) 1.  = 0�:::�k�1 with k 6= 1: Then G�i � a and thus (by IH) o(i) 2 C := C(o(a);  �o(a)) for i < k.This yields o() = o(0) + : : :+ o(k�1) 2 C.2.  = D�0 with � < �: Then o() 2 
�+1 � 
� � C.3.  = D�0 with � � �: Then f0g [G�0 = G�0 � a and therefore by IH o(0) < o(a) & o(0) 2 C whihyields o() =  �o(0) 2 C.Corollary (OT;�) is a well ordering. 5



Fundamental sequenesIn order to get a better insight into the struture (T;�) and a better understanding of the ollapsing funtions � we now present an assignment of (fundamental) sequenes to the elements of T. For eah term a 2 T wede�ne its (o�nality) type tp(a) 2 f0; 1; !g [ f
�+1 : � < !g and a family (a[x℄)x2jtp(a)j of terms, suh thatthe following holds, where j0j := ;, j1j := f0g, j!j := IN, j
�+1j := fD�b : b 2 Tg:Theorem 1.5(a) x 2 jtp(a)j =) a[x℄ � a(b) x; x0 2 jtp(a)j & x � x0 =) a[x℄ � a[x0℄() tp(a) = 1 =) a = a[0℄� 1(d) a;  2 OT &  � a & tp(a) 6= 1 =) 9x 2 OT \ jtp(a)j(  � a[x℄ )(e) a; x 2 OT & x 2 jtp(a)j =) a[x℄ 2 OTNote that, aording to Theorem 1.5, only for a 2 OT and only relative to (OT;�) is the family (a[x℄)x2jtp(a)ja fundamental sequene of a in the proper sense. But in x3 we will give a natural interpretation of the termsa 2 T as wellfounded trees (so-alled tree ordinals) t(a) whih harmonizes with the assignment (a; x) 7! a[x℄.For example we will have t(a) = �t(a[i℄)�i2IN if tp(a) = !.I think, one an well say that all lauses of the following de�nition are anonial (modulo some minorvariations, suh as setting (D�a)[i℄ := (D�a[0℄)�i instead of (D�a[0℄)�(i+1) in lause 4.), and therefore itseems reasonable to all (a[x℄)x2jtp(a)j the anonial fundamental sequene of a 2 OT. Only lause 6. requiressome explanation whih will be given below in the proof of Theorem 1.5.De�nition of tp(a) and a[x℄ for a 2 T, x 2 jtp(a)j1. tp(0) := 0.2. tp(D00) := 1, (D00)[0℄ := 0.3. tp(D�+10) := 
�+1, (D�+10)[x℄ := x.4. tp(a) = 1 ) tp(D�a) := !, (D�a)[i℄ := (D�a[0℄) � (i+1).5. tp(a) 2 f!g [ f
�+1 : � < �g ) tp(D�a) := tp(a), (D�a)[x℄ := D�a[x℄.6. tp(a) = 
�+1 & � � � ) tp(D�a) := !, (D�a)[i℄ := D�a[xi℄ with x0 := 
�, xi+1 := D�a[xi℄.7. tp(a0�:::�an) := tp(an), (a0�:::�an)[x℄ := (a0�:::�an�1)� an[x℄ (n � 1).For tehnial reasons we also set a[n℄ := a[0℄, if tp(a) = 1.Proof of Theorem 1.5:(a),(b),() are easily veri�ed by indution on `(a) (length of the string a).For a proof of (e) see [BS88, x5℄ or [Bu86, Lemma 3.3℄.(d) is proved by indution on `(a). All ases exept 6. are straightforward. So let us assume D�� ~ � D�a.Then  � a, and by IH  � a[x℄ for some x 2 OT\ jtp(a)j. Hene D�� ~ � D�a[x℄. If tp(a) 2 f!g[f
�+1 :� < �g, it an be proved that D�a[x℄ 2 OT. Therefore in that ase D�a[x℄ is the anonial hoie for(D�a)[x℄.Now let us assume that tp(a) = 
�+1 with � � �.Then \D�a[x℄ 2 OT" does no longer hold for arbitrary x 2 OT \ jtp(a)j.But by indution on `(a) one an prove(1) tp(a) = 
�+1 &  2 OT & a[
�℄ �  � a =) 9x = D�(b+1) 2 OT( b 2 G� &  � a[x℄ )from whih we onlude(2) tp(a) = 
�+1 &  2 OT & a[
�℄ �  & fg [G� � a =)=) 9b 2 OT( `(b) < `() & fbg [G�b � a &  � a[D�(b+1)℄)Obviously (2) suggests to de�ne x0 := 
�, xn+1 := D�a[xn℄ in order to obtain by indution on `()(3) tp(a) = 
�+1 &  2 OT & fg [G� � a =) 9n( � a[xn℄).6



(Indution step:  � a[D�(b+1)℄ & b � a[xn℄ )  � a[D�(b+1)℄ � a[D�a[xn℄℄ = a[xn+1℄ )Now 9n(D�� ~ � (D�a)[n℄) is obtained as follows:OT 3 D�� ~ � D�a ���=) G� � G� �  � a (3)) 9n(D�� ~ � D�a[xn℄ = (D�a)[n℄).Proof of (1):1. a = 
�+1: Then  = D�0 � ~ � D�(0�1). Let b := 0.2. a = a0 � a1 with tp(a1) = 
�+1:Then  = a0 � 1 with a1[
�℄ � 1 � a1, and the laim follows immediately from the IH.3. a = D�a0 with � < �: Then tp(a0) = 
�+1 and a[x℄ = D�a0[x℄. Further  = D�0� ~ with b[
�℄ � 0 � b.By IH we get 0 � a0[x℄ for some x = D�(b�1) 2 OT with b 2 G�0. Sine � < �, G�0 � G�. From0 � a0[x℄ we get  � D�a0[x℄ = a[x℄.Lemma 1.6a 2 OT0 =) tp(a) 2 f0; 1; !g and o(a) = 8<: 0 if tp(a) = 0o(a[0℄) + 1 if tp(a) = 1supn2IN(o(a[n℄)+1) if tp(a) = !Proof of the last laim:Let a 2 OT0 with tp(a) = !. Then a[n℄ � a & a[n℄ 2 OT0 (by Theorem 1.5a,e) and o(a[n℄) < o(a) (byTheorem 1.4a). Now let  < o(a). Then  = o() for some  2 OT0 with  � a. Theorem 1.5d yields  � a[n℄for some n. Hene  < o(a[n℄).x2 Collapsing of in�nitary derivationsIn this setion we take a fresh start and introdue systems ID1� of in�nitary derivations together with ut-elimination E and ollapsing operations D� by whih every ID1� -derivation of an arithmetial formula A anbe transformed into a ut-free derivation of A in ID10 (i.e. !-arithmeti). ID1� is so to speak an in�nitaryversion of the formal theory ID� of �-times iterated indutive de�nitions; every ID�-derivation h an betranslated into an ID1� -derivation h1 of the same formula (or sequent). We will establish an upper bound�� for the proof-theoreti ordinal jID� j in terms of the operations h 7! h1, E , D� , namely we will provejID� j � �� := supfkD0(Em(h1))k : m 2 IN and h an ID�-derivation with endsequent of level 0 g, where kdkdenotes the length (or depth) of an in�nitary derivation d.As we will see below, the operations E and D� are losely related to the assignment of fundamental sequenes(a[x℄)x2jtp(a)j given in x1. In x3 we will exploit this observation and prove kD0(Em(h1))k �  0 m+2� (0),whih yields jID� j � �� �  0("
�+1).SyntaxLet L be an arbitrary 1st order language (i.e. set of funtion and prediate symbols). Atomi L-formulasare Rt1:::tn where R is an n-ary prediate symbol (of L), and t1; :::; tn are L-terms. Expressions of theshape A or :A, where A is an atomi L-formula, are alled literals. L-formulas are built up from literals bymeans of ^;_;8x; 9x. FV(A) denotes the set of free variables of A. A formula or term A is alled losed ifFV(A) = ;. The negation :A of a non-atomi formula A is de�ned via de Morgan's laws. The rank rk(A)of a formula A is de�ned by: rk(A) := 0 if A is a literal, rk(A ^ B) := rk(A _ B) := maxfrk(A); rk(B)g+ 1,rk(8xA) := rk(9xA) := rk(A) +1. By A(x=t) we denote the result of substituting t for (every free ourreneof) x in A (renaming bound variables if neessary). Expressions �x:F are alled prediates and denoted byF . For F = �x:F we set F [t℄ := F (x=t). If P is a unary prediate symbol then B(P=F) denotes the resultof substituting F for P in B, i.e. the formula resulting from B be replaing every atom Pt by F [t℄.7



Let X be unary prediate symbol not in L. A positive operator form in L is an L [ fXg-formula A in whihX ours only positively (i.e. A has no subformula :Xt) and whih has at most one free variable x.We use the following abbreviations: A(F ; t) := A(X=F ; x=t) , A(F) � F := 8x(A(F ; x)! F [x℄).For eah positive operator form A we introdue a (new) unary prediate symbol PA.Finite sets of formulas are alled sequents. They are denoted by �;�0;�. We mostly write A1; :::; An forfA1; :::; Ang, and A;�;� for fAg [ � [�, et.De�nition of the languages L� (0 � � < !)Let L0 be the language onsisting of the onstant 0 (zero), the unary funtion symbol S (suessor), andprediate symbols R for primitive reursive relations.L�+1 := L0 [ fPA : A positive operator form in L� gL<! := S�<! L�The only losed L0-terms are the numerals 0; S0; SS0; ::: whih we identify with the orresponding naturalnumbers (elements of IN). Arbitrary L0-terms will be denoted by t; t1; :::, and (number) variables by x; y.TRUE0 := set of all losed L0-literals whih are true in the standard model N.De�nition of lev(A)lev(A) := 0 if A is an L0[X ℄-literallev(PAt) := lev(A), lev(:PAt) := lev(A) + 1lev(A ^ B) := lev(A _ B) := maxflev(A); lev(B)glev(8xA) := lev(9xA) := lev(A)lev(PA) := lev(A) , lev(�) := maxflev(A) : A 2 �gRemarklev(PA) < � for eah prediate symbol PA in L� ,lev(A) � � for eah L�-formula A.From now on A;B;C denote L<!-formulas.Proof systemsWe will work in a Tait-style alulus with a somewhat unusual notion of derivation whih is espeially usefulfor the purposes of this paper.A proof system S is given by{ a set of formal expressions alled inferene symbols (syntati variable I){ for eah inferene symbol I a set jIj (the arity of I), a sequent �(I) and a family of sequents (��(I))�2jIj.The elements of �(I) [ S�2jIj��(I) ℄ are alled the prinipal formulas [ minor formulas ℄ of I.{ for eah inferene symbol I a set Eig(I) whih is either empty or a singleton fxg with x a variable not inFV(�(I)); in the latter ase x is alled the eigenvariable of I.NOTATIONBy writing(I) : : :�� : : : (�2I)� [ !u! ℄we delare I as an inferene symbol with jIj = I , �(I) = �, ��(I) = ��, and Eig(I) = ; [ Eig(I) = fug,resp.℄.If I = f0; :::; n�1g we write �0 �1 : : : �n�1� , instead of : : :�� : : : (�2I)� .
8



Indutive de�nition of S-derivationsIf I is an inferene symbol of S, and (d�)�2jIj is a family of S-derivations suh that Eig(I) \ FV(�) = ;where � := �(I)[S�2jIj(�(d�) n��(I)), then d := I(d�)�2jIj is an S-derivation with �(d) := � (endsequentof d) and last(d) := I (last inferene of d).Instead of I(d�)�2jIj we also write : : : d� : : : (�2jIj)I or Id0:::dn�1 or d0 : : : dn�1I if jIj = f0; :::; n�1g.Abbreviation: S 3 d ` � :() d is an S-derivation with �(d) � �.RemarkOur notion of derivations di�ers from the usual one in so far as our derivations have inferenes (inferenesymbols) and not sequents assigned to their nodes. The sequent \belonging" to a node � of a derivation d isnot expliitly displayed, but an be omputed by tree reursion from d (similarly for the free assumptions ina natural dedution style derivation).The Tait-style inferene rules in their traditional form : : :�;��(I) : : :�;�(I) are reobtained here as follows:If I 2 S and Eig(I) \ FV(�) = ;, thenfrom : : :S 3 d� ` �;��(I) : : : (8� 2 jIj) we onlude S 3 I(d�)�2jIj ` �;�(I) .The proof system ID�The language of ID� is L� .The inferene symbols of ID� are(Ax�) � if � 2 Ax(�)All we need to know about Ax(�) is that it is a set of L� -sequents suh that(i) � 2 Ax(�)) �(~x=~t) 2 Ax(�)(ii) � 2 Ax(�) & FV(�) = ; ) � \ TRUE0 6= ; or f:P; Pg � � for some P = PAn.(VA0^A1) A0 A1A0^A1 (WkA0_A1) AkA0_A1 (k 2 f0; 1g)(Vy8xA) A(x=y)8xA !y! (Wt9xA) A(x=t)9xA(CutC) C :C; (IndtF ) :F [0℄;:8x(F [x℄! F [Sx℄);F [t℄(ClPAt) A(PA; t)PAt (IndPA;tF ) :(A(F)�F);:PAt;F [t℄
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The in�nitary proof systems ID1� (� < !)The language of ID1� onsists of all losed L<!-formulas A.We use P [P�, resp.℄ as syntati variable for formulas of the form PAn [with lev(A) = �, resp.℄.The inferene symbols of ID1� are(Ax�) � , if � = fAg with A 2 TRUE0 or � = f:P; Pg with lev(P ) < �(VA0^A1) A0 A1A0^A1 (WkA0_A1) AkA0_A1 (k 2 f0; 1g)(V8xA) : : : A(x=i) : : : (i2IN)8xA (Wk9xA) A(x=k)9xA (k 2 IN)(CutC) C :C;(ClPAt) A(PA; t)PAt (lev(PA) � �) (e
P ) P : : :�Pq : : : (q 2 jP j); (lev(P ) < �)jP j := set of all utfree ID1� -derivations, where � := lev(P )�Pq := �(q) n fPgAn ID1� -derivation d is alled utfree if -rk(d) = 0 where -rk(d) is the least number greater than the ranksof all ut-formulas ourring in d, i.e.,-rk(I(d�)�2I) := sup(f-rk(I)g [ f-rk(d�) : � 2 Ig) with -rk(I) := n rk(C) + 1 if I = CutC0 otherwiseAbbreviationID1� 3 d `m � :, ID1� 3 d ` � & -rk(d) � md `m � :, ID1� 3 d `m � for some � < !.The set ID1� of all ID1� -derivations is introdued by an indutive de�nition (as given above for arbitrary proofsystems S) under the assumption that the sets ID1� for � < � are already de�ned.We set ID1<! := S�<! ID1� .The (e
P )-rule an be motivated as follows (with � := lev(P ) < �):Imitating the onstrutive interpretation of impliation we start by saying:\An ID1� -derivation of P ! B is an operation q 7! dq transforming everyutfree ID1� -derivation of P into an ID1� -derivation of B ".This may be replaed by the striter version:\An ID1� -derivation of P ! B is an operation q 7! dq transforming everyutfree ID1� -derivation of A! P into an ID1� -derivation of A! B (for any formula A)".In terms of the Tait-alulus used here this amounts to the following rule:(
P ) If for eah � and eah utfree ID1� -derivation q of �; P ,dq is an ID1� -derivation of �;�, then (dq)q2jP j is an ID1� -derivation of :P;� ".Now (e
P ) is just a ombination of (
P ) and (CutP ).The following de�nitions and Theorem 2.1 are needed for the embedding of ID� into ID1� , i.e., for deriving:(A(F)�F);:PAn;F [n℄ by means of (e
PA). 10



De�nitions (Substitution)For eah losed L�-formula A let d:A;A be the anonial utfree ID1� -derivation of :A;A(e.g. d:P;P := Axf:P;Pg, d:A;A := AxfAg if A 2 TRUE0, d:8xA;8xA := V8xA�Wi:8xAd:A(x=i);A(x=i)�i2IN).enA;F := Wn:(A(F)�F)VA(F ;n)^:F [n℄d:A(F ;n);A(F ;n)d:F [n℄;F [n℄ � :A(F ; n);A(F ; n) :F [n℄;F [n℄A(F ; n)^:F [n℄;:A(F ; n);F [n℄:(A(F) � F);:A(F ; n);F [n℄Given P = PA, a prediate F , and a sequent � we de�ne an operation S�P;F : ID1lev(P) ! ID1<! whihtransforms any derivation d 2 ID1lev(P) of �;� into a derivation d� := S�P;F(d) of :(A(F)�F);�;�(P=F).Roughly speaking d� results from d by substituting ertain ourrenes of P by F . In doing so, some inferenes(ClPn)A(P ; n)Pn are turned into A(F ; n)F [n℄ whih is not an inferene of ID1<!.Therefore those inferenes (ClPn) are replaed by d�0A(F ; n) enA;F:(A(F)�F);:A(F ; n);F [n℄ (Cut):(A(F)�F);F [n℄The preise de�nition of S�P;F(d) runs as followsS�P;F�I(d�)�2I� := 8>>><>>>:CutA(F ;n)S�[�0(I)P;F (d0)enA;F if I = ClPn with Pn 2 �I��S�[��(I)P;F (d�)��2I if I = VA or WkA with A 2 �I�S�P;F(d�)��2I otherwisewhere (VA)� := VA(P=F) , (WkA)� := WkA(P=F).The following theorem is easily veri�ed. Note that the axioms Axf:Pn;Png do not belong to ID1lev(P) !Theorem 2.1ID1lev(P) 3 d `0 �;� & rk(A(F ; x)) < m =) S�P;F(d) `m :(A(F)�F);�;�(P=F).Embedding of ID� into ID1�An ID�-derivation h is alled losed if every number variable ourring free in h is the eigenvariable of aninferene below that ourrene. Espeially FV(�(h)) = ; for losed h.For eah losed ID�-derivation h we de�ne an ID1� -derivation h1 suh that h1 `m �(h) for some m 2 IN.0. (Ax�)1 := Ax�0 with a suitable �0 � �1. (Vy8xAh0)1 := V8xA�h0(y=i)1�i2IN , where h0(y=i) is de�ned as expeted2. (IndnF )1 := dn with d0 := d:F [0℄;F [0℄, di+1 := Wi9x(F [x℄^:F [Sx℄)VF [i℄^:F [Si℄di d:F [Si℄;F [Si℄3. (IndP;nF )1 := Axf:Pn;Png : : :SfPngP;F (q) : : : (q 2 jPnj)e
Pn4. Otherwise: (Ih0:::hn�1)1 := Ih10 : : : h1n�1Theorem 2.2 (Embedding)ID� 3 h ` � & h losed =) ID1� 3 h1 `m � for some m 2 IN.Proof: straightforward.Espeially (IndP;nF )1 `m :(A(F)�F);:Pn;F [n℄ (where P = PA) is obtained from:q 2 jPnj ) ID1lev(P) 3 q `0 �Pnq ;Pn Theorem2:1) SfPngP;F (q) `m :(A(F)�F);�Pnq ;F [n℄.11



AbbreviationsV-For := set of all formulas of the shape A ^ B or 8xA.V+-For := TRUE0 [V-For [ set of all formulas PAn.C[k℄ := �Ck if C = C0 _̂C1 and k 2 f0; 1gA(x=k) if C = 98xA and k 2 INTheorem 2.3By tree reursion one an de�ne operations J kC ; RC ; E ; D� on ID1<! with the following properties:(V-Inversion) d `m �; C & C 2 V-For =) J kC(d) `m C[k℄(Redution) e `m �; C & d `m �;:C & C 2 V+-For & rk(C) � m =) RC(e; d) `m �.(Elimination) d `m+1 � =) E(d) `m �.(Collapsing) d `0 � & lev(�) � � ) ID1� 3 D�(d) `0 �.Proof:For d = I(d�)�2I 2 ID1<! and e 2 ID1<! we de�neJ kC(d) := (J kC(dk) if I = VCI�J kC(d�)��2I otherwise (C 2 V-For)RC(e; d) :=8>><>>:CutC[k℄J kC(e)RC(e; d0) if I = Wk:Ce if I = Axf:C;CgI�RC(e; d�)��2I otherwise (i.e., if :C 62 �(I)) (C 2 V+-For)E(d) := 8><>:RC(E(d0); E(d1)) if I = CutC with C 2 V+-ForR:C(E(d1); E(d0)) if I = CutC with :C 2 V+-ForI�E(d�)��2I otherwise .D�(d) := (D�(dD�(d0)) if I = e
P with � := lev(P ) � �I�D�(d�)��2I otherwiseOne easily veri�es that the so de�ned operations have the asserted properties.Let us look at D�(d) for d = e
P (dq)q2f0g[jP j `0 � with lev(�) � � � � := lev(P ).Then d0 `0 �; P and dq `0 �;�Pq for all q 2 jP j (y).By IH ID1� 3 q0 := D�(d0) `0 �; P . Hene q0 2 jP j and �Pq0 � �.Now (y) yields dq0 `0 �, and by IH we get ID1� 3 D�(dq0) `0 �.Remark: The de�nition of D�(d) almost automatially arises if one pursues the goal to eliminate from d alle
P -inferenes with lev(P ) � �.De�nitionFor A with lev(A) = 0 let ��A := fn : A(�<�A ; n)g, where �<�A := S�<� ��A (� 2 On) .jnjA := minf� : n 2 ��Ag (if n 2 S�2On ��A)jID� j := supfjnjA : lev(A) = 0 & ID� ` PAng (proof-theoreti ordinal of ID�)By (N;�<�) we denote the expansion of the standard model N whereeah prediate onstant PA of level 0 is interpreted by �<�A .kI(d�)�2Ik := sup�2I(kd�k+1) (length or depth of d)12



Theorem 2.4 (Boundedness)ID10 3 d `0 � & lev(�) = 0 =) (N;�<kdk) j= �Proof by indution on kdk.Theorem 2.5If h is a losed ID�-derivation of � with lev(�) = 0 then(N;�<�) j= � with � = kD0(Em(h1))k for some m 2 IN.Proof:ID� 3 h ` � Embedding=) ID1� 3 h1 `m � for some mCutelim=) ID1� 3 Em(h1) `0 �Collapsing=) ID10 3 D0(Em(h1)) `0 �Boundedness=) (N;�<�) j= � with � := kD0(Em(h1))kDe�nition�� := supfkD0(Em(h1))k : m 2 IN and h a losed ID�-derivation with endsequent of level 0 gThen Theorem 2.5 shows that jID� j � �� . In what follows we will prove �� � supm2IN 0 m� (0) =  0("
�+1).RemarkNote the similarity between\ D�(d) = D�(dD�(d0)) if d = e
P �d���2f0g[jP j with � = lev(P ) � � "and\ (D�a)[1℄ = D�a[D�a[
�℄℄ if a 2 T and tp(a) = 
�+1 with � � � ".This observation will be pursued in x3.x3 Majorization of in�nitary derivations by tree ordinalsWe are now going to relate in�nitary derivations d 2 ID1� to ordinals (ordinal notations) a 2 OT. Here weheavily utilize the assignment of fundamental sequenes from x1, whih so to speak turns eah a 2 OT intoa wellfounded tree, a so-alled tree ordinal o(a), namely o(a) := �o(a[x℄)�x2jtp(a)j. On the other side, fromevery derivation d 2 ID1� one obtains a tree ordinal o(d) essentially by deleting all inferene symbols (andpossibly other data) assigned to the nodes of d (namely o(I(d�)�2I) := �o(d�)��2I). Now the �rst idea whihomes into mind is that o(d) should equal o(a) for suitable a 2 OT (at least if d = h1 with h 2 ID�). Butthis doesn't work; instead one an establish a weaker relation between o(d) and o(a), namely that in a ertainsense o(d) is \embeddable" into o(a). Below we will de�ne a relation d / a (d is majorized by a) betweenin�nitary derivations d and tree ordinals a, whih orresponds to this informal notion of embeddability. Themain properties of / will be: (i) d / a & d 2 ID10 ) kdk � kak, (ii) d / a & d 2 ID1� ) E(d) / D�(a),(iii) d / a ) D�(d) /D�(a). Here D� is a ollapsing funtion on tree ordinals de�ned in lose analogy to D�;at the same time D� is losely related to  �, it is so to speak the \tree version" of  � , whih beomes lear byomparing the de�nition of D� (see below) with the orresponding lauses in the de�nition of the fundamentalsequenes in x1. Mainly by means of (i)-(iii) we will establish that kD0(Em(h1))k � kD0Dm+2� (0)k and thus�� � supm2IN kD0Dm� (0)k. Finally we will show that kD0(Dm� (0))k =  0 m� (0) whih then yields jID� j � �� �supm2IN 0 m� (0) =  0("
�+1). 13



Indutive de�nition of lasses T� of tree ordinals1. 0 := ( ) 2 T�2. a 2 T� ) a+1 := (a) 2 T�3. 8n 2 IN(an 2 T�) ) (an)n2IN 2 T�4. � < � & 8x 2 T�(ax 2 T�) ) (ax)x2T� 2 T�T<! := S�<! T� . The elements of T<! are alled tree ordinals (denoted by a; b; ).NoteEvery a 2 T� is of the form (a�)�2I with I 2 f;; f0g; INg [ fT� : � < �g.We de�ne k(a�)�2Ik := sup�2I(ka�k+ 1).Abbreviations0 := 0, n+1 := n+1 , 1 := 1 , 
0 := (n)n2IN, 
�+1 := (x)x2T�De�nition of a+ b and a � na+ 0 := a , a+ (bx)x2I := (a+ bx)x2I if I 6= ;,a � 0 := 0, a � (n+1) := (a � n) + aProposition. a) a; b 2 T� ) a+ b 2 T�, b) a+ (b+ ) = (a+ b) + De�nition of D� : T<! �! T�The de�nition of D�(a) proeeds by transf. re. on a simultaneously for all � < !.D0(0) := 1 , D�(0) := 
� if � 6= 0D�(a+1) := �D�(a) � (n+1)�n2IND�((ax)x2I) := 8><>:�D�(ax)�x2I if I 2 fINg [ fT� : �<�g�D�(axn)�n2IN if I = T� with � � �with x0 := 
�; xn+1 := D�(axn)Remark1. For a = (ax)x2I 2 T� n f0g we have D�(a) = (�D�(a0) � (n+1)�n2IN if I = f0g�D�(ax)�x2I otherwise .This means that on T� the funtion D� behaves like the ordinal funtion� 7! !
�+� (if � > 0) or � 7! !� (if � = 0).2. The anonial analogue to the ollapsing funtion D� from x2 would beD��(ax)x2I� := �D�aD�(a0) if I = T� with � � ��D�(ax)�x2I otherwiseBut we have hosen the above version of D� , sine this preisely orresponds to  � and at the same timeis not to far removed from D� .The following de�nition and lemma are auxiliary.De�nition of a	, �0 and �a	 := � a0 if a = a0+1 or a = (ai)i2INa
� if a = (ax)x2T�b�0 a :() (a 6= 0 & b = a	) or (a = (ai)i2IN & 9i2IN(b = ai))� (� , resp.) is the transitive (transitive and reexive, resp.) losure of �0.Lemma 3.1(a) a 6= 0 ) (+ a)	 = + a	 & D�(a)	 = D�(a	)(b) 1� a if a 6= 0 14



() b� a ) + b� + a(d) b� a ) D�b� D�a(e) n� 
� � 
�+1De�nition of d / a (Majorization)d / a if one of the following lauses holds:(/ 1) d = I(di)i2jIj with I 6= e
P and a = b+1 with di / b for all i 2 jIj(/ 2) d = e
P�(dq)q2f0g[jP�j & a = (ax)x2T� & 8q 2 f0g[jP�j 8x 2 T�(q / x) dq / ax)(/ 3) d / b & b� a(By onvention 0 / a for any a.)Lemma 3.2 d / a & a 2 T0 =) kdk � kak.Theorem 3.3(a) d / a =) J kC(d) / a(b) d / a =) S�P;F (d) /
� + a for eah �() e / b & d / a =) RC(e; d) / b+ a(d) d / a 2 T� =) E(d) /D�(a)(e) d / a =) D�(d) /D�(a)Proof by indution on a:We only arry out the essential ases of (),(d),(e).() 1. d = Axf:C;Cg: R(e; d) = e / b� b+ a.2. d = Wk:Cd0 & a = a0+1 & d0 / a0:R(e; d0) IH/ b+ a0 & J (e) (a)/ b� b+ a0 =) R(e; d) = CutJ (e)R(e; d0) / (b+ a0) + 1 = b+ a.3. d = e
P�(dq)q2I & a = (ax)x2T� & 8q 2 I8x 2 T�(q / x) dq / ax):IH ) 8q 2 I8x 2 T�(q / x) R(e; dq) / b+ ax) ) R(e; d) = e
P��R(e; dq)�q2I / (b+ ax)x2T� = b+ a.(d) 1. d = CutCd0d1 with C 2 V+-For, and a = a0+1 & d0; d1 / a0: IV ) E(di) / D�(a0) ()) E(d) =RC(E(d0); E(d1)) /D�(a0) +D�(a0) = D�(a0) � 2 ) E(d) / �D�(a0) � (n+1)�n2IN = D�(a).2. d = e
P�(dq)q2f0g[jP�j & a = (ax)x2T� & 8q 2 f0g[jP�j 8x 2 T�(q / x) dq / ax):Sine a 2 T� , we have � < � and D�(a) = �D�(ax)�x2T� .IH ) 8q 2 f0g[jP�j 8x 2 T�(q / x) E(dq) /D�(ax)) Def) E(d) = e
P�(E(dq))q2f0g[jP�j / �D�(ax)�x2T� .(e) 1. d = I(di)i2I with I 6= e
P and a = b+1 with di / b for all i 2 I : IH ) 8i(D�(di) /D�(b) ) )) D�(d) = I(D�(di))i2I /D�(b) + 1� D�(b) +
��D�(b) +D�(b)�D�(b+ 1).2. d = e
P�(dq)q2I & a = (ax)x2T� & 8q 2 I8x 2 T�(q / x) dq / ax):2.1. � < �: IH ) 8q 2 I8x 2 T�(q / x) D�(dq) /D�(ax)) )) D�(d) = e
P�(D�(dq))q2I / (D�(ax))x2T� = D�(a).2.2. � � �: Then D�(d) = D�(dD�(d0)) and D�(a) = (D�(axn))n2IN with x0 = 
�, xn+1 = D�(axn).0 / x0 ) d0 / ax0 IH=) q := D�(d0) /D�(ax0) = x1 =) dq / ax1 IH=)D�(d) = D�(dq) /D�(ax1)� �D�(axi)�i2IN = D�(a).Theorem 3.4 (Embedding)For eah losed ID�-derivation h we have h1 /
� �2 + n(h),where n(Ih0:::hm�1) := maxf0; n(h0); :::; n(hm�1)g+ 1Proof: 15



By de�nition (IndP;nF )1 = Axf:Pn;Png : : :SfPngP;F (q) : : : (q 2 jPnj)e
Pn .By Theorem 3.3b we have 8q 2 jP�j8x 2 T�(q / x) SfPngP;F (q) /
� + x) whih togetherwith 8x 2 T�(Axf:Pn;Png /
� + x) yields (IndP;nF )1 /
� +
lev(P)+1�
� +
� = 
� �2.The other ases are easy.Theorem 3.5Let � > 0. If h is a losed ID�-derivation of � with lev(�) = 0 then(N;�<�) j= � with � = kD0(Dm� (0)k for some m 2 IN.Proof:Theorem 2.5 ) (N;�<�) j= � with � = kD0(Em(h1))k for some m < !.h1 Th:3:4/ 
� �2 + n L:3:1;e� 
� �3 Def� D�(1) L:3:1b;d� D�D�(0) Th:3:3d;e=)D0(Em(h1)) /D0Dm+2� (0) L:3:2=) kD0(Em(h1))k � kD0Dm+2� (0)k.CorollaryjID� j � supm2IN kD0(Dm� (0)kNow we are going to prove that kD0(Dm� (0)k equals  0 m� (0). By omparing the de�nition of D� with theassignment of fundamental sequenes in x1 and taking Theorem 1.5 and (}) into onsideration this should bemore or less lear. In order to obtain a rigorous proof we introdue the anonial interpretation t : T �! T<!and show that this respets the fundamental sequenes (a[x℄)x2jtp(a).De�nition of t : T �! T<!t(D�0a0�:::�D�n�1an�1) := D�0 t(a1) + : : :+D�n�1t(an�1)Theorem 3.6 For eah a 2 T we have(i) tp(a) = 1 ) t(a) = t(a[0℄) + 1,(ii) tp(a) = ! ) t(a) = (t(a[n℄))n2IN,(iii) tp(a) = 
�+1 ) t(a) = (ax)x2T� with 8x 2 j
�+1j(t(a[x℄) = at(x))Proof:Let FS(a) abbreviate the laim (i)&(ii)&(iii). Then in a straightforward way one proves(1) FS(a) & FS(b) =) FS(b� a), (2) FS(a) =) FS(D�a) ,from whih one obtains (8a 2 T)FS(a) by indution on the build up of a.Theorem 3.7 a 2 OT0 =) o(a) = kt(a)kProof by indution on t(a):By L.1.6 tp(a) 2 f0; 1; !g. If tp(a) = 0 then a = 0 and t(a) = 0. If tp(a) = ! then t(a) 3:6= (t(a[n℄))n2IN andtherefore kt(a)k = supn2IN(kt(a[n℄)k+1) IH= supn2IN(o(a[n℄) + 1) L:1:6= o(a)The ase \tp(a) = 1" is treated in the same way.Corollary(a) kD0Dm� (0)k =  0 m� (0)(b) jID� j � supm2IN 0 m� (0) =  0("
�+1)Proof: We have jID� j � supm2IN kD0(Dm� (0)k and kD0Dm� (0)k Def= kt(D0Dm� 0)k 3:7= o(D0Dm� 0) Def�o(D0Dm� 0) =  0 m� (0). This yields (b), and (a) with � in plae of =. To get = in (a) we have to use(}) whih implies o(a) = o(a) for all a 2 OT (f. x1, pg.4).16



x4 Two AppliationsLet bT := fa 2 T : a prinipal term g and ObT := OT \ bT.As one easily sees, the set bT an be indutively generated bya0; :::; an�1 2 bT (n � 0) & � < ! =) D�(a0�:::�an�1) 2 bT.Hene bT is nothing other than the set of all �nite, ordered trees with labels � < !, and eah term a =a0�:::�an�1 2 T an be onsidered as a tree with immediate subtrees a0; :::; an�1 2 bT and an unlabeled root.The assignment of (fundamental) sequenes (a[x℄)x2jtp(a)j an then be seen as the de�nition of a redutionproedure (or rewriting relation) a ,!x a[x℄ on T. In [Bu87℄ this redution proedure (restrited to T0 :=fD0a0�:::�D0an�1 : a0; ::::; an�1 2 Tg) had been ooked up as a so-alled hydra game, where in the ith roundof the game (or battle) the hydra a transforms itself into a new hydra a[ni℄. Using Theorem 3.6 and Theorem3.5 one easily onludes that the hydra game terminates (i.e., 8a 2 T08(ni)i2IN9k( a[n0℄[n1℄ : : : [nk℄ = 0 ) ),and that this fat is not provable in ID<!:Let W0 be indutively de�ned by the rule: a 2 T0 & [ a 6= 0) 8n(a[n℄ 2W0) ℄ =) a 2 W0.Then \a 2 W0" says that eah ,!-redution sequene starting with a terminates. Hene \8a 2 T0(a 2 W0)"expresses termination of the hydra game. Now using Theorem 3.6 by indution on t(a) we get8a 2 T0( a 2W0 & jajW0 = kt(a)k ).The unprovability result is obtained as followsID� ` 8x(D0Dx�0 2W0) Th:3:5=) 9m8n( jD0Dn� 0jW0 < kD0Dm� (0)k ) =)=) 9m( jD0Dm� 0jW0 < kt(D0Dm� 0)k = jD0Dm� 0jW0 ). Contradition.Another interesting observation about the system (OT;�) is due to Okada [Ok88℄ and provides a rathershort proof of H. Friedman's result that the extended Kruskal Theorem on �nite labeled trees implies thewellfoundedness of (OT;�) (provably in ACA0). This runs as follows.First we de�ne a binary relation v on bT suh that a v b is equivalent to \there exists a homeomorphiembedding f : a! b satisfying Friedman's gap ondition (inluding the gap ondition for the root)".De�nition of a v b for a; b 2 bTLet a = D�(a0�:::�am�1) and b = D�(b0�:::�bn�1).a v b i� one of the following two lauses holds(i) � = � and 9 injetive q : f0; :::;m�1g ! f0; :::; n�1g suh that ai v bq(i) for i < m,(ii) � � � and 9j < n( a v bj ).Then we de�ne a relation ���� and prove 8a; b 2 ObT( a v b ) a �� b ).De�nitiona �� b :, a � b & 8�(G�a � G�b) (with X � Y :, 8x 2 X9y 2 Y (x � y) )Lemma 4.1(a) a �� b =) D�a �� D�b(b) D�a �� b & � � � & G�b � b =) D�a �� D�bProof:(a) a �� b & G�D�a 6= ; ) G�D�a = fag [G�a � fbg [G�b = G�D�b.(b) 1. D�a �� b & � � � � � ) G�D�a � G�b � G�D�b. Hene 8�(G�D�a � G�D�b).2. Proof of D�a � D�b: Let � = � (otherwise the laim is trivial). Then a 2 G�(D�a) � G�b � b.Theorem 4.2a; b 2 ObT & a v b =) a � b 17



Proof: By indution on `(b) we prove the stronger statement a �� b.Let a = D�(a0�:::�am�1) and b = D�(b0�:::�bn�1).(i) � = � & 8i < m(ai v bq(i)) & 8i; j < m(i 6= j ) q(i) 6= q(j)): By IH we have ai �� bq(i) for i < m. Fromthis we get (a0�:::�am�1) �� (b0�:::�bn�1) and then by L.4.1a a = D�(a0�:::�am�1) �� D�(b0�:::�bn�1) = b.(ii) � � � and 9j < n( a v bj ): By IH we have a �� bj �� (b0�:::�bn�1) =: . Sine b = D� 2 OT, we alsohave G� � . By L.4.1b this yields a = D�(a0�:::�am�1) �� D� = b.Referenes[Az℄ Azel, P.: A new approah to the Bahmann method for desribing large ountable ordinals. (Un-published)[Ar96℄ Arai, T.: Systems of ordinal diagrams. Preprint (1996)[Ar97℄ Arai, T.: Proof Theory for Theories of Ordinals II: �1-stability. Preprint (1997)[Br75℄ Bridge, J.: A simpli�ation of the Bahmann method for generating large ountable ordinals. JSL40 (1975), pp. 171-185.[Bu75℄ Buhholz, W.: Normalfunktionen und konstruktive Systeme von Ordinalzahlen. In: Proof TheorySymposion, Kiel 1974, Springer LNM 500, pp. 4-25 (1975)[Bu81℄ Buhholz, W.: The 
�+1-rule and Ordinal analysis of ID� . In: Buhholz, W., Feferman, S., Pohlers,W., Sieg, W., Iterated Indutive De�nitions and Subsystems of Analysis: Reent Proof-TheoretialStudies. Springer LNM 897 (1981)[Bu86℄ Buhholz, W.: A new system of proof-theoreti ordinal funtions. APAL 32, pp. 195-207 (1986)[Bu87℄ Buhholz, W.: An independene result for (�11-CA)+BI. APAL 33 (1987), pp. 131-155[BS88℄ Buhholz, W. and Sh�utte, K.: Proof Theory of Imprediative Subsystems of Analysis. Studies inProof Theory, Monographs 2. Napoli: Bibliopolis 1988[Fe87℄ Feferman, S.: Proof Theory: A Personal Report. In: Takeuti, G.: Proof Theory (Seond edition).Elsevier (1987), 447-485.[J�a84℄ J�ager, G.: �-inaessible ordinals, ollapsing funtions and a reursive notation system. Arh. math.Logik 24 (1984), pp. 49-62.[Ok88℄ Okada, M.: Note on H. Friedman's independene result on the extended Kruskal Theorem. DisreteMathematis (1988)[Po87℄ Pohlers, W.: Ordinal notations based on a hierarhy of inaessible ardinals. APAL 33 (1987), pp.157-179.[Ra90℄ Rathjen, M.: Ordinal Notations Based on a Weakly Mahlo ardinal. Arh. Math. Logi 29 (1990),pp. 249-263.[Ra94℄ Rathjen, M.: Proof Theory of Reetion. APAL 68 (1994) pp. 181-224[Ra95℄ Rathjen, M.: Reent Advanes in Ordinal Analysis: �12-CA and related systems. The Bulletin ofSymboli Logi 1/4 (1995) pp. 468-485[Se98℄ Setzer, A.: Well-ordering proofs for Martin-L�of type theory. APAL 92 (1998) pp. 113-15918



Appendix (Proof of (1), (2) in the proof of Theorem 3.6)(1) FS(a) & FS(b) =) FS(b� a),(2) FS(a) =) FS(D�a).Proof:(1) 0. a = 0: b� a = b.1. tp(a) = !: Then tp(b� a) = ! and t(b� a) = t(b) + t(a) FS(a)= t(b) + (t(a[n℄))n2IN = (t(b) + t(a[n℄))n2IN =(t(b� a[n℄))n2IN = (t((b� a)[n℄))n2IN.2. tp(a) = 
�+1: By assumption t(a) = (ax)x2T� with 8x 2 j
�+1j(t(a[x℄) = at(x)).Hene t(b�a) = t(b)+ (ax)x2T� = (t(b)+ ax)x2T� with t((b�a)[x℄) = t(b�a[x℄) = t(b)+ t(a[x℄) = t(b)+ at(x).(2) 0. a = 0 & � = 0: tp(D�a) = 1 & (D�a)[0℄ = 0 and hene t(D�a) = D0(0) = t((D�a)[0℄) + 1.1. a = 0 & � = �+ 1: tp(D�a) = 
�+1 and t(D�a) = (x)x2T� with t((D�a)[x℄) = t(x).2. tp(a) = 1: tp(D�a) = ! & (D�a)[n℄ = (D�a[0℄) � (n+1).By assumption t(a) = t(a[0℄) + 1. Henet(D�a) = D�t(a) = �D�(t(a[0℄)) � (n+1)�n2IN = �t(D�a[0℄) � (n+1)�n2IN = �t((D�a)[n℄)�n2IN.3. tp(a) = !: tp(D�a) = ! & (D�a)[n℄ = D�a[n℄.By assumption t(a) = �t(a[n℄)�n2IN. Henet(D�a) = D�t(a) = �D�(t(a[n℄))�n2IN = �t(D�a[n℄)�n2IN = �t((D�a)[n℄)�n2IN.4. tp(a) = 
�+1 with � < �: tp(D�a) = 
�+1 & (D�a)[x℄ = D�a[x℄.By assumption t(a) = (ax)x2T� with t(a[x℄) = at(x).Hene t(D�a) = �D�(ax)�x2T� with t((D�a)[x℄) = t(D�a[x℄) = D�(t(a[x℄)) = D�(at(x)).5. tp(a) = 
�+1 with � � �: tp(D�a) = ! & (D�a)[n℄ = D�a[xn℄ with x0 := 
� and xn+1 := D�a[xn℄.By assumption t(a) = (ax)x2T� with 8x 2 j
�+1j(t(a[x℄) = at(x)) (**).Hene t(D�a) = D�(t(a)) = �D�(axn)�n2IN with x0 := 
�, xn+1 := D�(axn).It remains to prove: t((D�a)[n℄) = D�(axn).Sine t((D�a)[n℄) = D�(t(a[xn℄)), this amounts to t(a[xn℄) = axn .Due to (**) it remains to prove t(xn) = xn.t(x0) = t(
�) = 
� = x0,t(xn) = xn (��)) t(a[xn℄) = axn ) t(xn+1) = D�(t(a[xn℄)) = D�(axn) = xn+1.
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