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§1 The Tait calculus PL1 for classical 15*-order predicate logic without equality
Formal language of PL1

Basic symbols:

1. Variables vg,v1,vz2... (denoted by x,y, 2,1, ...)

2.0, AV, Y, 3

Let £ be some fixed (countable) language, i.e. set of function and predicate symbols where each symbol

p € L has a certain arity #(p) € IN.

From now on all syntactic notions such as terms, formulas, sequents,.... are defined with respect to L.
Inductive definition of terms

1. Every variable is a term.

2. If f is an n-ary function symbol (n > 0) and t1, ..., ¢, are terms then the string ft;...t, is a term.
Abbreviation: Vars := set of all variables; T := set of all terms ¢.

An atomic formula is an expression pt;...t,, where p is an n-ary predicate symbol and #1, ..., ¢, are terms.
An expression of the form A or —A, where A is an atomic formula, is called a (positive or negative) literal.

Inductive definition of formulas
1. Every literal is a formula.
2. If A, B are formulas then also AAB and VAB are formulas.

3. If A is a formula then VzA and 3z A are formulas.
As usual we write AANB, AV B for NAB, VAB.

Syntactic variables:

r,s,t for terms; A, B,C, D, F,G for formulas; o for A, V; Q for V, 3.
Definition of the negation neg(A) of a formula A

1. If A is atomic then neg(A) := = A and neg(—A) := A.

2. neg(A A B) :=neg(A) V neg(B), neg(A V B) := neg(A) A neg(B).

3. neg(VxA) := Jzneg(A), neg(IzA) := Vaneg(A).

Corollary. neg(A) is a formula, and neg(neg(4)) = A.

Notation.
(i) From now on we write —A for neg(A).

(i) A = ... & Ay = B =24, V (743 V (. V (=4, V B)..)).

For each expression (i.e. term or formula) E we define the set FV(E) of its free variables in the usual way.
If X is a set of terms and/or formulas then FV(X) := (J{FV(E) : E € X'}.

Formulas A, A" which differ only in the names of their bound variables will be identified. This is sometimes
expressed by saying that A and A’ are a-equivalent.
A substitution is a mapping 6 : Vars — T with dom(8) := {z € Vars : §(z) # =} finite.

t ife=y

The updates 8!, of § are defined by 8! (z) := {0(:5) otherwise”
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t; fe=xz;withl<i<n
x otherwise '
If 6 = (z1/t1, ..., xn/ty) and E is an expression then Ef denotes the result of simultaneously substituting the

(z1/t1,...,xn/t,) denotes the substituion 6 with #(x) = {

terms tq,...,t, for the variables x1, ..., x, respectively. In using the substitution notation we shall tacitly
assume that a suitable renaming of bound variables is carried out, so that whenever x; occurs free in the

range of a quantifier Qy then y € FV(¢;). In §XXX we will give a thorough treatment of these things.
We also write Ey, ... 2, (t1,...,ty) instead of E(xy/t1, ..., Tn/tn).

Locally we shall adopt the following convention. In an argument, once a formula has been introduced as

A(z), i.e. A with a designated free variable z, we write A(t) for A, (t), and similarly with more variables.

Definition of rk(A)

1. rk(A4) :=0, if A is a literal.

2. rk(A ¢ B) := max{rk(A),rk(B)} + 1.
3. rk(QzA) :=rk(A4) + 1.

Corollary. rk(—A) =rk(A4) = rk(A48).

We shall derive finite sets of formulas (so-called sequents), denoted by I', A,.... The intended meaning of T
is the disjunction of all formulas in I'. We use the notation A,T', A for {A}UT U A, etc.

N
An inference is a a finite tupel of sequents (I'g,...,I',_1,T) written as T L.
If n = 0 the inference (as well as the sequent I') is called an aziom.
. . . A TI,B . . . .
A rule R is an inference scheme like, e.g., T ANE A single instance of a rule R is called an PR-inference.

We also think of a rule R as the set of all its instances, i.e., the set of all R-inferences.

The rules of the system PL1 are
(LogAx) T',A,—A if A atomic (logical azioms)
Ao T, A T, Ay

(N) T Ay A A, (V) T A,V A, (k €{0,1})
rA . T, A, (t)
(V) T vid if z  FV(D) &) T 304
(Cuty 120 Fr,ﬁo

The principal formulas in (LogAx) are A and —A. In (A), (V), (V), (3) the principal formula is AAB, AV B,
VxA and Jz A, respectively. (Cut) has no principal formula. The C in (Cut) is called a cut-formula. The
displayed formulas in the premiss of an inference are called its minor formulas. For example, (A) with
principle formula AAB has the minor formulas A, B. The variable z in (V) is called the eigenvariable of the

respective inference. Due to our convention on identifying a-equivalent formulas we have Yz A = Vy A, (y) if

y € FV(VzA). Hence, if y ¢ FV([,VzA) then also %’ZSZ) is a correct V-inference.

Note that if

FA 1 is an (V)-, (¥)-, or (3)-inference with principal formula A and minor formula Ay, then we

do not necessarily have A =T, Ap; but we only know A =T", Ay with IV, A =T, A. Similarly for (A).
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Definition.

A derivation is a tree of sequents generated from the above axioms and rules.

The sequent at the root of a derivation d is called its endsequent.

d is called a derivation of I if T is its endsequent.

Examples:
Rft,—Rft = Rzy, Rry G,-Fy,Fy Fi,—F;
“Rfftv Rft,-Rft" Sy—Ray, Ry G.—Fy Fy Fy n—F,
“Rfftv Rft,—Rftv Rt 3y—Ray, xRy G—Fo B BB
32(—Rfz v Rz),~Rfi vV Ri VaJy—Raxy, xRy | G —Fo B FA-F
Jz(-Rfz V Rzx) @ Vrdy-Rxy,VyIxRxy “ G,—Fy, Fy

In the third example we have used the following abbreviations: G := Jz(F(z) A -F(Sz)), ie. G =
-Vz(F(x) = F(Sx)). Fy:= F(0), Fy := F(S0), etc.
[p,A T'y1,B
To.T1,AAB
[y #T';. But in an obvious way it can be taken as a shorthand for the following PL1-derivation:
G,-Fy, B>, Fi,Fy G,-Fy, Fy, F1-F
G.—Fy, By, 1, Fy A—F) M

Actually this not a completely correct PL1-derivation, since it contains A-inferences with

G7_'F07F27F1 ® Ga_'F07F27F17_'F2
A
G, =Fo, o, Fi AFs )
GFo By

Definition.
The cut-rank of a derivation d is crk(d) := sup{rk(C)+1 : C' cut-formula of d}.
d is called cutfree if crk(d) = 0.

The height hgt(d) of a derivation d is defined recursively by
hgt(d) := sup,,,(hgt(d;)+1) where dy, ...,d,,—1 are the immediate subderivations of d (0 < n < 2).

The last (bottommost) inference of d is denoted by last(d).

Abbreviations.
d+kE T : <= dis a derivation of T with hgt(d) < k and crk(d) < m;
PL1HE T 1< dFE T for some PL1-derivation d.

if 7 has the eigenvariable x

For any inference 7 we set Eig(Z) = { @az } if 7 has no eigenvariable

Definition
Tp...Th-

A rule R is closed under substitution iff the following holds for every SR-inference Z = 0o nol,

If 6 is a substitution such that (Eig(Z) = {z} = z6 € Var\ FV(I'9)), then

70 — Tof...T,,—16

is an R-inference too.
e

Lemma 1.0. The rules of PL1 are closed under substitution. Proof: cf. .....



Lemma 1.1. (Substitution)
PL1F: T = PL1KE T9.

Proof by induction on k:

Let d - T

1. Assume that last(d) is a V-inference. Then k¥ > 0 and T' = Ty,V2zA with F¥~! T, 4 and = ¢ FV(I):
Choose y ¢ FV(I'8) and let 0 := 6Y.

LH. = Fi=1Tof, A0 “2° +E T4, From x ¢ FV(T) it follows that T'§ = 9.

2. In all other cases the claim follows immediately from the I.H. and L.1.0.

Lemma 1.2. (Weakening)

PLIFE T & T CT' = PL1FE TV,

Proof by induction on k:

1. Assume k > 0 and T = Ty, V2 A with F¥-1 T, A and = ¢ FV(Ty):
Choose y € FV(I"). Fi=1Tg A "L be=1 1o A, (y) B FE-1 T 4, (y)
For the last step note that VxA € IV and y ¢ FV(I).

Sy

" is an

2. In all other cases the claim follows immediately from the I.H. (Note that if I' C I and Ilif
_ DT . _
inference (LogAx), (A), (V), (3) or (Cut) then —risan inference of the same kind. )
Corollary.

PL1FE T iff one of the following cases holds

(LogAx) {A,—A} CT for some atomic A,

(A) ApAA; € T and PL1 FE-L T A; for each i € {0,1},
(V) AgVA; €T and PL1HE-1 T A; for some i € {0,1},
v) VzA € T and PL1 FE=1 T, A with = ¢ FV(T),

3 JzA €T and PL1FE-1 T A, (1),

(Cut)  PL1Fk=1T,C & PL1 k=1 T, ~C with rk(C) < m.

In all cases except (LogAx) it is tacitly assumed that & > 0.

Lemma 1.3. (Inversion)

(a) PL1HE T,V2A = PLIFE T, A, (8);

(b) PL1Fk T, 4g A Ay = PL1FE T, 4; for i =0, 1;

(¢) PL1FE T AV B = PL1HE T, A, B.

Proof of (a) by induction on k:

1. Assume that Vz A is principal part of the last inference of the given derivation.
Then this has to be a V-inference, and we have F¥~! ' V2 A, A with 2 ¢ FV(T).
By L.1.1 we obtain F:~1 T, Vz A, A,(t), and then, by LH., FE=1 T A, ().

2. FE=1 T V2 A, B with VyB €T and y ¢ FV(F VzA): Let z ¢ FV(F Az (t)).

Fh=1 T VA, B S bE1 T e, By (2) 1K b1 A, 2) bk p oA

3. In all other cases the claim is trivial or follows 1mmed1ately from the I.H.
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Cutelimination

Lemma 1.4.

PL1F: T,C & PL1F, T,-C & 1k(C) <m = PL1FKHT.
Proof by induction on & + I:

Assume d Ff T C and e H T, =C.

1. C is not a principal formula of last(d):

Let Ay, ..., A, (n < 2) be the minor formulas of last(d), so that we have FE=1 T C, 4; for i = 1,....n.

l—in r,-C
FESU D 004 FL D=0, A,
Then the claim is obtained as shown in the following diagram m - ,I—’;—Hl I‘mAi ’. » "
m|_k+l T last(d)
For n = 0 we have last(d) = LogAx, and the diagram reduces to T (LogAx).

1’. =C is not a principal formula of last(e): symmetric to 1.
2. C is principal formula of last(d), and —C' is principal formula of last(e):

2.1. C is a literal:
Then {C,-C} CTU{C} and {C,-C} CTU{=C}. Hence {C,-C} C T, and therefore -5+ T
2.2. C = 3rA: Then =C = Vz—-A and we have F:~1 T, C, A, (t) and ! T, =0, =A with z ¢ FV(T,-0).
Now the claim is obtained as shown in the following diagram:
o T,=C . e T,C . Ho1 T =0, -A
1.2 1.2
an_l ,C, A, (t) |—lm T,-C, A (t) - an [,C,—A.(t) Fl,;l L, =C,—A.(t)
FR=IHET, AL (t) FEH=TT S AL (t)
FEFT T

L.1.1

TH

(Cut)

For the last step note that rk(A4,(t)) < rk(C) < m.

2.2". C =VzA or Ag A Ay or Ay V Ay: analogous to 2.2.

Theorem 1.5 (Cut-Elimination).
PL1Fk T = PL1FZ T.

Proof by induction on k:

r r,-
Let d F, ., T and assume that last(d) = % with rk(C) = m.

FhL T, Cand FAL T,-C 2 R D0 and T DA B R T

In all other cases the claim follows immediately from the I.H.

Definition. B is a subformula of A if B can be obtained from A by finitely many steps of the kind
QzA — Ay(t) or Ag o Ay — A;. Especially A is a subformula of itself.

Remark. Cutfree derivations are distinguished by the following

Subformula property

If d is a cutfree derivation of T" then every formula occurring in d is a subformula of some A € T.



Partial Cut Elimination

LA ... TVA,
r,A

substitution. As in PL1, formulas A € A [A € A;, resp.] are called the principal [minor, resp.] formulas of

Let &% be a family of additional inference rules of the form , and being closed under
the respective inference. Some of these rules may be restricted by a “variable condition” of the kind that a
certain variable (called the eigenvariable of the resp. inference) must not occur free in the conclusion I', A.
Let 6 :=PL1+ &%,

® := ®(5) := {A: A is a principal formula of an & -inference}

Remark. Since the rules of G are closed under substitution, we have VOVA € ®(Af € ®).

Let ®:=®dU{-A:Ac d}.

Definition of rke(A)

1. tkg(A) := —1,if A € ®;

2. tkg(A) := 0, if A is a literal and A ¢ ®;

3. tkg (A o B) := max{rke(A4),rke(B)} + 1, if Ao B ¢ &;

4. 1ke(QrA) :=rke(A) +1,if QrA ¢ ®.

Remark. rks(Af) <rks(A) and rke(—A) = rkg(A).

Definition. The relation & F§ | T is defined in the same way as PL1+% T, but with the difference that
now m refers to rke instead of rk.

Lemma 1.6.

(a) GFo,m [ = St n,I06;

(b) GI-fI)MF & TCl’" = GI—IC%M "

Lemma 1.7

6k T,C & 6F,  T,-C & 0<rke(C) <m = SHIT.

Proof by induction on k + I:

The proof proceeds almost literally as the proof of Lemma 1.4. In case 2.2 one concludes from 0 < rke(C)

that C,=C ¢ ® and therefore (by the above assumption on &) last(d) and last(e) are inferences of PL1.

Theorem 1.8 (Partial Cut-Elimination). & '_Ic%,m+1 r&Em>0 = 6 I—?(:m L.
Proof: As for Theorem 1.4.

From Theorem 1.8 it follows that every &-derivation can be transformed into a &-derivation of the same

sequent where all cut-formulas have ®-rank —1, i.e. belong to ®.

Lemma 1.9 (Inversion).

() VTAg® & S Fy | T,VzAd = S+§ T, A.(b);

(b) AgA A g@&SHE T, A)AA = &y, T4 fori=0,1;

(c) AVB¢®&SH;, T, AVB = 6+;, T, AB.

Proof as for L.1.3: In (a) the condition Yz A ¢ ® guarantees that Yz A cannot be the principal formula of an
inference other than (V). Similarly for (b),(c).



Completeness of PL1

Assuming that £ is countable we will prove the completeness of PL1 without cut rule. This (together with

the correctness of PL1) yields a so-called semantical cut elimination proof for PL1.

Definition

Y EC <= C(is alogical consequence from ¥ (¥ a set of formulas)
YE{A, .., A} &= YYEAV..VA,

ET < 0ET.

Theorem 1.10

=T — PL1k,T.

Corollary
Y = C = There are A, ..., A,, € ¥ such that PL1 Fg —Ay,...,mA4,,C.

Proof: ¥ = C = There are Ay, ..., A,, € ¥ with {4,,...,4,} EC = = -4,,...,-4,,C.

Proof of Theorem 1.10:

AX := set of finite sequences (Ao, ..., A;) such that there is a prime formula A with {A,—-A} C {A,, ..., A }.
Let II be a fixed finite sequence of formulas .

to, t1,.... enumeration of Ter.

i, v are ranging over finite 0-1-sequences (elements of {0,1}<%).

uC v & pis an initial segment of v (i.e. v = p* 7 for some 7 € {0,1}<¥)

For each v € {0,1}<% we define a finite sequence of formulas II,,.

The definition proceeds by recursion on [h(v).

1Ty =TI,

Let n = lh(v), and assume that II, is already defined for each p C v.

2. I, € AX or all formulas in II,, are literals: I, := II,,

3. 11, =", A, TT" ¢ AX, and rk(A) > 0 while all formulas in II" are literals:

31. A= Ag AN Ay Ty =TT, A, T,

32. A= AgV Ay Ty =10, Ag, Ay, TT",

3.3. A=VxB: I, =1, B, (y), 11", where y is the first variable not in FV(IL,),
3.4. A=TxB: I, =", By(ty), 1", A, where k is minimal s.t. (z € FV(B) = Vu C v B(t) ¢ I,).

IT IT IT
Remark. Each II € AX is an axiom of PLI. w (in case 3.1), 1’:[;(0) (in cases 3.3, 3.4) is an

inference of PL1. In case 3.2, IT, is obtained from II, .,y by two (V)-inferences.

Assumption:

(A)  (in)new is a 0-1-sequence such that Vn € IN(I;, . ;,_,) & AX).
Abbreviation: v(n) := (ig, ...,in—1), F = Upen o)
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Definition: If not all formulas in II, are literals let df(II,) be the first formula in II, which is not a literal.

Proposition 1. Tl (,y = ', A, TI" & rk(A) > 0 = Tk > n(df(Il,4) = A).
Proof by induction on the number of logical symbols A, V,V, 3 occurring in II'.

Proposition 2.

(a) tk(A) =0 = AgFor-AgF,

(b) AghNA; € F = Ape For 4 € F,

(c) ApgVA; € F = Ape€ Fand A € F,

(d) VeB € F = 3u € Vars( B, (y) € F),

(e) 3zB € F = Vit € Ter(B,(t) € F).

Proof:

(a) tk(A) =0& A € I0,(,,) & A € Tl (,) = Vk > max{m,n}(A,-A €Il y,).

Assume that A € F with rk(A4) > 0. Then A = df(Tl,(,) for some k.

(b) A= AgAA;: Then A; € I, (). (s for i = 0,1, and therefore Ag € II,(j41) or Ay € I, (j41)-

(c) A= AgVA;: Then Ag, Ay € Il (1)w(s) for i = 0,1, and therefore Ag € II,(341) and Ay € IL, (34 1).
(d) A =VzB: Then B,(y) € Il (1)«(; for some y € Vars.

(e) A=3xB: Then Vn > k(3zB € () ) () .

By induction on m we prove B, (tn,) € F:

Assume that B(t;) € F for all i <m. By Proposition 1 and (x) there is an n > k such that df(Il,(,)) = 3zB
and Vi < m3j <n(B(t;) € I, ;) (x*).

By definition of IT,(,41) we get (Vj < n(B(tm) € I,(j)) = B(tm) € M (n41) ) and thus B(tm,) € F.

M| := Ter, fM(s1,...,80) = f81...80, DM (51,.0y8n) 1€ PS1, .oy Sy & F
Let £ : Var — Ter such that £(x) = z for x € Vars.

Proposition 3.

(a) tM[¢] = t for each t € Ter,

(b) Ac F = M E A[L].

Proof of (b) by induction on rk(A):

VzB € F = B,(y) & F for some y € Vars 5 M £ B,(y)[€] = M £ (VzB)[¢].
wBEF = B,(t) e Fforallte Ter 3 M ¥ By (t)[€] for all ¢t € Ter @
= M £ B[¢] for all t € Ter = M = (3zB)[¢].

Now, since I C F, Proposition 3b yields = II.

Now assume |= II. Then the above assumption (A) is false, and it follows that for every 0-1-sequence
(in)new there exists an n with I, ;. _,) € AX.

By Konigs Lemma (and since IT, € AX implies II,.,.(;y € AX) the set {v : II, ¢ AX} is finite.

Let m := max{lh(v) : II, & AX} + 1.

By induction on m = [h(v) one easily proves PL1 k¢ II,, (cf. the Remark following the definition of II,).
Hence PL1 o 1T



82 An application of partial cut elimination; provably recursive functions of PRA and I¥;

The axiom system PRA of primitive recursive arithmetic

Inductive Definition of sets PR"™ of n-ary function symbols

(PR 1) 0" € PR™ (n > 0), S€PR', I? € PR" (1 <i < n).

(PR2) he PR™ & g1, ..., gm € PR" & m,n > 1 = (ohg;...gm) € PR".
(PR 3) g € PR" & h € PR""? — (Rgh) € PR""'.

Abbreviation: PR := J,,c PR", 0:=0° .

Lo :=PRU{=}, where = is a binary relation symbol (equality).

n

—~ =
The Ly-terms 0, S0, SSO0, .... are called numerals. Forn € N let n:=S5...50.

Ty := set of all closed Ly-terms.

N

If t € Ty then N denotes its canonical value. Hence n’V =n.

TRUE, := set of all true closed literals of Lo [= {s=t : 5,1 € Ty & sV = tNJU{=(s=t) : 5,t € Ty & sV #tV}]

By QF we denote the set of all quantifierfree Lo-formulas.

The axioms of PRA are the universal closures of the following Ly-formulas:
T=x

rz=y - A — A,(y) , for each atomic Lo-formula A

=(Sz=0)

Sz=Sy = z=y

0"zq...x,=0

IPzy..x,=z;

(ohgi...gm)T1--Tpn=nRG1T1 ... Ty - . . G T1 .- Ty

(Rgh)zy...x,0=gz1 ...,

(Rgh)x1...x, Sy=hz1...xny(Rgh)x1 ...20Y

F,(0) » Va(F — F,(Sz)) = F, for each F € QF.

The corresponding Tait-style system PRA is an extension of PL1 given by the axioms

(G1) I, t=t

(G2) T, ~(s=t), ~Az(s), Az (t) , for each atomic Lo-formula A
(So) T (St 0)

(81) ', ~(Ss=St),s

(PRO) I, 0"¢y...t,=0

(PR1) T th=t;

(PR2) T (ohgh gm)t1 . tn=hgiti..tn ... gmt1...ty

(PR3.0) T, (Rgh)t1...t,0=gt;...t,,

(PR3.1) T, (Rgh)ty...t,, S s=hty...tp,s(Rgh)ty...tns

T,-F,F,(Sz)

and the QF-induction rule W

(F € QF and o ¢ FV(T, Fy(t))).



One easily sees that the rules of PRA are closed under substitution (cf. §3).
Therefore 1.6-1.9 apply to PRA with & = QF.

The following Lemma, shows the Tait system PRA proves exactly the logical consequences of PRA.
Lemma 2.1.
PRAFT <= PL1F —Ay4,...,mA,,T for some Ay,..., A, € PRA.

Proof: Exercise.

Some special function symbols

There are function symbols +,-, = € PR? and prd € PR! such that the following equations are axioms of
g

PRA: s+0=3s,5s+St=S(s+t),s:0=0,5-St=st+s,prd0=0,prdSt =1t s-0=35,5=St =prd(s=1t).

Lemma 2.2. The following formulas are provable in PRA.
)r#0—z=Sprdz
byz+y=y+zA(z+y)+z=c+(y+2)
c)z+y=0+z2z=0Ay=0
e)zx-y=02x=0vVy=0

f)s

glrz+1=SzAz-1=zAprdl=0Az=1=prdz (where 1:=50)

(a
(
(
Dz-y=y-zA(x-y)- 2=z - (y-2)Azx-(y+2)=z-y+z-z
(
( =Sy=z-=y

(

Proof (sketch):

(a) QF-Ind: 0=0 = 0#0—>0=Sprd0. z =prdSz = Sz =SprdSz.

(b),(d) Proof by At-Ind, i.e. induction with atomic induction formula F'.
(c) “":040=0. “>": y7é0—>x+y(—x-l-Sprdy—S(x-l—prdy);éO
(e) " y=0—-z-y=0,z2=0>z-y=y-x=0;

“3: 2 #£0ANy#0—>x-y=x-Sprdy=x-prdy +x =z -prdy + Sprdz = S(...) #0.

(f) At—Ind:SméSOzprd(SméO)=prdS:U=:U=:U;0.Sa:;SSy=prd(Sa:;Sy)I§prd(:n;y)=:U;Sy.
() x+S0=S(x+0)=Sz,2-S0=2-0+2=04+z=24+0=2,prdS0=0, 2= S0 =prd(z =~ 0) = prdz.

Lemma 2.3. The following formulas are provable in PRA.
Yr#0<1=-2=0

b)y-2#£0—>y=z+ (y =~ x)

y=(z+y)=0

d) (z+y)=y=2

e

f

(a
(
(
(
er-y=0->2x=yVy=-2#0

fez=y=0—y=z+(y=u2

Proof:

(a) By At-Ind we obtain 0 =2z =0[0+-0=0,0~+ Sz =prd(0 - z) = prd0 = 0].

r#0—->1=-2=S0=-Sprdz=0=-prdz=0; 2=0—-1=-2=1#0.
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(b) QF-Ind: 1. y = 0 + (y = 0).
2.y=Szx#0=>pdly~2)#0=>y-2#0=>y =2 =Sprd(y -~ z) =S(y =~ Sx),
y-Sr£0=>y 2 s+ (y-z)=2+S(y=Sz)=Sz+ (y = Sa).

(c) At-Ind: 1. 0+~ (z+0) =0+ 2 =0.

2. Sy;(ac-l-Sy):Sy;S(x+y):y;(x+y)I§0.

(d) At-Ind: 1. (z+0) =0 ==z. 2. (a:+Sy);Sy=S(a:+y);Syz(w—ky);ygw.
() QF-Ind: 1. 2 - 0=0— 2 =0.
2.2=-Sy=0=pd(z~y)=0=>2-y=0Ve=-y=S0[sincexz~y#0—z=y=Sprd(z - y) ]
Ly r=yVy=-z#0Vz=-y=S0.

mzy:Sy;mz(ley);y(g)l;éO.
yéx;«éO(:bgy:x+(y;x):>Sy;x:(x+S(y;x));x(i)S(y;x);é0.
x;y:SO:Mr:;y;éO(:bgx:y+(:v;y):y+50:Sy.

o=y=sy=s=ct@=a)=o+@y=2); y=o£0By=a+(y=a).

Lemma 2.4.

(a) For each A € QF there exists a term ¢4 such that PRAF A <> ¢4 = 0.

(b) For each A € QF and terms tg,¢; there exist a term d4(to,t1) such that
PRAF A — da(to,t1) = to and PRAF =A — da(to,t1) = t1.

(c) For each PR-term ¢ with FV(¢) C {21, ..., 2,} there is a function symbol f € PR" such that
PRAFt = fxy..zy.

Proof:

(@) tr=s :=(s~7)+ (r=s) [S#TQﬁ)eS;T‘;éOV’I“;S;AO];

bo(r=s) = 1= tr—s; tanB:=ta+1tB; tavp :=ta-tp.

(b) Let da(to,t1) :=to-(1 =ta) +t1-(1 = (1 = ta)).

(c) cf. Logic I

Abbreviations.

s<t:=(s=t=0); s<t:=(s<tAs#t).

Jr <tA:=3z(x <tAA) and Ve <tA:=Vz(z <t - A)if z € FV(2).

Lemma 2.5. The following formulas are provable in PRA.

) r<yoy=oty-a) o dy=1+2);

byz<zA@@<yAy<z-rz=y)

or<yAy<z—a<z;

11



Proof: () z~y=0-sy=z+(y~2)>J2ly=z+2). y=z+z-ozx-y=z-(2+2)=0.
byz-z=2-0+2)=0.2-y=0>2z=yVy-2#0,hencez~y=0=y~z > x=y.
c)rz<yAy<z=3Juvezt+u=yAy+v=2)=Juviz=z+u+v)=>z<z2

(
(
(d)-(z<y)>r-y#0=>z=y+(z+y)>y<z
(e) x =0+ .

(

)
Jr<yez<yAhz#ysozrz-y=0Ax#y (—eQ y=-x#0 (y <x).
y~rz#0>cFyAhy=z+@y-z)y=zs+z—oz-y=z-= (r+2)=0.

(g) “=":xz<Sy=-(Sy<z)=u:=Sy=-r#0=Sy=x+u=2x+Sprdu = S(z+prdu) = y = x+prd u.
“ip-y=0—x=-Sy=prdz+-y)=0. z=SyAz<y—>1=(1+y)-y=Sy=-y=0.
hz<yAny<z=mz<yAy<z=zz<z.z=zAy<z=y<z=>-(zx<y).
r<yANy<zrz<yAy<zozrz<z.z=zAz<y=>z<y=-(y<=2).

Lemma 2.6 (Pairing)

There are function symbols 7 € PR2, T, Mo € PR! such that PRA F mimz 20 = 2; A T 272 = .
Proof:

We argue informally, but so that all steps are easily formalizable in PRA.

m(a,b) := f(a+b) +b with f(n) := 3", i (Le, f(0) =0, f(n+1) = f(n) +n +1).

h(0) == 0, h(k +1) := { ZEZ% 1A +1) <kt

(1) Fh(k) < k< F(h(R) +1)

Induction step:

Case 1. fh(k+1) = f(h(k) +1) <k +1 < F(h(k)+1) = fh(k+1) < F(h(k+1) + 1),

Case 2. fhik+1) = fh(k) < k <k +1< f(h(k)+1) = f(h(k + 1) +1).

Definition. wo(k) :=k = fh(k), 71 (k) := h(k) = w2 (k).

k< f(h(k)+1)=f(h(k)+h(k) +1& fh(k) <k = m(k) < h(k) = m(k)+ m=(k) = h(k).
7 (m (k)2 () = £(m (k) + ma(k)) + ma(k) = Fh(K) + (k = FR(R)) = k.

Let k := m(a,b). Then f(a+b) <k < f(a+ b+ 1) and therefore h(k) = a +b.

w2 (k) = (f(a+b)+b) = fla+b) =band m (k) = (a+b) ~b=a.

Lemma 2.7. (Bounded p-operator)

Let A € QF and FV(A4) C {z1,...,x,,y}. Then there exists an f € PR"™"" such that the following formulas
are provable in PRA (where A(t) := A, (t)):

(a) 3z < yA(z) = A(fZy) AVz<fZy-A(z) (i.e. Iz <yA(z) = fZy = min{z : A(z)}).

(b) 3z < yA(2) & A(fZy)

(c) ~A(0) A A(y) — —A(p) A A(p+1), where p:= fEy = 1.

Notation. Ti,.,A(z) = fZy.
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Proof:
By Lemma 2.4 there is a function symbol A € PR™? such that
PRAF A(z) V-A(Sy) — hzy..xpyz = z and PRAF —A(2) A A(Sy) = hxy..zpyz =Sy.

Let f:= (R0™h). Then the following formulas are provable in PRA

(1)

(2) A(f2y) v -A(Sy) — fiSy = fiy
(3)ﬂ (fiy) NA(Sy) — fZSy =Sy
4) f
(5)

Ally) — A(fTy)
Proof by induction on y: 1. y = 0: trivial.
2),(3 N R S R S
2. A(Sy) "B (A(f7y) A fESy = [Ty)V fFSy =Sy = A(f#Sy).

(6) A(yo) Ayo <y — fiyo = fZy

Proof by induction on y: 1. y = yp: trivial.
2.y =SzAyo <z Alyo) "I A(fFyo) A fEyo = fiz = fiy = [#S2 2 fiz = fay.
(7) z < fy —» —A(2)
: S 4 6)(D) o0 oo -
Proof: A(z) Az < fy= A(z)ANz<y = f¥y= f#z < z. Contradiction.
Now (a),(b) follow from (4)-(7).

Proof of (c): =A(0) A A(y ) 8

\_/

. - R (4]
—A0) AN A(fy) = fiy #0 = fy = p+1 = -A(p).
Definition.
The Ag-formulas are generated from Loy-literals by means of A, V, Vax <t, dz <t (z € FV(t)).
The X-formulas are generated from Ly-literals by means of A, V, Vo <t (z € FV(t)), Jx.
A formula is called ¥1-formula if it is in QF or has the form 2 A with A € QF.
Lemma 2.8.
For each Ag-formula A there exists a PR-term ¢4 such that PRAF A < t4 = 0.

Proof:

By Lemma 2.4a it suffices to prove that every Ag-formula is equivalent to a quantifierfree formula.

1. Let A = Jy < sB(y) with FV(4) = {#}. By L.H. there is a C(y) € QF with FV(C) C {Z,y} and
F B(y) <> C(y). By Lemma 2.7 there is a function symbol f such that F 32<yC(z) + C(fZy).
Hence F Jy<sB(y) <> y<sC(y) «+» C(fTs).

2. If A =Vax < sB then (as we have just shown) F 3z < s=B <> C (for some C € QF) and hence - A +» =C.

Definition. A recursive function f : IN" — IN called provably recursive (or provably total) in & if there is
a Xi-formula A(Z,y) such that (i) & F V#Jy A(F,y) and (ii) V@,b € IN( f(@) =b & N E A[d,b]).
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Theorem 2.9

If PRAF T',3yA where A € QF and V does not occur in I, then PRA T, A, (t) for some PR-term ¢.
Proof:

By Theorem 1.8 (partial cut elimination) we have (for some k) PRA '_15F70 I',dyA, i.e. there exists a PRA-
derivation of T, 3y A where all cut formulas are quantifierfree. We proceed by induction on such a derivation.
1. T, 3y A is an axiom: Then T is an axiom too, and we may set ¢ := 0.

2. F&rlo T,3yA, By and Hiply T, 3y A, By with By A By € T:

Let ¢ := d () (to,t1) where by LH. =T, A(t;), B; (i = 0,1) (1).

FA(t)) =t =ty =F A(to) = A(t) (2).

F-A(ty) > t=t1 =+ —A(te) — (A(t1) — A(¥)) (2:) FA(t) = A(t) (3).

From (1), (2), (3) we obtain T, A(t), B; (for i =0, 1) and then - T", A(%).

3. F&ro T,3yA, By with By V By € T: Let t := t, where by LH. - T, A(ty), By.

4. +ro T,y A, Be(s) with 3zB € T: As 3.

5. Foro T3yA, A(s): Let t:= dy,)(to, s) where by LH. - T, A(to), A(s).

As in 2. we obtain F A(ty) — A(¢) and F A(s) — A(t). Hence T, A(¢).

6. Foro I FyA, B and Hiely T, 3y A, -B with B € QF:

Let t := day)(to, t1), where by LH. =T, A(to), B and - T', A(t;), -~B.

As in 2. we obtain F I', A(t), B und + T', A(¢), ~B. Hence I T, A(¢).

7. T =T',-F(0), F(s) and F&ely TV, = F(2), F(S ), Fy A:

We have to prove - I, A(t), ~F(0), F(s) for some term .

We set g := i<, F(z) = 1.

z

<s
Then + =F(0), F(s), F(ro) and - —=F(0), F(s),=F(Sro).
[[ By Lemma 2.7¢, = F(0) A =F(y) = F(p(y)) A ~F(p(y) + 1) with p(y) := T.<,~F(z) = 1. ]]

Now we conclude as follows

gy ), SF ), F G
I, A(t),~F(ro), F(Sro) —F(0), F(s), F(ro) .
', A(t),~F(0), F(s), F(Sro) —F(0), F(s),~F(Sro)

T, A(t), ~F(0), F(5) o

Corollary 2.9. The provably recursive functions of PRA are exactly the primitive recursive functions.

Proof: Obviously every primitive recursive function f is provably recursive in PRA: let A(Z,y) := (f% = y).
Now let A be a ¥;-formula with (i) PRA - VZ3yA(Z,y) and (ii) Va,b(f(d@) = b < N = A[d, b]). First notice
that the statement of Theorem 2.9 also holds for A € ¥¢: F I',dydxB(z,y) = F T',32B(m 2, m2) T
F T, B(mt,mt) = F T,3xB(x,mt). Then we conclude as follows: PRA F VidyA(Z,y) = PRAF
JyA(Z,y) = PRA F A(F,t(%)) for some PR-term t. Then Va(N | A(F,t(Z))[d@]) and thus, by (ii),

va(f (@) = tV[a)).
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Definition of I¥;

The (Tait style) system I¥; is the same as PRA only that the QF-induction rule is replaced by the
FaFm(O) Fa_'FaFm(Sx)

Y1 -induction rule WaAO)

(F €%y and z ¢ FV(T, F,(t)))
Remark. As for PRA we see that the results 1.6-1.9 apply to I¥, now with & = ;.

Theorem 2.10
I¥;FTwithT' CY¥;, — PRAFT.

Beweis:
By Theorem 1.8 we have (for some k) I, I—’gl’o T, i.e. there exists an I¥;-derivation of I" where all cut

formulas are in ;. We proceed by induction on such a derivation.

1. IS, FE G 32A,T and IS, H§ | Voz-A, T with A € QF:

IS, HL 3240 25 PRAF T, 324 (+).

I8, Fi7L Vo=, T ™S 1m bht o4, (), T 2 PRAF =4, (y),T = PRAFVa-A,T % PRAFT.

2. T =T",3zA(z,t) and IX; l—g;lo I, 3z A(z,0), 1%, l—g;lo I, =3z A(z,y), 3z A(z,Sy) with y € FV(T):
(Due to our general conventions we also have z € FV(¢) and z,y ¢ FV(A(0,0)). )

By Inversion and L.H. we obtain PRA + I, 3zA(z,0) and PRA F TV, =A(z,y), v A(z,Sy) where w.lo.g.
z ¢ FV(I).

From this it follows by Theorem 2.9 that PRA TV, A(¢q,0) and PRA T, -A(z,y), A(p(z,y),Sy) for certain
PR-terms p, q.

There exists a PR-term 7(y) such that PRAF 7(0) = ¢ Ar(Sy) = p(r(y),y).

Now we obtain PRA T, -A(r(y),y), A(r(Sy),Sy), and then PRA T, - A(r(0),0), A(r(t),t) by (Ind).

Together with PRA F r(0) = g and PRA FT", A(q,0) this yields PRA F T, A(r(t),t).
From this we conclude PRA F I, 3z A(z, t).

r(Sy) =p(r(y),y) I, =A(r(y),y), Alp(r(v),v),S y)
I, =A(r(y),y), A(r(Sy),Sy)

(Ind)
FI,ﬁA(T(O),O),A(T(t),t) T(O) =q
Fla_'A(QaO)aA(r(t)at) FI,A(QaO) ut
rLAC@L
I, Az A(z,t)

3. In all other cases the claim follows immediately from the I.H.
Definition. A formula of the form Vi37A with A € QF is called a I19-formula.
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Corollary 2.10.
I¥; is I9-conservative over PRA, i.e. I; is an extension of PRA which proves the same I19-sentences as

PRA. Especially, I¥; has the same provably recursive functions as PRA.

Lemma 2.11.

For each ¥-formula C there is a ¥;-formula C’ such that PRAFC' = C and I, - C = C".

Proof:
Let C* be the Ag-formula resulting from C' when every unbounded quantifier is bounded by z (z being a

new variable). Let C' := 32Cy(z) where Cp(z) € QF such that PRA F Cy(z) +» C>.
Obviously PRA F 3zC* — C, for each X-formula C.

By induction on ¥-formulas one proves I¥; F C' — J2C%. We only treat the crucial case C' = Va < tB.
Then C* =Vx < tB*. By LH. I¥; - B — JyBY and thus I¥; F C — Vz < tJyBY. Now by the Proposition
below we obtain I¥; - C' — J2Vz < tB*

Proposition. 1¥X, FVz < z13dyBY — 32V < x1B* for each Y-formula B

Proof (in I¥;): Assume Vz < z13yB(z)Y (x).

Now by induction on z¢ we prove AzVz < z(z < z1 — B(x)?).

Due to Lemma 2.8 this induction is admissible in IX;.

Start: - B(0)Y - Vz <0(z <21 = B(z)¥) = F JyB(0)Y - 32V < 0(x < 21 — B(x)?)).
Step: By IH we have a z with Vo < z¢(z < 21 — B(z)?).

1. Assume Szp < x1. Then by (%) there is a y with B(Szo)Y. Let 2z := max{z,y}.

Then Vx < Szo(x < 21 — B(z)*).

(Here we have used that for every ¥-formula B one has  z < z; A B* — B*))

2. Otherwise Vz(Szg < 1 — B(z)).
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83 A general framework for variable binding and substitution

In this section we will give a thorough treatment of substitution which has been somewhat unprecise and up
in the air up to now. At the beginning of §1 we have said that a-equivalent formulas (i.e., one which coincide
after a suitable renaming of bound variables) will be identified, so that formally spoken formulas would be
equivalence classes. This approach will not be pursued further. Instead we will modify the mechanism of
variable binding by making use of so called de Bruijn indices instead of bound variables. So we come to a
notion of formula where a-equivalence is just identity, and substitution can be carried out without renaming,.
We first present a general “theory” of variable binding and substitution, and after that consider the language

of 1st order predicate logic as a special case.

Let us assume the following pairwise disjoint sets of basic symbols.
Vars : infinite set of variables, denoted by z,vy, z, ...;

{or : k € IN} : set of de Bruijn indices;

F : set of function symbols, denoted by f;

B : set of binding symbols (binders), denoted by ».

For every f € F an arity #(f) € IN is fixed; further we set #(oy) := 0 and #(b) := 1.
Fi={op ke N}UFUB, F. :={heF :#0h)=m}, Fn:=F, NF.

Inductive Definition of the set 7' = T'(Vars; F; B) of quasiterms
1. Vars C T7;

2.heF, &tr, .t €T = hty..tm €T

Notation: We use r, s,t to denote quasiterms.

Definition.

FV(t) := set of all variables occurring in ,

lh(t) := length of ¢ as string of basic symbols.
Definition of t,[n] € 7' for t € T’

. . e Jo, ift==x
1. For t € VarsU {o;, : k € N}: t,[n] := {t otherwise’
2. (ftr.tm)z[n] == f(t1)z[n]...(bm) 2 [0];
3. (br)z[n] :=bry[n+1].

Definition. bz.r == br,[0)].

Remark. (B0O) FV(bz.r) =FV(r) \ {z}.

Proof: FV(bz.r) = FV(br.[0]) = FV(r,[0]) = FV(r) \ {z}.
Inductive Definition of the set 7 = 7 (Vars; F; B) of terms
1. Vars C T;

2. fEFm&ty,stm €ET = ft1..tm €T;
3.veB&reT — dxreT.
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Definition

A substitution is a mapping 6 : T' — T, t — tf such that
(i) =6 € T for all = € Vars,

(ii) (ht1...tm)0 = h(t10)...(t0) for all hty...t, € T'\ Vars.

SUB := set of all substitutions. €:=id .

We use 6,6 to denote substitutions.

Lemma 3.1.

(SO)Vte T(t0 € T);

(S1) Vz € FV(¢) (20 = z0') <— 6 =tb';

(S2) € € SUB;

(S3) 9,0 €e SUB = # o' € SUB.

(S4) For every 6 € SUB, z € Vars, s € T there is a unique 65 € SUB with yf35 := {20 :)ft}ylefwxise'

The proof of (S0) will be given below. The other statements are easily seen, where for (S3) one uses (S0).

Remark. Vz € Vars(zf =z0') = 0 =0’ [cf. (S1)]
Notation: t,(s) :=t(z/s) :=te
Remark. z ¢ FV(t) = t,(s) =t. [cf. (51),(S2)]

Lemma 3.2.

(a) z #y = (z € FV(t) & te¥ #1t).

(b) EV(t0) = U.crv () FV(20).

(c) y  EV((bz.r)0) = rbie; = ro;.

(d) z € FV(t) = FV(t.(s)) = (FV(¢) \ {z}) UFV(s).
(

(

(

e) y €FViz.r) = r.(y)y(s) =rz(s).

f) r.(s)0 = rg3?.

g) y €EV(Oz.r)d) = ra(s)f = (r67),(s0).

Proof:

(a) £ FV(E) & V2 € FV(1)(z £ ) " B7 Vz € FV(1)(2e¥ = 2) O 85 pev — ¢,

()(

(b) Let z #y. Then: z ¢ FV(10) & t0ev = 10 ©' 4% vz € FV(1)(20¢r = 20) B vz € FV(1)(x ¢ FV(20)).

(c) 1. a8, = ye; = s = x0;.
2. 2£2€FV(r) = 2 FVhrr) B y g FV(:0) = 204 = 20€
Now the claim follows by (S1),(S3).

d) FV(t,(s) 2 U,GFV FV(2:(5)) = Uservion o {2 UFV(s) = (FV (1) \ {2}) UFV(s).

S1.(82) 20 = 26%.

(

(e)

(f) 1. z.(s)8 =s0 = x0§9. 2. y#£z=y.(s)8 =yl = y0;0. Now the claim follows by (S1),(S3).
(
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Lemma 3.3. For r,r’' € T the following holds
(B1) bz.r =bzor! = r=r'".

(B2) y € FV(pz.r)f) = (bz.r)0 = by.roY.
The proof will be given below.

Lemma 3.4. For r,r' € T we have

(a) y ¢ FV(zr) = ba.r =by.r.(y).

(b) bz.r =by.r' = r' =r,(y).

(c) bz =byr' <= Vs € T(ru(s) =ry(s))-

Proof:

(a) follows from (B2) with 6 :=e.

(b) bx.r =>y.r' (g) y € FV(z.r) (g) by.r' =bx.r =by.r.(y) (%) ' =r,(y). (c) “=7: bxr =dy.r! (:b>)
y EEVOwr) Lraly) =1 "B ro(s) = 12 (y)y(s) = 7 ().

“=r = () =l () B FV() = V(. (2)) € (FV() \ {yH U {z} =
= y¢FV(@r)\{z} =FV(z.r) @ by = by.re(y) =by.ry(y) =by.r'.
Definition.

bT = {bzr:xz €Vars&reT}
B:OTXT =T, BOx.r,s) :=ry(s) (due to Lemma 3.4c, 3 is well defined)

Lemma 3.5.

(@) r,s €T = (bz.r)d ebdT & B((bz.r)d,s) =rb.
(b) t €T &y €FV(t) = t=by.B(t,v).
(c)tedT &seT = B(t,s)0 = pB(t6, ).

Proof:

(a) Let y € FV((pz.r)f). Then B((pz.r)8,s) = Bby.roY,s) = (r6¥),(s) baze

8
rés.

(b) Let t = bx.r. Then ¢t = by.r,(y) =by.B(t,y).
(c) Let t = bzr. B((ra.1)0,58) L 1650 %2 1. ()0 = Blba.r, 5)6.

Remark. Given a term bx.r and a substitution § with dom(f) = {y : y # y8} finite, one may assume
w.lo.g. that z € FV((bz.r)f) Udom(d), and so (bz.r)0 = bx.rf: =bx.rf.

Proof of (S0), (B1), (B2)

Inductive definition of sets 7, = T, (Vars; F; B) of quasiterms
1. VarsU {op : k <n} C Tp;

2. fEFm&ty,estm €T = fti..tm € Tr;

3 reTopm &beB = vre’,.

Remark. n<m = T, CTn. T =U,en Tn-
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Lemma 3.6.

(a)t € Tn = tz[n] € Tnya-

(b) T ="To.

(c)t€Tn = t0 € Th.

(d) t,t' € Tp & te[n] =tin] = t =1

(€ teTn&y=120¢U,crvu o FV(20) = ta[n]f = (0),[n].

Proof:

(a) obvious.

B “TCT:reTo D rm0leTi = bar=br[0] € To.

“To C T”: One easily proves: (¥) t' € Tp41 & x € FV(t') = 3t € Tp(t' = t[n]).

Now by induction on lh(¢) on proves (t € To =t € T):

Let t = by’ with ' € T;. Take ¢ FV(r'). Then by (*) there is an r € Ty with r' = r,[0].
Now lh(r) = lh(r') < lh(¢) and therefore by I.H. r € T and thus ¢t = br,[0] =bx.r € T.
(c) follows from (b) by induction on 7p.

(d) 1. t € VarsU {o, : k < n}: Then also t' € VarsU {oy, : k < n}.

11 t=x: thn] =tz[n] =0, = t' = 2.

1.2. t# a: thn] =ty[n] =t # o, = t' =t,[n] =t.

2. t =br with € Tp41: Then #' = br' with v’ € T4 and o7, [n+1] = t,[n] = t,[n] = drln+1].
Hence r,[n+1] = r.[n+1] and by I.H. » = ¢’ which yields ¢t = ¢'.

(e) 1. t =z tz[n]d = oy, = yy[n] = (x0)y[n].

2.z #teVarsU{og : k < n}: ty[n]d = t0 = (t6),[n], since y ¢ FV(¢0).

3. t =br with r € Tpq1: t2[n] = bry[n+1]0 £ b(r8),[n+1] = (>(rh)),[n] = (t0),[n].

36b 3.6b

SO teT P te ™ 2weT ™ PtoeT.
(Bl) r,r' € T &bzr =bz.r! L € To & r;[0] = 7, [0] =y
.3. BO
(B2) y € FV(02.1)8) "2 U.covirom FVE) = U coyion o FV(6) =
= Gz P Grr)ay = b, 0]8Y FE 5 (1Y), [0] = by.roY.

Now we come back to the language of 1st order predicate logic.
Let Vars := {vg,v1,...}, and £ a 1st order language as introduced in §1.

L-terms and L-formulas are introduced literally as in §1, but with the difference that now Qz A is considered
as a shorthand for Qz.A4, i.e., L-terms and L-formulas are considered as elements of T (Vars; F; B) with
F:=LU{~,V,A} and B := {V,3}.

In the following, 8 ranges over substitutions having the property that x6 is an L-term for each x € Vars.

Moreover we assume that dom(f) := {x € Vars : 26 # x} is finite.
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Lemma 3.7

(a) If ¢ is an L-term then tf is an L-term.

(b) If C is an L-formula then C# is an L-formula.

Proof by induction on the definition of £-terms and L-formulas:

The only nontrivial case is C = VzA. Choose y ¢ FV(C6). Then CO = VyAhY, and by L.H. A6Y is an
L-formula. This yields the claim.

Definition of the truth value [[C]]é\” of a formula C in an interpretation (M, &)

Let M be an L-structure with universe M, and let &, range over M-assignments,

i.e., functions ¢ : Vars — M.

For each M-assignment &, the value [[t]]?’t € M of an L-term t and the truth value [[A]]é\" € {0,1} of an
L-formula are define as usual. Only the quantifier case requires some additional care; here we make use of

some previously fixed function v which assigns to each formula C a variable v(C) ¢ FV(C):

If C = JaA with x = v(C) then [C]M := M {[AJM - a € M}.

Of course, this definition is only reasonable if [[C]]?” does not depend on the choice of z, i.e., if [[VxA]]5 =
min{[ AJX : a € M} also in case that 2 # v(VA). This will be shown now.

Lemma 3.8. Vz € FV(C)(£(2) =n(z)) = [[C]]gM = [[C]]HM.

Proof: If C = VA with z = v(C) then [C]e = min{[A]¢ : a € M} = min{[A] e : a € M} = [C],.
Lemma 3.9. Vz € FV(O)([20]2 =[z],) = [CO]} =[C],.

Proof: Let C' = Vz A with 2 = v(C); then C8 = VyA#Y with y = v(C#).

[C8]e = [VyABY]e = min{[A6%]e; o € M} "7 min{[ Al : a € M} = [C],.

(+) 1. [265]¢s = a = [z]g.

2. If z € FV(A) \ {z} = FV(C) then y ¢ FV(26) (since y ¢ FV(C#)) and thus

[20¥0e; = [26]e; "Z° [28)c = [ 2]y = [2ne.

Lemma 3.10. [VzA]; =min{[A]¢ :a € M}

Proof: Let y := v(VzA). Then VzA = VyA,(y), and thus

[VeAe = min{[ A, (9)]es : a € M} " E min{[ Al < a € M},
(%): cf. (%) with 8 := € in the proof of 3.9.

Lemma 3.11.

All rules of PRA and I¥; are closed under substitution.

Proof:
r,Aa . )
1. T VoA with z ¢ FV(T'):
In this case we only have to consider substitutions 6 with y := z6 € Vars \ FV(I'0, (Vz A)#).

y=z0 ¢ FV((VzA)0) = (VzA)f =Vy A0Y = Vy Af.
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T, A, (t)
r,dzA
3. (=(s =1),mAz(s), A ()0 = —(s0 = 16), ~(A0Y)y (s0), (A0Y)y(10), if y & FV((VzA)B).
Fa_'Fan(Sx) Fan(O) Fa_'Fan(Sx)
T,—F,(0), F,(t) O T, F, (1)

Then (asin 1.) y = 28 ¢ FV(T'0, ~F,(t)f) which implies y ¢ FV((VzF)§).

Hence F,(t)0 = (F9),(t0), F,(0)8 = (F8),(0), (F,(Sx))8 = (F8),((Sz)f) = (F8),(Sy).

Moreover if F' € QF [Zy, resp.] then F8 € QF [£4, resp.]

2.

: Let y ¢ FV((32A)0). Then (3zA)0 = Jy AFY and A, (t)0 = (AY),(10).

4, with = & FV(T, F,()):

84 An alternative presentation of the Tait style sequent calculus

We introduce a new notion of derivation for the Tait style sequent calculus which differs from the usual one
(introduced in §1) in so far as the new derivations have so-called inference symbols (denoting inferences) and
not sequents assigned to their nodes. The sequent “belonging” to a certain node 7 of a derivation d is not
explicitely displayed, but can be computed by tree recursion from d (similarly as the free assumptions in a

natural deduction style derivation). This approach is particularly useful for our further purposes.

Proof systems

A proof system & is given by

— a set of formal expressions called inference symbols (syntactic variable 7)

— for each inference symbol Z a set |Z| (the arity of 7), a sequent A(Z) and a family of sequents (A,(Z)),¢z|-
The elements of A(Z) [ U, ¢z Au(Z) ] are called the principal formulas [ minor formulas ] of T.

— for each inference symbol 7 a set Eig(Z) which is either empty or a singleton {z} with x € Vars\FV(A(Z));

in the latter case x is called the eigenvariable of Z.

NOTATION

By writing

(1) ...AZ..(LEI) [t ]

we express that 7 is an inference symbol with |Z| = I, A(Z) = A, A,(Z) = A,, Eig(Z) = 0 [ Eig(Z) = {z} ].
AO AlA AL...(LGI

If |Z) = {0, ...,n} we write “, instead of ——

A

Inference symbols 7 with |Z| = () will be called azioms.

By writing “ (Z) A” we declare Z as an axiom with A(Z) := A.

A

For almost all inference symbols (except axioms) the sequents A(Z), A,(Z) are singletons or empty.
Example:

By (Cutc) CT_‘
with |Z| = {0,1}, A(Z) = 0, Ao(Z) = {C}, A(Z) = {~C}.

we express that for each formula C, the expression Z := Cut¢ is an inference symbol

NOTATION
LIl(Lel)

T T <= |Z|=T&AZ)CT&VieI(l, CTUA,(T)) (T is derived from (T,),er by Z)

DA eD)
T,A(Z)

Especially
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Inductive definition of G-derivations
If 7 is an inference symbol of &, and (d,),¢|z| is a family of &-derivations such that Eig(Z)NFV(I') = @ where
P i= A(D) U U,z (T(d) \ Ad(D)),
then d:=7(d,),ez (or Zdo...dn—1 if || = {0,...,n—1}) is an &-derivation with
['(d) :=T (endsequent of d),
last(d) :=Z (last inference (symbol) of d),
crk(d) := sup({rk(Z)} U {crk(d,) : ¢« € |Z|}) where rk(Z) := {rk(C’)-l—l if 7 = Cute (cut-rank of d)
‘ 0 otherwise ’
hgt(d) := sup{hgt(d,) + 1: 1 € |Z|} (height of d).

Until further notice we will only consider derivations with crk(d) < w.

Abbreviations
63dFLT < disan S-derivation with I'(d) C T, crk(d) < m, hgt(d) < a;
GFAT 1< 6>3dF I for some &-derivation d.

The meaning of & 5 d+I' and & T should now be clear.

Remark
If Mee|Z])&3d,FT,A,(Z) whereZ € & and Eig(Z) NFV(T) = 0,
then &3 7(d,). ¢z FT,A) .

Definition. A proof system & is called finitary if all its inference symbols have finite arity; otherwise & is

called infinitary.

The finitary proof system PL1
(Axa,-4) A,—A if Ais a literal
Ay

(Aaonas) —Gondi Viwa) 2ovi (refoth
(Nowt) gog (Vi) 20 (e ey
(Cutc) 7 -

Displaying derivations:

™ instead of Zdy...d,,.

To increase readability we often write derivations in tree form, i.e. we write

Another way of representing derivations is to write them as trees of sequents (as before) and to display the
respective inference symbols at the right or left end of each inference line. Mostly we will not show the full
inference symbol Z but only some kind of abbreviation (e.g. the outermost logical symbol of the principal

formula of 7) or nothing.

Example:
SO0 0
d =\Vg /\F(SO)/\—uF(SSO)VG/\F(O)/\—uF(SO)AXF(O)AXF(SO) Axp(ss0) =
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Axr(0) AXp(so) -F(0),G,F(0) —F(S0),F(S0)

Ar(o)r-r(so) ~F(0),G, F(0) A =F(50), F(S0) (HA)
= Ve Axpssy) = ~F(0),G, F(S0) ® ~F(S50). F(SS0)
A
AF(soyr-F(ss0) ~F(0),G, F(S0) A =F(5S0), F(SS0)
o —F(0),G, F(SS0)

where G := 3z(F(z) A —=F(Sx)),

The proof system Z of 1st order arithmetic

The language of Z is Lo(X) := LoU{Xo, X1, ...}, where Xg, X1, ... are unary predicate symbols; we call them
set variables. But note that they are not considered as variables in the proper sense (e.g. FV(X;0) = ).

We use X as syntactic variable for Xo, X1, ....

Recall that the logical axioms (LogAx) and the PRA-axioms (G1)-(PR3.1) had all been presented in the
form I', A with arbitrary T'. We call A the principal part of the respective axiom.

AX(Z) := set of all principal parts A of axioms (LogAx), (G1)-(PR3.1) in the extended language.

The inference symbols of Z are those of PL1 plus

(Axa) A for A e AX(Z) ,
(n05') 5 20

In this section 7 is always an inference symbol of Z, and d, d, ... denote Z-derivations.
Definition

Axaf = Axag , A = Aap » Va0 1= Vi, Cuted := Cutey , V3,40 = V{5,400 »
Nvzab = /\?\ng)9 , Ind7'0 = Ind".

In the last two cases it is required that z6 € Vars\ FV(A(Z)0).

Then the following holds for every Z-inference Z:

— 70 is a Z-inferences belonging to the same rule as Z, (cf. proof of L....)
—|Z6| = |Z| and Eig(Z8) = Eig(Z)#,

- A(Z8) = A(7)8,

- (Vi € |Z]) Ai(Z0) = Ay (2)6.

Definition of df

For d = Tdy...dp—1 we set df := (Z8)dof . . .d,_10 with

- 0¥ if Eig(Z) = {z} where y € Var\ FV(I'(d)6)
o {9 if Eig(Z) =0

In the first case, if z ¢ FV(I'(d)#) we take y := x.

Remark. Let d = 7dy...d,_1.
(a) de = d.
o _ _fd if Big(T) = {x}
(b) I 6 = €, with FV(t) = @ then dfl = {Iadoe...dn_la otherwise
Proof of (b):
~ 02 =€ if Eig(Z)
We have x ¢ FV(I'(d)f) and therefore § = { 0z =6 if Eig(Z)
9 if Big(Z)

{z}
{2} # {z}
0
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Lemma 4.1. Z>dFT = Z>5dAHT6.

Proof: Let d = Zdy...dp—1. W.Lo.g. T'(d) =T.

(1) T = I8, since Eig(Z) NFV(T) = 0.

(2) Eig(Z6) NFV(I'9) = 0, since Eig(Z8) = Big(Z)# and (Eig(Z) = {z} = =6 ¢ FV(I'9)).

dFT = A(T) CT&Vi<n(d-T,A47) "2 A(D)F C T & Vi < n(dif F T9,A,(T)8) = A(Zh) C
0 & Vi < n(dif F 79, A;(76)) 2 d6 + To.

. _ [FV(A@)UFV(#) ifT=\5, , or Indy!
Definition. FV(Z) := {FV(A(I)) otherwise

Remark. Eig(Z) NFV(Z) = 0.

Definition. FV(Zdy...dn—1) := FV(Z) U, (FV(d;) \ Eig(Z))

Lemma 4.2

(a) FV(I'(d)) C FV(d),

(b) FV(d(z/t)) =FV(d) \ {z} ,if t € Tp.

Proof: Let d = Tdy...d,,_1.

a) I'(d) = A(T) UU;,,(T'(di) \ Ai(Z)) and FV(T'(d)) N Eig(Z) = 0 ().

FV(A(Z)) C FV(Z) C FV(d).

FV(T() \ AD) € FV(T(d) \ Fig(D) € FV(d) \ Bi(T) € FV(d).

b) Abb.: 6 := (z/t).

1. Eig(Z) = {z}: Then df = d and = € FV(d). Hence FV(df) = FV(d) = FV(d) \ {z}.

2. Otherwise: Then df = Z0dy0...d,,_10, and by IH FV(d;0) = FV(df) \ {z}.

Moreover one easily verifies that FV(Z8) = FV(Z) \ {z}.

Hence FV(df) = FV(Z6) U J,(FV(d:f) \ Eig(7)) =

(EV@D) \{=z}) uU; (FV(di) \ {=}) \ Eig(T)) =

(FV(Z) UU;(FV(d) \ Eig(Z))) \ {z} = FV(d) \ {z}.

Definition

A Z-derivation d is called closed iff FV(d) = 0.

Lemma 4.3

(a) Each Z-derivation d can be transformed into a Z-derivation d’ with T'(d’) C I'(d) and FV(d') C FV(T'(d));
in particular, d' is closed if I'(d) is closed.

(b) If d = Zdy...dp,—1 is closed and Eig(Z) = 0 then dy, ..., d,—1 are closed.

(c) If d = Zd,y is closed and Eig(Z) = {z} then dy(z/t) is closed for each t € Tp.

Proof:

(a) Induction on the cardinality of FV(d):

If FV(d) C FV(I'(d)) then d' := d.

Now assume that € FV(d) \ FV(I'(d)). Then I'(d(z/0)) C I'(d)(x/0) = T'(d),

and (by L.4.2b) FV(d(z/0)) = FV(d) \ {z}. Hence the claim follows by IH.

(b) FV(d;) C FV(d) U Eig(Z).

(¢) FV(do) CFV(d) U{z} ={z} = FV(do(z/t)) =FV(do) \{z} = 0.
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§5 Proof theoretic analysis of Z via the infinitary system Z*°

Definition

Let R be an Ly-formula with FV(R) = {z,y} such that the relation
<:={(m,n) € N> :IN |= R, .(m,n)} is wellfounded.

By recursion over < one defines the <-norm |n|< of n € IN:

[nl< 1= sup{|m|+1:m < n}.

I<Il = sup{ln|~+1: n € N},

Abbreviations.

|t|< = [tV|2 for t € Ty,

s <t:=Ry,(s,t), Yy<tF(y) := Vy(y<t = F(y)).

We use F to denote expressions AzF' (F a formula). For F = Az F we set F(t) := F,(t).
Prog_(F) :=Vae(Vy<zF(y) — F(z)),

TIL(F,t) := Prog_(F) = Vz<tF(x),

TIL(F) := Prog_(F) — VaF(z).

Finally TIL(X) := TI;(AzXx), etc.

In this section we will show that gg is the least ordinal «a such that transfinite induction up to « is not

provable in Z; more precisely we will establish the following

Results.

(I) ZFTIL(X) = || < || <eo (for any arithmetic <).

(IT) For each a < e there is a primitive recursive wellordering <, of ordertype a such that Z + TI._(X).

Sketch of the proof of (I):

We define an infinitary proof system Z°°, which (essentially) results from Z by

(i) replacing each inference symbol Ay, , by its infinitary version

(Nepa) 220 LT ey

(ii) adding the axioms A (for A € TRUE) and Xs,~Xt (for s,t € Ty with sV = V)

Then we prove the following Theorems which together yield the above result.

(Embedding) ZFT = Z%° <" T for some m < w.
(Cut Elimination) Z*F%,, T = Z*F3 T.

(Boundedness) Z°FE TIL(X) = ||<| < 2°.
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The infinitary proof system Z*°

The language of Z°° consists of all closed Lo(X)-formulas (sentences).

We introduce the following relation ~ between Ly(X)-sentences and (possibly infinitary) conjunctions or

disjunctions of Lo (X)-sentence:

Ao N A1 = Niggo,134is VoA ~ N\, Ax(t), AoV A1 = Vicpo,134i5 A =\ oq Au(t)
Then we have

- A~xegA &1e J = rk(4,) <rk(4),

- AxxegA, = —(A) = *,5mA, where V = A, K =V,

Definition

AX(Z%) := set of all sequents A such that

— all elements of A are closed literals,

~ ANTRUEp # 0 or A contains a subset {Xs, 7 Xt} with sV =tV

Note that {A € AX(Z) : FV(A) =0} C AX(Z%).

Remark. A/ A" € AX(Z®) = (A'\ {C}) U (A" \ {=C}) € AX(Z%)

Proof: Assume A’ \ {C} € AX(Z°) and A"\ {~C} ¢ AX(Z%).

Then (w.l.o.g.) C = Xt and =Xs € A\ {C} and Xr € A"\ {~C} with sV =tV =V,

Z>*-inferences

(Axa) A if A € AX(Z®)
T I B A PN Wy

(VD) % if A\, A and p e J
(Cutc) ¢ 0_'0

(Rep) %

Remark. At moment we could do without Rep inferences. They will become important later.

NOTATION

Until further notice we use d, dy, d1,e, ... as syntactic variables for Z°°-derivations.

d,
|
R s
'«

T, (€)T))

o d=1(d).ez) & Ve € |T|(T(d,) €T, & hgt(d) <o, < a) & —'"FLMlELe'I—DI :

where 7 AZ) CT &Vie |Z|(T, CT,A(T)).

7 implies T'(d) C T and hgt(d) < «.

Note that d ~ {
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Theorem and Definition 5.1
For each formula C' we define an operator R¢ such that:
dFe T,C & eF3 T,-C & tk(C) <m = Reo(d,e) FO#5T.
Proof:
Re(d, e) is defined by recursion on a#S3.
d,
1.C ¢ Allast(d): Then d=~{ 1 A g er) whereZ:=last(d), I:= 1]
IC:a ’
By IH we get Rc(d,,e) F&#8 T, A, for all + € I. Further we have o, #3 < a#f for all 1 € I.
Re(d,,e)
Hence Re(d,e) := Z(Re(d,,€)).er =~ .T,A :l a#B...(el) is a derivation as required.
[:a#p

1’. =C ¢ A(last(e)): symmetric to 1.

2. C € A(last(d)) and —=C' € A(last(e)):

2.1. C is a literal: Then last(d) = Axar and last(e) = Axar with A’ € AX(Z%) and A" € AX(Z™).
Hence A := (A’\ {C}H) U (A" \ {=C}) CT, and A € AX(Z*) (cf. above). We set R (d, e) := Axa.
2.2. C~V,.,Cu

do €,

| |
Then ~C' = \,e;=Coand d =41 0,0, a0 ©X4 D00, B e )
rC:a ¢ [,=C:p3

By TH we get Re(do,e) F20#8 T, C,, and Re(dye,) Fod P T, =C,,.

-C

Further rk(C},) < rk(C) < m.

RC (dOa 6) RC (d7 eu)
| [
Hence Ro(d, e) = CutC”Rc(do,e)'Rc(d, eu) ~ F,Cu cop#B T, 0 a#ﬂu
T afth Cute

2.2°. C ~ \,c;C.: symmetric to (Case 2.2).

Theorem and Definition 5.2
We define an operator £ such that the following holds: d +%_; I' = &(d) 3, T.

Proof:
do dy
1o d=~{p ¢liay TooCiar  : Thentk(C) < mand, by IH, £(do) 2" T, C and £(dy) ' T, =C.
I':a cute
Hence Rc (E(do), E(dy)) F2."#3°" T' by Theorem 5.1. So we could define £(d) to be R (E(do), E(dy)).

But for reasons which become clear later we set £(d) := RepR¢(E(dp), E(dr)).

£(d,) d,
: | : |
2. otherwise: &(d) :=Z(E(d)er = . T A, 3% .. (el)  F =91 A, :q,.. (€]
r:3« g I'a ’
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Theorem 5.3 (Inversion)
(a) A~ N\, cjA &Z7 3, TVA = Z7 k), T, A, for each 1 € J.
(b) A "?Zn F,AO VA — VA "?Zn F,Ao,Al.

Definition. Lo(X) := Lo U{X},

A closed Lo(X)-formula (sequent) is called X-positive if it contains no subformula —Xt.
= A e (W fn s Inle < o)) 4,

':a {Al, ,Ak} = ':a ALV ...V AL

Theorem 5.4 (Boundedness). Let I' be X-positive.

YA I—f —Prog_(X),~Xs1,....,mXs, I & [s1]<,..., |sk]< <a = |=°‘+2ﬁ T.

Corollary. Z® H? TIL(X) = ||<| < 2°.

Proof of the Corollary:

7o FTIL(x) 2 7o —=Prog_(X), Xn for all n & In|< < 27 for alln = ||<]|| < 2°.

Proof of Lemma 5.4 by induction on 3:

Abbreviations: A := {-~Xs1,...,mXs;}.

Let d HY —Prog(X),A,T.

1.1. last(d) = Axa and ANTRUEy # : Then I' N TRUE, # 0 and the claim is trivial.

1.2. last(d) = Axa and Xt,~Xs C A with tV = sV:

Then Xt € T and - Xs € A. Hence |t|x = |s|< < a < a+ 27 and thus |:C’+2B r

2. last(d) = V/*%,05(x): Then F® =Prog(X), A, T, Vy<so Xy A =X sy with fo < B.

By 5.3a (Inversion) we get (1) I—fo —Prog(X),A,T',Vy<so Xy, and (2) I—fo —Prog(X),~Xso,A,T.

By IH from (1) we get =22 T, Vy<so Xy.

(Case 1) =22 T': Then also =22 T, since By < 8 and T is X-positive.

(Case 2) =242 Vy<so Xy: Then |m|< < o+ 2% for all m < sy, ie. |so|< < o + 25,

From this together with |s|<, ..., |s;|< < « and (2) by TH we obtain =22°+2"" ' and thus 2+2" T.
3. last(d) = A\ with C' ~ A ;C, € T: Then, for all + € I, I—Lf‘ —Prog(X),A,I',C, and 8, < 8. Hence, by
IH, 2+2" T, C, for all «. Since T is X-positive, this implies =2+2° T, C, for all ¢, and thus =2+2° T, C.
4. last(d) = \/{;, with C' € T': as 3.

6. last(d) = Cutc with C € TRUEy: Then by LH. £2+2" ', =C and thus o+2° T

7. last(d) = Cuty, with Y # X: Then F?° —=Prog(X), A, T, =Y's which implies F7° =Prog(X), A, T, =(0 = 0).
Now the claim follows as in 6.

8. last(d) = Cuty,,: Then (1) F¥ —Prog(X),A,T, Xsy and (2) % =Prog(X), =X s, A,T.

By IH from (1) we get =22 T, Xs,.

(Case 1) =2+2" T Then also =2+2° T.

(Case 2) |:"‘+2ﬁ0 Xso: Then |sg| < < a + 250, From this together with |s;|<, ..., |sx|< < a and (2) by TH we
obtain =+2+2" D and thus £+2" T

(d)

5. last(d) = Rep: immediate by IH.
(d)
) =
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Embedding of Z in Z*°

From now on we denote Z°°-derivations by d, e, c.

For each closed Z-derivation d we define its interpretation d* € Z*° as follows:
L (AVpado)>™ = /\VmA(dO(m/t)oo)teTo )

z,t .

; fn=0

2. (Ind%tdg)> := { F : h
(Ind"do) { Cutp(men—icy’ ifn>0 where
ni=tN, Bt HM ) SF,(n), Fu(t), eo = do(2/0)®, e;:= Cutpge; 1do(z/i)™ fori>0.

do(x/0)> do(x/1)>
CutF(l) do(:ﬂ/?)oo

z,t 00 .
(Ind7"dp)> = : do(x/n—1)
CutF(n_l) c?t
Cutp(n)

3. Otherwise: (Zdp...dp—1)>® :=Zd5°...d° ; .

n

Definition of 6(d) and dg(d) for each Z-derivation d

Let d = Idg...dnfl.
5(d) = 6(do) + w if 7= I'ndf,’t
SUP;, (6(d;)+1) otherwise

. x,t
dg(d) := max({dg(Z)} U {dg(d;) : i < n}) where dg(Z) := {rk(0)+1 if 7 = Cutc or Indg;
0 otherwise

Corollary. 6(df) = 6(d) and dg(df) = dg(d).
Theorem 5.5.

If d is a closed Z-derivation then Z°° 5 d*> I—gg;) I(d).

Corollary. Z T and I closed = Z*° F% ¥ T for some k,m < w.

Proof: Let ' := T'(d).

1. d = Ay, 4do: Then for each t € Ty, Z > do(/t) - T, A, (t) where do(z/t) is closed.

Further we have « := 6(dp(z/t)) = 6(dp) < 6(d) and dg(do(z/t)) = dg(dp) < dg(d).

LH. = 7% 5 do(2/t)® Fg g T, As(t) (VE€ Tp) = 2% 5d= F3\) T

2. d = Ind?tdo: Since d is closed, t € Ty. Let n := tN. As above we get (by LH.) for all i € IN,
Z° > dp(z /i)™ +2 T,=F. (i), Fr(i+1) where @ := &

e; FOti D F,(i+1): (i) ey = do(x/0)™ F2 T, Fy(1) (note that =F,(0) € T). (i) i > 0: do(z/i)® F
T,~F(i), F(i+1) and e;_; Fo+=1 T, F(i) “E5™ ¢, = Cutp(iyei—ido(a/i)>® F&H T, F(i+1).

(dp) and m := dg(d). Now by induction on i we get

n=0:d®°=cy' Fy™ =F(0), F(t).
n>0: en 1 LT, F(n) and €' Fk ~F(n), F(t) "25™ 4% = Cutpgyen 15’ Fo T, F(t) (=T).
3. d =1dy...d,, 1 otherwise: Then, since d is closed, dy, ..., d,,_1 are closed, and 7 is also an inference symbol

of Z*°. Hence the claim follows immediately from the I.H.

Theorem 5.6 Z+ TI(X) = ||<|| < ¢&o. [Proof by 5.5, 5.2, 5.4(Corollary).]

30



Fragments of Z
Let Z,,, be the subsystem of Z where the induction rule is restricted to formulas F' with rkqr(F) < m.

We are now going to sharpen Theorem 5.6 by showing that if Z,, F TIL(X) (m > 1, < transitive) then
<]l < wma1, where wg = 1, wpy1 := w. For this we need a sharper version of Theorem 5.4 (due to

Beckmann).

Definitions.

For U C NN let |n|y :=sup{lilu+1:i<n&ig U}, andU®:={ne€N:|n|y <a}UU.
i A e (VU E 4,

Eo{A, . A} o ES A V.V A4,

Lemma 5.7.

< transitive & U'=UU{m} & |mlyv < ap < a = Vn(|n|y < |njp +1) & (U")* C U™
Theorem 5.8.

For transitive < and X-positive ' we have:

Z°° ¢ <Prog_(X),~Xs1,..,7Xsp, T = =g T with U:={s},..,s}}.

Proof by induction on « using Lemma 5.7.

Definition

a0 (B) := B, ami1(B) := a®B) | w = wn(1),ie. wo =1, w1 =w, wy = w¥, wg = w*” (= W), ...
2 e

Theorem 5.9. < transitive and Z,, - TIL(X) = ||<| < {$m+1 }E ms 8

Proof:

Let I be closed. By partial cut-elimination and Lemma 4.3, if Z,,, - T" then there exists a closed Z,,,-derivation

d of T' with rkqr(C) < m for all cut or induction formulas C.

Then also rkqe(C) < m for all cut-formulas C' of d*.

So we have d* g T for some k > 1.

By inspecting the proofs of 5.1 and 5.2 one sees that the following holds:

dF&r i I = E(d) Fgr, T

Hence £™(d™) l—%’;fg"k) I'. Moreover there is an £ € IN so that rk(C') < ¢ for all cut formulas C' of £™(d*).
Abbreviation. Z%° k5 T' & d ;T for some Z*°-derivation d in which all cut formulas are quantifierfree.

The following propositions are easily proved (where (1) and (2) are needed for the proof of (3)):
(1) z*= Foo D, Ao AN A = > Foo [y Ass

(2) Z%F2 T, AoV Ay = Z% k2, T, Ag, Ay;

3)Z°F2 o T&n>1 = Z°F23T.

By the above we have Z*° I—?_’L‘l(:‘é'k) I'. From this by (3) we get Z*° |_?Z'3m(w'k) T
So we have: Zp, F TIL(X) = Z% Fo TIL(X) *2°? <] <a =203, (w k) < {52 B iftm =0
m -
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Arithmetization of ordinals < ¢y

In the following a, b, ¢, z,y, z denote natural numbers.

We assume that IN<Y — IN, (ag, ..., @p_1) = (@0, .oy Q1)

is a bijective coding of finite sequences of natural numbers such that

(1) 0= () and a; < {(ag,...,an) < {ag,...,an+1) for i < m;

(2) For each n the function N"*! = IN, (ag, ..., a,) ~ (ao, ..., a,) is primitive recursive;

(3) The function % : N> = IN, (ag, .., @m—1) % (b, .., bp—1) := (a0, .- Am—1, Do, ..., bu_1) is primitive recursive.

Definition of (OT, <)

By simultaneous recursion we define a set OT C IN of ordinal notations and a binary relation < on OT.

1. a€ 0T < a=ag,...,an—1) with ag,...,a,—1 € OT and a,,_1 <X ... < ap.

2. a<biff a=(ag,...,am—1) € OT, b= (bg,...,bp—1) € OT and one of the following two cases holds
(i) m <n and a; = b; for all i <m;
(ii) Ik < min{m,n}ar < by, & a; = b; for i < k.

Remark. OT and < are primitive recursive.

Definition of 0: OT — ¢

0({a0, vry A1) 1= w(®) 4 4 olan=1)

Lemma 5.10. o maps (OT, <) isomorphic onto (g, <).

Corollary. (OT, <) is a wellordering and |a|< = o(a) for a € OT.

Proof of |a|x = o(a): If a € OT then |a|< = sup{|b|<+1:b < a} gt sup{o(b)+1:b < a} L% o(a).

Definition.

For a,b,k € IN we set a®w’-k:=ax(b,...,b) and a P w’ := a P w1, Wb := (b).

Remark. If a ®w’k € OT then o(a ® w’-k) = o(a) + w’®-k.

Lemma 5.11. Provably in PRA we have

(a) (OT, <) is a linear ordering.

(b) If a < ¢ < a® w" then there are d < b and k € IN such that ¢ < a ® w k.
Proof of (b):

Let a = {ag, ..., am—1) and ¢ = {cg, .., cn—1). From (ag, ..., am—1) < {co, ---, Cn=1) < {ag, ---, 4m—1, b it follows

that that m < n, a; = ¢; for i <m, and ¢,_1 < ... < ¢ < b. Hence ¢ < a ® w’ - (n—m+1).

Provability of TI,

Yo := I := set of all quantifierfree Ly(X')-formulas.

o1 ={3zA: A eIl }, Ui :={VzeA: A€ X, },

IT,,-TIA denotes the subsystem of Z where the induction rule is restricted to II,,-formulas.
As shown in the exercises, I1,-TA and ¥,-IA prove the same sequents.

In the following we understand II,, and ¥,, modulo provable equivalence in ITy-TA.

In this sense 41 (X541, resp.) is closed under A, V, V (3, resp.). Moreover X, UTI,, C X401 N1,501.
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Definition. F(y) := Vz(Vz < 2F(2) = Vz < 2 Dw¥ F(2))}.
Remark. If F €I, then F € I, 4».
Proof: F(y) = Vz(AV B) with A€ £,,1 CIl,yo, B€ M, C I, ».

Lemma 5.12. II,4,-IA - Prog_(F) — Prog_(F) for F € I, 4.

Proof:

Assumptions: (1) Prog(F), (2) Vy < bF(y), (3) Vz < aF(z).

To prove: Vz < a®w® F(2). Let G(y, k) :=Vz < a® w¥-k F(2).

Then F(y) = (G(y, k) = G(y, k+1)), and from (3) we get G(y,0).

Now by II,,41-IA we obtain F(y) — VkG(y, k), and then (4) Yy < bYkG(y, k) by (2).

Now let z < a®w’. If z < a then F(z) by (1) and (3).
If a < z then Jy < bIk(z < aDw?-k) and thus F(2) by (4).

Definition.

For a < &g let I1,,-TI(a) denote the axiom scheme TIL(F, a’) (F €1I,), where 'a!:=07!(a) € OT.

Lemma 5.13. I, -TA + 11,1 »-TI() F I, 1-TT(w®).

Proof:

Let F € I,,;1. Then F € II,,; 5, and the claim follows from II,,4;-IA F Prog(F) — Prog(F),
,,15-TI(a) F Prog(F) — F('a'), and Hp-TA - F(fa) = Vz < (w1 F(2).

Corollary. II,1-TA F IIr-TI(w,(k)) and II;-TI(w, 41 (k)).

Proof:

M1 -TA + Lo TT(E) b Ty () b . F T-TT(wh) b T-TT(wE ).

It remains to prove II,,41-IA F II,,42-TI(k).

Actually we show (by meta-induction on k) ITIp-TA + TI(F, k7) for any F.

Obviously ITy-TA F Vz < [01F(2) and My-TA F Prog(F) — Vz < Tk1F(2) — Vz < Tk+11F(2) for each k € IN.
Hence ITo-TA + Prog(F) — Vz < [k F(z) for each k € IN.

Theorem 5.14.

(a) Mypy1-TA F I1;-TI(«) for each a < wyya.

(b) My 1-TA F T -TH(wpn1-2)-

Proof of (b):

Note that II,,41-IA is contained in Z,,,11. Let o < g9 and <,:= {(4,5) : i < j < a1},

i-IA F IL-TI(Q) 22 Zyar F T (X) = o = [|<all < wmas.

(¥) Prog, (X)=Vz(Vy <az(y€X) 22 X) = Va(Vy<2(ycX) > 2€X)=Prog(X) "=
Ve <'al(z € X) = Vz(z € X), since [z ATa! = Vy <4 z(y € X) = z € X].
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§6 Notations for infinitary derivations; the proof system Z*

Since for every true Lg-sentence there exists a Z°°-derivation of heigth < w, the method of §5 (by which we
have shown the unprovability of TI., (X)) is not suitable for showing the unprovability (in Z) of Lo-sentences.
Especially one cannot obtain bounds on the provably recursive functions of Z by this method. One way to
achieve this would be introduce an effective version of Z°° where infinitary derivations are coded by indices
for recursive functions. Here we choose a different way where the finite derivations of an extension Z* of Z

serve as codes (notations) for Z*°-derivations.

The proof-system Z*

The system Z* results from Z by adding the inference symbol (E) L]

0
and defining o(h) and deg(h) for Z*-derivations h = Zhg...h, 1 as follows

O(ho)#o(hl) if 7 = Cute

_ ) o(hy)-w if 7= Ind%’ [ deg(ho) = 1 if 7=E
o(h) := 30(ho) Y A ¢, deg(h):= max({deg(Z7)} U {deg(h;) : i <n}) otherwise
Sup;,(0(h;)+1) otherwise

3 — z,t
where deg(Z) := {Bk(c) i)ftger_w?sfeto or Ind

We use h, hg, ... as syntactic variables for Z*-derivations.

Remark: The definitions of o(h) and deg(h) are motivated by the interpretation h — h% (introduced below)
and Theorems 5.1,5.2. For example, since, according to Theorem 5.2, o(E(h&)) < 3°(%) and deg(€(h¥)) <
deg(h¥) = 1 holds, we have defined o(Ehg) := 3°(") and deg(Ehg) := deg(hg) = 1.

The definition of 76 and df for inference symbols and derivations of Z is extended to Z* by Ef := E.
Closed derivations are defined as in Z.

Lemma 6.1.

(a) o(hf) =o(h) and deg(hf) = deg(h).

(by Z">5h+T = Z" > ho - T9.

(¢c) If h =Zhg...h,—1 is closed and Eig(Z) = 0 then hy, ..., h,_1 are closed.

(d) If h = Zhg is closed and Eig(Z) = {z} then ho(z/t) is closed for each t € Ty.

Interpretation of Z* in Z*

For each closed Z*-derivation h we define its interpretation h% € Z*° as follows:
L (Aveah0)® = Ay (ho(@/)¥)

2. (Cutchohi)¥ := Re (WY, h¥) ,

3. (Eho)* == E£(hY)

z,t . .
4. (Ind%the)® = { Rep ¢l if n=0

h
Rep Rp(n) (en_1,c%") ifn>0 where

n:=tN, g F5Y <F,(n), Fo(t), e :=ho(z/0)*, e;:=Rpg(ei_1,ho(z/i)?) fori>0.
5. Otherwise: (Zhg...h,—1)*¥ :=ZhE¥ ...h%¥_, .
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Remark

With the help of Theorems 5.1,5.2 one easily verifies that h% is a Z*°-derivation with h% l—giggh) r'(h).
Let us look at the Ind-case:

Let ag := 0o(hg), qit1 := a;#ap and m := deg(h) = max{rk(F'), deg(ho)}.

From ho(z/i)® F20 T, =F(i), F(i+1) and e;_; by, " T, =F(0), F(i) we obtain

e; = Rrq) (€i—1,ho(x/i)¥) F& T, =F(0), F(i + 1).

n > 0: From e,_; For ™" T,=F(0), F(n) and ¢’ Fk ~F(n), F(t) we obtain

RepRp(n) (€n—1,€5") F20 T, =F(0), F(t).

n = 0: Then ¢ F§°“ =F(0), F(t). (1 <ap = w<ag-w)

Definition of tp(h) and h[i] for closed Z*-derivations h and ¢ € |tp(h)]

By recursion on the build-up of h we define a Z*°-inference tp(h) and closed Z*-derivation(s) h[¢] in such a

way that

L R[)Y L (eltp(h
hw — tp(h) (h[b]w) — [[’] (L | P( )|)
1€[tp(h)]| tp(h)
The definition clauses for h = Cutchghy and h = Ehg can be read off from the corresponding clauses in the

definitions of R¢ and £.

1.1. h=Axa: tp(h) := Axa.

1.2. h = Aghohi: tp(h) := A, hli] := hy.
1.3. h= Agho: tp(h) := Ag, hlt] := ho(z/t).
1.4. h=\Vgho: tp(h):=\/g, h[0] := hy.

z,t .
ety __ g ifn=0
2. h=Indz"ho: tp(h) := Rep, h[0] := {CutF(E)enlc?t 00 where

n:=tN, Z35ch F ~F(n), F(t), eo:= ho(z/0), e;:= Cutp(iyei—1ho(x/i) for i >0 .
3. h=Ehy:
3.1. tp(ho) = Cutc: tp(h) := Rep, h[0] := CutcEhg[0]Ehg[1],
3.2. otherwise: tp(h) := tp(ho), h[t] := Ehgl¢].
4.  h = Cutchohi:
4.1. C ¢ A(tp(ho)): tp(h) :=tp(ho), h[t] := Cutcholt]hy.
4.2. =C & A(tp(h1)): tp(h) :=tp(h1), h[t] := Cutchohy[e].
4.3. C € A(tp(ho)) and =C € A(tp(hy)):
4.3.0. tk(C) =0: tp(h) := Axa with A := (A(tp(ho)) \ {C}) U (A(tp(h1)) \ {=C}).
4.3.1. C =3zA: Then tp(ho) = /& for some t € Ty, and tp(hy) = A_c-
tp(h) := Cuty, (1), h[0] := Cutche[0]h1, h[1] := Cutchoh[t].
4.3.2. C =VzA or AgNAA; or AgVA;: analogous to 4.3.1.

Definition. h I—i ' : < hisa closed Z"-derivation with I'(h) C T, o(h) < «, deg(h) < m.
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Theorem 6.2

If h ' T and Z = tp(h) then the following holds:

(a) A(Z) €T,

(b) Z = Cute = rk(C) < m,

(c) For each 1 € |Z|: h[i] I—{:I‘,AL(I) with a, < a.

Proof by straightforward induction on the build-up of h:

W.lo.g. FV(T) = 0.

1. h = Axa: Then 7 = Axa and thus A(Z) = A =T(h) CT and |Z| = 0.

2.1. h =AY, 4ho: Then T = A, 4, A(Z) = {VaA} CT and ho T, A, (y) with ao < c.

By L.6.1a,b we get h[t] = ho(y/t) I—°jnI‘, A, (t) for each t € Tp.

2.2. h=\/4, 4ho: Then t € Ty, T =\/4, 4, A(Z) = {3zA} CT and ho F'T, A, (t) with ag < a.
2.3. b= Ay nn,hohi or h = \/ZovAlz analogous to 2.1 and 2.2.

4.1. h = Cutchohy with C' =3z A, tp(hy) = \/g, tp(h1) = A_c: Then t € Ty and tp(h) = Cut ().
Let v := o(ho), B := o(h).

Then ho F.T,C , hy H' T, ~C and rk(A(t)) < rk(C) < m.

By TH we obtain ho[0] F°T, C, A(#) with 7, < v, and  [f] KT, ~C, ~A(#) with §; < §.

Hence h[0] = Cutcho[0)hy H°*7T, A(t) and h[1] = Cutchohi [f] F/7 T, = A(t)

with yo#8, v#8: < y#8 = o(h) < a.

4.2. h = Cutchohy with tp(ho) =Z and C ¢ A(Z): Let v := o(ho), B := o(hq).

Then ho H.T,C , hy H' T, ~C.

By IH we obtain ho[¢] H""T',C, A,(Z) with v, < v, for all ¢+ € |Z].

Hence h[i] = Cutcholilht H*7T, A (T) with 5, #8 < v#8 = o(h) < a.

ho F/.T,C & tp(he) =T & C ¢ A(Z) & A(Z) CT & (T = Cuty = rk(4) < m).

4.3. h = Cutchohi with rk(C) =0 and C € A% := A(tp(ho)), ~C € A := A(tp(h1)):

Then Z = Axa with A := (A%\ {C}) U (A®\ {=C}), and by ITH A? C T'(h;). Hence A(Z) = A CT(h) CT.
5. h = Eho with tp(hg) = Cutc: Then tp(h) = Rep , h[0] = CutcEho[0]Eho[1] and deg(hy) < m+1.
Let v := o(hg). Then hg Fo:nHF.

By IH we have rk(C)) < m+1 and ho[0] k' | T,C, ho[l] ks T, ~C with 0,71 < 7.

Hence Eho[0] . T, C and Eho[1] ' T, ~C.

From this together with rk(C)<m we get h[0] = CutcEho[0]Eho[1] . *° T and 370#37 <37 = o(h) < a
6. h = Ind%'ho: Then T = Rep, rk(F) < m, and hg |-°7nI‘,—|F(x),F(S x) with vy :=o(ho), 7+ w < a.

ho(y/0) ho(y/1)
CutF(l) ho(g/?)

hl0] = ho(y/n—1) with Z 5 ¢’ ki =F(n), F(t).
Cutp(n_l) C%’t
Cutp(n)
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Lemma 6.3 (Consistency of Z)

Let Z% be the set of all closed Z*-derivations h with ['(h) = 0 & deg(h) = 0.
(a) he 2% = h0] € Z% & o(h[0]) < o(h),

(b) There is no Z-derivation d with T'(d) = 0.

Proof:

(a) he % °2* A(tp(h)) CT(h) =0 & deg(h) =0 *3” tp(h) = Rep.

heZi &tp(h) =Rep B° hl0] € Z7 & o(h[0]) < o(h).

(b) By transfinite induction up to &g from (a) we get 2] = .

Now assume that d is a Z-derivation with I'(d) = §. W.l.o.g. we may assume that d is closed.

Let m := deg(d). Then E™d = E...Ed € Z",. Contradiction.

Theorem 6.4. PRA + QF-TI(gg) + Con(Z).

Proof: The (transfinite) induction formula in 6.3b is the II;-formula F(a) := Vh(o(h) = a — h € Z):
VB < aF(B) & o(h) = a & h € Z%5 *%* (o(h[0]) = o(h[0]) — h[0] & Z) & h[0] € Z = L.

It remains to prove that II;-TI(ep) can be derived from QF-TI(go).

Let F(z) =VyA(z,y) with A € QF.

There are primitive recursive functions g, r, p such that p(Tal, k) = 'w-a + k' for all a < &g, k < w, and
PRAF 2 € OT — p(z,y) € OT A q(p(z,y)) =z Ar(p(z,y)) = y;

PRAF Vz,y(q(y) < ¢(z) = y < z).

Abbreviation: G(z) := A(q(z),r(2))

(*) Prog (F) — Prog_(G).

Proof: Assume (1) Prog_(F), (2) Vz < cG(2).

To prove: G(c), i.e. A(q(c),r(c)). By (1) this can be obtained from Vz < ¢(c)VyA(z,y).
a<qe)&b=plak) = qb)=a<q)Arh) =k = b<c Z GO) = Ala, k).

Now we conclude as follows: Prog_ (F') &) Prog_(G) =T V2G(z) = VzA(q(2),r(2)) =

= Ve € OTVyA(z,y) = Vo € OT F(z) Prog(F) VzF(x), since (z € OT — Vy(y 4 z)).

Definition

Let degqp(h) be defined in the same way as deg(h) only that rk(C') is replaced by rkqr(C'):

degqr (Zho--hn—1) := {max({degQF(I)} U {degqr (hy) i <n}) otherwise

. _ z,t
where degqp(Z) = {BkQF(C) it Z = Cutg or Indgy’,

Lemma 6.5 (Refinement of 6.2)

For every closed Z*-derivation h we have:

(a) tp(h) = Cutc == rkqr(C) < degqp(h).
(b) degqr(h[t]) < degqe(h) for each ¢ € |tp(h)].
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Characterization of the provably recursive functions of Z

Let (OT, <) be the wellordering of ordertype €q as introduced in §5.

Theorem 6.6

If ,,41-TA F Va3yA(z,y) (A a quantifierfree Lo-formula) then there are primitive recursive functions
g:IN? 5 IN, §:IN? 5 IN and an a < wy,4» such that Yn(8(n,0) = 'a') and N |= Ve A(z, f(z)) ,

where f(n) := g(n,min{k : 0(n, k+1) £ 8(n,k)}).

Proof:

We assume a canonical arithmetization (coding) ¢ + ¢! of syntax (terms, formulas, sequents, finite
derivations, derivation terms etc.). A set M of syntactical objects is called primitive recursive if the
set {Tq' : ¢ € M} is primitive recursive. An operation (function) ® on syntactical objects or ordi-
nals < &g is called primitive recursive if there is a primitive recursive function f : IN® — IN such that

0@, Tg.) ="®(q, ..., qn) ! for all (qq,...,¢,) in the domain of ®.

Assume II,,41-TA F Vz3y A(z, y). By partial cut-elimination there exists a Z-derivation d of IyA(z,y) with
rkqr(C) < m for all cut or induction formulas C. Then degqr(d) < m and o(d) < w* = ws. This d will be
fixed for the whole proof. W.l.o.g. we may assume that FV(d) C {z}. Hence d(n) := d(z/n) is closed for

any n € IN. We may also assume that no set variable X occurs in d.

Let £, be a finite subset of Lo (= PR), such that
(i) 0,S € £, and each function symbol occurring in d belongs to L7,

(ii) with p € £, also each function symbol occurring in (the definition of) p belongs to £, .
Let Z* be the restriction of Z* to £ .

Let TRUEqG: (FALSEq) be the set of all quantifierfree true (false) £, -sentences. It is wellknown that
TRUEGe (and FALSEq) is primitive recursive, and that there is a primitive recursive function which for
any two L -terms s,t of equal value computes a Z*-derivation ¢ of s=t with o(c) < w and deg(c) < 1.
Obviously the functions I'(+), o(+) , deg(+) , tp() are primitive recursive, and - [-] restricted to Z* is primitive

recursive too.

Let D be the set of all closed Z*-derivations.

Definition of the primitive recursive function red : DU {0} — D U {0}

0 if h =0 or tp(h) = Axa or tp(h) = /3, with B,(s) € TRUEq
h[1] if tp(h) = Cutc with C € TRUEge

h1] if tp(h) = A 4 a4, With A9 € TRUE;

h]0] otherwise

red(h) :=

Definition. h(n, k) := red® (Ejd(n)) , a = 3, (o(d)).

m
degqr(h(n,0)) = degqe(d) = m <m =m =0, and o(h(n,0)) = @ < 3,, (W) = Wm2.

Explanation. h(n,0)% is a Z*°-derivation of Iy A(n,y) with all cut-formulas in QF. The definition of h(n, k)

captures the following informal procedure. One goes upwards in the derivation h(n,0)% searching for a true
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instance A(n,t). At Cut- and A-inferences one chooses that branch where the minor formula is false. The

search stops if one arrives at an inference VtayA(n,y) with A(n,t) € TRUEg.

Proposition. If h(n, k) # 0 then

(a) o(h(n, k)) < o,

(b) degqr((n, k) =

(¢) T'(h(n, k) € {HyA(n y)} UFALSEqe

Proof by induction on k:

(a), (b) are obvious, since o(h[i]) < o(h) , degqr(h[i]) < degqr(h) , o(h(n,0)) = a , degqr(h(n,0)) = 0.
(¢) k= 0: T'(h(n,0)) = T'(d(n)) = {FyA(n,y)}.

k>0: IH = T'(h(n,k—1)) C {IyA(n,y)} U FALSEq;
= tp(h(n,k-1)) = V;yA(n,y) with A(n,t) € FALSEq: or Rep or Cutc with C'€ QF or Apor \/39 with

6.2¢

B € FALSEg, 3° T'(h(n,k)) C T'(h(n,k—1)) UFALSEg C {3yA(n,y)} UFALSEG,

h(n,k)#0 & 6.2a & 6.5a & (b
(n,k)# 6.2 a & (b)

Definition.
O(n, k) :=To(h(n,k))" (where o(0) := 0)

N if k> 0 and tp(h(n, k—1)) = (V5, 4(n.p)
g(n, k) := : ’
0 otherwise

f(n) :=g(n,min{k : O(n,k+1) £ 0(n,k)}).

Now let k be the least number such that 8(n, k+1) £ 6(n, k).

Assumption: h(n, k) # 0. Then [by Prop.(c)] tp(h(n, k)) # Ax and thus

8(n, k+1) = o(h(n, k+1)) "< o(h(n, k)) = 8(n, k). Contradiction.

Hence h(n,k) = 0 and thus & > 0 and [by Definition of red] tp(h(n,k—1)) = Ax or tp(h(n,k—1)) = \/;yB(y)
with B(t) € TRUE; . By Proposition (c¢) and Theorem 6.2a from this we get tp(h(n, k—1)) = V;yA(n,y) with
A(n,t) € TRUE, . Hence f(n) = g(n,k) =tV and IN |= A(n, f(n)).

The Hardy-Hierarchy

Definition (Fundamental sequences for ordinals < eg)

1. 0[n] := 1[n] := 0.

2. W n] = w - (n+1).

3. wMn] := WM, for X € Lim.

4. aln] == ap + ... + ag—1 + agln], if « =nr g + ... + ay.
Proposition. (a+1)[n] = a.

Definition. Na:=Nay+ ...+ Nap+k ifa=w* +...+w* with k>0and o < ... <ay <é&g
Lemma 6.7

(a) a € Lim = VYn(a[n] < a[n+1]) & a =sup{an]: n € N};
(b) a>0 = Na[0] < Na

(©) an] < B <a = afn] < 40]
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(d) a[n] < <a = Nan] < Nj

() B<a = B<alNp

Proof:

(a),(b) obvious.

(¢) Induction on 8. Let 8 =nr Bo + ... + Bk-

1. Assume w® - (n+1) < B < w**l. Then k > n and By = ... = B, = w®.

From this we get w® - (n+1) < fo + ... + Br—1 + Bx[0] = B[0].

2. Assume W < B < w* und X € Lim. Then w*™ < gy = w? < w?.

If k = 0 then A[n] < v < A and therefore (by TH) A[n] < [0]. Hence w™ < w10 = w7[0] = B[0].

If k> 0 then WM™ < By + ... + Br—1 + Bx[0] = B[0].

3. Assume o =np @g+ ... + @, m > 0 and an] = ap + ... + @m—1 + ap[n] < f < @. Then m <k, ap[n] <
Bm + -+ Br < ay and a; = B; for i < m. By TH we get a[n] < (Bm + - + Bk)[0] = Bm + --- + Be—1 + Bi[0]
and then a[n] < By + ... + Bx—1 + Br[0] = B[0].

(d) By (c) we have a[n] = £[0]...[0]. Hence Na[n] < NB[0] < Nj.

(e) Let a € Lim. According to (a),(d) we then have Vn(Na[n] < Na[n+1]), and therefore Vn(n < Na[n]).
Now the claim is obtained as follows: a[Nf] < 8 < a = Na[Nf] (i) NS < Na|Npf]. Contradiction.

Definition of H, : IN — IN for a < g9
Ho(n) :=n, Ha(n) = Hyppy(n+1) for a > 0.

Lemma 6.8

(a) Ha(n) < Ha(n+1),

(b) a[m] < B <a = Hym(n+l) < Hg(n),

(c) B<a& NB<n = Hg(n) < Hy(n),

(d) a>0 = Hy(n) =min{k >n:aln]..[k—1] =0} =n + min{l : a[n][n+1]...[n+l-1] = 0}.
Proof:

(a),(b) simultaneous induction on «: Let a > 0.

(a) 1. a € Lim: Ha(n) = Happ(n4+1) < Hopn (n43) < Hopnsr)(n2) = Ha(nt1).

2. a = ap+1: Hy(n) = Hyy(n+1) E3 H,,(n+2) = H,(n+1).

(b) From a[m] < # < a we obtain a[m] < f[n] < a by Lemma 6.7. If a[m] = B[n] then H,[py(n+1) =
Hyy(n+1) = Hs(n). Otherwise Hapmg(n+1) < Hap(n) < Hap(n+1) = Ha(n).

(c) Induction on a: 8 < « b SgTe B < a[Np] < an] (RIL1H Hp(n) < Hg(n+1) < Hyppy(n+1) = Ho(n).
(d) Let k& > n minimal such that a[n]...[k—1] = 0.

Then Hy(n) = Hypny(n41) = ... = Hyp.e—1)(k) = Ho(k) = k.

Abbreviation.

a=0orB=0o0r
NF(a,B) & .
[a=w 4 .. 4w &B=wh + .. +w with ag > ... > an > Bo > ... > B ]

Proposition. NF(a,3) & >0 = (a+ f)[n] = a+ B[n] & NF(«, 8[n]).
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Lemma 6.9

(8) NF(a,8) = Hasg = Hao Hs.

(b) Hya+1(n) = HLE,’},H)(n-I-l) and H,x(n) = Hami(n+1) for A € Lim.

(c) For each primitive recursive function f there exists a k € IN such that VZ( f(Z) < H,»(max{Z})).
Proof:

(a) Induction on 3: 1. Hyyo(n) = Hy(n) = Hy(Ho(n)).

2. 8> 0: Harp(n) = Higy gy (n+1) = Hoy spy(n+1) T Hy (Hgpny(n+1)) = Ho(Hg(n)).

(b) Hyot1 (n) = Hoo (nyr)(n+1) € B (n41).

(c) From (b) it follows that (k,n) — H,x(n) is (a variant of) the Ackermann function.

Theorem 6.10

Let 6 : IN x IN — OT be primitive recursive, and o < wy, 42 such that Vn(60(n,0) < Tal).
Then there is an & < wy,+2 such that min{l : 8(n,l4+1) £ 8(n,l)} < Hs(n) (Vn).

Proof:

Abbreviation: (n, 1) := o(8(n, 1)), where o(-) is the isomorphism from (OT, <) onto (&9, <).
W.Lo.g. Vn(6(n,0) = o).

Let w(i,n,l) := N(w' - (B(n,1+1)+1)). One easily sees that w is primitive recursive.

Let g(i,n,l) := max{w(i,n,l),i,n,1}.

There exists a k > 1 such that g(i,n,l4+1) < H_»(max{i,n,l}) and g(i,n,0) < H »(max{i,n}) (Vi,n,l).
Then we have

(1) g(k,n,14+1) < Hx(g(k,n,1)) (¥Vn,l).

Abbreviation: ¢(n,l) := Hwk.é(ml)(g(k,n,l)).

(2) 0(n,I4+1) < O(n,l) = @(n,l+1) < p(n,l).

(1) *
Proof: Hwk.é(n,l+1)(g(kanal+1)) < Hwk.é(n7l+1)Hw’° (g(k,n,l)) = Hwk.(é(n7l+1)+1)(g(kanal)) S
(n,
k

—~
~

< Hw’“-é(n,l) (g(kvnal)) =¥ l)

(%) Wk - (B(n,1+1)+1) < w* - B(n,1) and N (wF - (B(n,1+1)+1)) = w(k,n,1) < g(k,n,1).

(3) 3 <, 0)(p(n,l1+1) £ ¢(n,1)).

Proof: [VI < j(p(n,l+1) < p(n,l)) = j < ¢©(n,0)] and therefore not VI < ¢(n,0)(¢(n,l+1) < ¢(n,l)).

(2) & (3) & a=6(n,0) = I < Hro(9(k,n,0))[0(n,l4+1) £0(n,l)].

Hwk-a(g(kanao)) < HyeoH (max{k7n}) < Hwk~(a+1)+k(n)'

Q< Whpgo = w9t = W (a+1) + k < wh - (a42) < wk - wemtt = wEmtt = w4,

Theorem 6.11
If T4 1-TA F V23yA(z,y) (A a quantifierfree Lo-formula) then there is an o < wpy 42
such that Vnal < Hy(n) N | A(n,l).
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Proof:
By Theorem 6.6 there are primitive recursive functions g, and an ag < wy,+2 such that Vn(6(n,0) = Tag!)
and IN |=VzA(z, f(z)), where f(n) := g(n, f*(n)) , f*(n) := min{l : 6(n,l+1) £ 0(n,1)}).
By 6.10 there exists f < wp42 with Yn(f*(n) < Hg(n)). Further there exists k¥ < w with
Vn,i(g(n,i) < H,yx(max{n,i})), hence f(n) < H,x(max{n, f*(n)}) < H,xHg(n).
Since w412 = 'suﬂf\)I W1 (i), there is 7y := wy,11(i) such that w*, B < 7.
i
It follows that tehere is an ng such that H,«Hg(n) < HyH,(n) = Hy4(n) for all n > ng.
Hence f(n) < H x«Hp(ng+n) < Hyyy(no+n) = Hyyyiny(n) (and y+y+ng < wmta).

Corollary. I, 41-TA ¥/ VnIl(wpm2[n]n+1]..[1] =0) .

Proof: Assume I, 1-TA F ‘Vn3l(....) .

Then there is an o < w42 such that Vn3l < Hy (n)(wm42[n][n+1]...[I] =0), i.e.
Vn3l < Hy(n)( H,, ,(n) <I+1). This implies Vn( Hy,,,,(n) < Hq(n)).

But by L.6.8c we have Vn > N(«a)( Ha(n) < H, (n)). Contradiction.

Wm 42

Below we will show Ip,i1-IAF VnIl(an]n+1]..[1]=0) ’ for each o < wp4o.

Definition. F, := H,~ (Fast-Growing Hierarchy)
Corollary. Fy(n) =n+l, Fup1(n)= Fén+1)(n+1), Fx(n) = Fy[p)(n+1) for A € Lim.
Remark.

In the literature the Hardy- and the Fast-Growing Hierarchy occur in several variants.

The most common of these are:
ho(n) :=n, hay1(n) = ha(n+1), ha(n) := hyp(n);
fon) :=n+1, fari(n) = f& (), fr(n) = fapu (0)-
One easily sees that (i) hye = fa, and (i) ha(n) < Hy(n) < ho(n +1).
Proof of (ii) by induction on a:
H TH
1. hat1(n) = ha(n+1) < Hy(n+1) = Hop1(n) = Hy(n+1) < ho(n+2) = hgy1(n+1).
H
2. a € Lim: ho(n) = hopy(n) < Hyppy(n) < Hyppy(n + 1) = Hqa(n), and
L.6.8b H
Ha(n) = Ha[n] (n+1) < Ha[n+1] (TL) < ha[n+1] (TH—l) = ha(TH-l).
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Definition. By PRWO(a) we denote the axiom scheme
VZ(f(Z,0) < Ta' = y(f(&,y+1) £ f(Z,y))) (f primitive recursive).

Theorem 6.12.

(a) PRA+PRWO(a) F ‘Vn3l(aln]...[[] = 0) .

(b) £;-TA + - TI(a) F PRWO(w®).

Corollary.

I 4+1-TA F PRWO(a) and ‘Vn3l(aln]...[l] = 0)’ for each a < wpy42.

Proof:

Let p({a,n)) := (a[n],n+1), and f(a,n,k) := (p(k)((a,n>))0 where -[-] : IN? = IN is the canonical primitive
recursive function such that "3'[n] = T8[n] for all § < €9, n € IN. We now argue in PRA.

PRWO(a) = YnIk(f(fal,n,k+1) £ f("al,n,k)) = YnIk(f("al,n,k) =0) = VnIk("a'[n]...[k] =0).
(b) Abb.: D(z,n) :=VEk(f(z,n+k+1) < f(z,n+k)).

Assumptions:

(1) Vb < aVe,n(D(z,n) = (f(z,n) < cDw® = Ik(f(z,n+k) < ¢))),

(2) D(z,n),

(3) f(z,n) < c®w".

We prove: 3k(f(z,n+k) < c).

1.a=0: f(z,n) < c®w’ ®) flz,n+1) < f(z,n) < ec.

2. a = {(ag, ..., @) With an, # 0 (i.e. o(a) € Lim): immediate by (1).

3. a =b®wO: Then by (3), f(z,n) < ¢® w’-l for some .

By X-IA on i we prove: 3k(f(z,n+k) < ¢® wb-(I = 7).

3.1. ¢ = 0: trivial.

3.2. i = i+1: Let i <. From (2) we get (2’) Yk.D(z,n+k).

Th(f(z,n+k) < cdwb-( = i) L) I (F o, nak k) < e Bab-((12i)<1) = cBwb-(1=(i+1))).
So within ¥;-IA we have shown: (1) = Ye,n(D(z,n) = (f(z,n) < ¢®w® — Ik(f(z,n+k) < c))).
By II,-TI(w) this yields Vn(D(z,n) — (f(z,n) < "w*! — Ik(f(z,n+k) < 0))).

Hence Vn(D(z,n) — f(z,n) < Tw*! — 1), and then Vn(f(z,n) < 'w*! = =D(z,n)).

Proof of the Corollary: Lemma 5.13(Corollary) = 1I,,,11-IA F IIo-TI(«) for each & < w41 w2

= I,,+1-IA F PRWO(«) for each a < wip42.
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§7 Combinatorial independence results (To be revised)
Goodstein’s Theorem

For 1 <n € IN and z € IN let S,(z) be the number obtained by writing = in complete Cantor normal form
at base n+1 and then replacing the base n+1 by n+2.

The Goodstein sequence for a € IN (GS(a,n))nen is defined by
GS(a,0) := GS(a,1) :=a, GS(a,n+1):=S5,(GS(a,n)) =1 forn > 1.
We will prove:

(i) Every Goodstein sequence terminates (i.e. Yaan.GS(a,n) = 0);

(ii) Z t/ ‘Yaan.GS(a,n) =0".

Definition von ®§ :w — ¢p fiir 2<b<wund b < a < ¢go
o (z) = a® (@) oy 4 +a® @Ry falls 2 = Zle b¥ -m; mit x; > ... >z und ny,...,ng € {1,...,b—1}.

Sn(z) —@Zi%( ) (n>1,z€w). Abk: O,(z) =4, (x) (n>1,7€cw).

Lemma 7.1 Sein > 1.
(a) x <y <w = Sp(x) <Sn(y) & On(z) <On(y),
(b) On(2) = Ont1Sn(2).

Sei nun a,, := GS(a,n). Dann gilt:
.
an >0 = Sp(an) >0 = Opyi(ant1) = Ont1(Sn(an) —1) < Ony1(Snlan)) ‘= On(ay).

Definition P,(0):=0, P,(a+1):=a, Py(A) :=Py(An]).

Lemma 7.2 Sein > 0.

(a) a >0=Py(a) < a,

(b) Pp(a+ B) = a+ P, (B), falls NF(a, ),
(c) Pp(w®) = Pp(wP(®) . (n41)), falls a > 0,
(

(

d) Pn(0n(x)) = On(z = 1),
e) n > 1 =0 GS( ) PnP201(a)

Lemma 7.3

(a) a >0 = ho(n) =hp, (a)(n-l-l)

(b) ha(n) = min{k >n: Py_1..P,(a) = 0}.

Satz 7.4

Z / VaIy[ GS(z,y) =0].

Proof

Sei e(0) := 1, e(m + 1) := 2¢(™).

Annahme: Z F Va3y[ GS(z,y) = 0].

= ZFVzIy[GS(e(z) + z,y) =0] = Ja <eo¥YmIn < Hy(m)[GS(e(m) + m,n) =0] =
= dp,n[n < H,,(p) & GS(e(p) +p,n) =0]. (p > N(a) mit o < wy; vergl. 6.9c)
GS(e(p)+p,n) =0 = n>2&P,..Py(wp+p) =0,GS(e(p)+p,n) =0 = H,,1p(1) < hy,qp(2) <n+l =
H,, (p) = Hu,+p(0) < H,, 1,(1) < n. Widerspruch.

612
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The Paris-Harrington Result

Abbreviations:

Let k,m,n,r € N (= w), £ a cardinal, N aset. [N]™:={X C N :card(X) =m}
Let f be a function with dom(f) = [N]™:

X is f-homogeneous <= () # X C N & f][X]™ constant.

N — () & Vf:[N]"™ = r3X(X f-homogeneous & card(X) > k)

r

N -5 (k)7 & Vf:[N]™ = r3X (X f-homogeneous & card(X) > max{k, min(X)}) (for N CIN)

r

Ramsey Theorem VYm,r € w(w — (w))

r

Finite Ramsey Theorem Vm,r, k € wiN € w(N — (k)7)
PH Vm,r k € wIN € w(N - (k)7)
(Proof of the Finite Ramsey Theorem in PA: cf. Hajek, Pudlak Ch.2, Sec.1)

Proof of PH: Let m,r, k € w be fixed. To prove: In € wVf -~®(f,n)

where ®(f,n) & f:[n]™ = r & VX (X f-hom = card(X) < max{x,min(X)}) .

Assumption: Vn3f ®(f,n). By Konig’s Lemma there is a function f*[w]™ — r such that

(+) Vn @(f*I[n]™,n) .

By Ramsey’s Theorem there exists an infinite f*-homogeneous set X C w. We choose N < w such that
card(X N N) > max{x, min(X)}. For f := f*[[N]™ we then have f[[X N N]™ = f*|[X N N|™ = constant.
Hence X NN is f-homogeneous and card(X NN) > max{x, min(X)} = max{x, min(X NN)}, i.e.,, 2®(f, N).
Contradiction to (+).

[[ Construction of f*: Let ®,, := {f : ®(f,n)} and M(f) := {i : 3g € ®;(f C g)}. — Starting with fo := () we
define a sequence (fn)new such that f, € ®, & fn C fuy1 & card(M(f,)) > w, and we set f* =, c, fn-
Definition of f,11: Let E := {f € @11 : fu C f}. Then M(fs) = {n} UUscp M(f), and E is finite.
This together with Vi > nVf € ®;( f[[n+1]™ € ®,41) implies the existence of an f,+; € E such that
card(M(fn41)) = w]]

Theorem 7.5 Vm > 1Vk( H,, () (k+1) < Rp(k)) with Ry, (k) := min{N : N - (2m—|—k—|—4)2"f£i<m3i}

Corollary

a) Zm Ve, rAN(N - (k)7F1) (m > 1)

b) Z /Vm,k,rAN(N - (r)H!)

Proof of the Corollary:

a) Assumption: Z,, - Vk,rAN(N - (k)™+1). Then Z,, F Vk,rAN(N - (2m+k+4)kmj21i<m3i}).
By 6.12 there is an a < wy,+1 such that Vk(R,, (k) < Huo(k)).

Let k € w such that a < wp, (k) and N(a) < k.

Then H,,,, 1) (k+1) 2 Ry (k) < Ho(k) < Hy,, (k) (k). Contradiction.
b) Z FVn,k,r3AN(N = (k)7H1)

= Z,, F Vn,k,rAN(N - (k)?t')  for suitable m

= Z,, F Yk, rAN(N = (k)H1).
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¢8 The collapsing functions 1),

In this section we introduce certain ordinal functions 1,, and a primitive recursive ordinal notation system
(OT, <) based on these functions, which will later be used to establish an ordinal analysis of the theories
ID,, of finitely iterated inductive definitions.

Here we are working in ZFC.

In particular we assume the Axiom of Choice, so that every infinite successor cardinal R, is regular.

a, B8,7,8,&,n,(,0, 1, p denote ordinals.

Notation. €y :=8y; Q_ = {}20 gg ;8 i BT i=min{Qp1 0 8 < Qopr )

R := the class of all uncountable regular cardinals.

Definition.
Given a countable set F of ordinal functions and an ordinal 5 let

CI(F; B8) := the closure of § under + and all functions in F.

Lemma 8.1.

If F is a countable set of ordinal functions, then for each k € &

the set {8 < & : CI(F;B8) Nk C B} is closed unbounded in .

Proof:

unbounded: Let s < k be given. We set (41 := min{n : CI(F;B,) Nk C n}, B :=sup,,,, On-
Since YV < k(card(C1(F;n)) < ), we obtain (by induction on n) 8, < s, and then 8y < 8 < k and
CIF;B8) Nk C Uy CUF; Bn) Nk C U,y Bnt1 € 8.

closed: If B = sup(X) & Vne X (CLl(F;n) Nk C n) then CU(F;8) Nk C U, cx CUF;n) Nk C U exn =B

Definition.

Let vg be a fixed countable ordinal.

By transfinite recursion on o we define ordinals ¢, (a) (o < vp) by

o) :=min{B > Q,, : C(e, 8) N Qpy1 C B} with C(a, B) := Cl{¢h,la: o < 1}; B),
where 1), [a is the restriction of ¢, to {€ < a: & € C(£,14())}.

Abbreviation. Cy(a) := C(a, s ()

Remark. C,(a)N Qi1 = s(a)

Theorem 8.2 (Basic properties of ¢,)

(a) Yo () < Qo1 (collapsing property);

(b) ¥5(0) = Q, and each 1), () is an additive principal number;
(c) ap < a1 = Yy(ap) < Ps(a1) & Cyr(ag) C Cylan);

(d) ap < g & ag € Cr(apg) = Yo(an) < Yo(ay);

(€) Yo(an) =Yo(ar) & ag € Co() & a1 € Cp(a1) = ap = ay.

~
normalform condition
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Proof:
(a) By L1 {3 < Qo1 :6>Q,,, &C(a,8) N Qpy1 C B} #0D,
and therefore 9, (a) = min{# > Q_ ; : C(a, B) N Qyp1 C B} < gy

(b) Obviously C(0,9Q,,,) = Q,,;, and therefore 1, (0) = Q_,.

g () is closed under +, since ¥, (a) = Cy (@) N Qypq.

(C) C(aoawd(al)) N Qa+1 g 0(041,1/10(041)) N Qa+1 = 1%(041) = 1/10(00) S 1%(@1) = Ca(Oéo) g Oa(al)-
Def.C’:,—i-(a) ’(,ba—(Oéo) € Cg(al) n Qa’—i—l = ’QZJU (041).

(e) If ap < ay then the assumption ag € Cy(ag) together with (d) yields ¥, () < 9o (aq).

(d) ag<ay & ag € Ca—(ao) g ag<ar & ag € Ca—(ao) - Cg(al)

Lemma 8.3

Co(a) = C(a, 1)

Proof by induction on a:

Let us assume that Cy(&) = C(&,1), for all ¢ < « (IH). We have to prove ¢o(a) C C(a,1). Let a > 0
(otherwise 1g(c) =1 C C(a, 1)). As we will show below, the TH implies that 8 := C(«,1) Ny is in fact an
ordinal. Then C(a, 8) Ny C C(a,1) N Yy = F and thus o (a) < B, since > 1 =07 .

Claim: v € C(a,1) Ny = v C C(a,1).

Proof by side induction on the definition of C(«,1):

1.y =o(§) with € < a:

By the above IH we have Cy(§) = C(&,1). Hence v = ¢(€) C C(€,1) C C(a, 1).

2. v =90+ with v9,71 € C(a, 1) N Qy:

Then by SIH 79,v1 € C(a, 1) which (together with v € C(a, 1)) yields v0 + 11 C C(a, 1).

Corollary. o(a) = C(a,1) Ny

Lemma 8.4.

If v = vo + ... + v, with additive principal numbers 79 > ... > 7y, then: v € C(«a,8) & 7o, ---, Tn € C(a, ).
Proof of “=” by induction on the definition of C(«, 5):

For v < 8 or n = 0 the claim is trivial. Otherwise v = ¢ +n with £,n € C(a, §).

Then E=v+...+Y-1+& + ...+ & and n = v + ... + Yy, and the claim follows by I.H.

In order to avoid some technical complications we now assume vy = w.

From now on the letters o, p, u, v range over numbers < w.

Below we will introduce a system of ordinal notations based on the ordinal functions v,. The canonical way
for that is to consider the set T of all terms which are generated from the constant 0 by means of function
symbols @, Dg, D1, ... for the ordinal functions +,1y,%1,.... Then one looks for a (primitive) recursive
characterization of the relation <,:= {(a,b) € TXT : o(a) < o(b)}, where o(a) € On is the canonical
interpretation of a € T. It turns out that the relation <, has a particularly simple characterization when it
is restricted to the subset OT C T of those terms a € T which are in “normalform” (i.e. o(b) € C,(o(b)) for

each subterm Db of a, and o(a,) < ... < o(ag) for each subterm age ... sa, of a).
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Now we define the set T of terms, a linear ordering < on T, for any a € T and 0 < w a set G,a of subterms
of a, and the set OT of ordinal terms (i.e. terms in normalform) in such a way that, for all a,c € OT,
(a) c<a & o(c) <o(a) and (b) Gyc < a & o(c) € Cy(o(a)).

(Here Gya < ¢ abbreviates Vz € Gya(z < ¢).)

Inductive definition of T
1.0€T.
2. If a € T and 0 < w, then D,a € T; we call D,a a principal term.

3. If ag, ...,a, € T are principal terms and n > 1, then (ag®...0a,) € T.

Definition. For a € T let £(a) be the length (number of symbols) of a.

0 ifn=0
Notation. For principal terms ay, ...,a,—1 and n > 0 we set ag®...0a,_1 := ¢ @0 ifn=1
(agea...eaan,l) ifn>1

So every a € T can be uniquely written as a = Dy ape ...9D,,_,an_1 with n > 0 and ag, ...,anp—1 € T.

Further we define: (age...0a,,_1) @ (bpo...0b,—1) := ap6...0a,_10bg®...0by,_1,

and a - n := ge...eq for principal terms a;, b;, a.
——

n
Definition of 0 : T — On

0(Dyyap® ...0D,, _ an_1) := s,0(ag) + ...+ s, _,0(an—1)

Definition of a < b for a,b € T
1. 0<b:<= b#O0
2. Dpa®a<Db®b:e= o<por(o=p&a<b)or(oc=p&a=b&a=<b)

Remark. < is a linear ordering on T, but it’s not a wellordering (e.g. ... < DgDoD10 < DgD10 < D10).

Abbreviations. For X,Y C T and a € T let
X=<XY & VeeXyeY(x <y);

X <a & Vre X(z<a);

a<X & o(X<a) [& FzeX(a<2).

Definition of G,a

1. G, (ag®...0an—1) := U éa} UGoa ifo<p

ien Gotiy 2. GoDya = { it <o
Inductive definition of OT

1. 0 € OT.

2. a€c 0T & Gya<a = Dyae OT.

3. ag,...,a, € OT (n > 1) principal terms with a,=<...<ay = (ape...sa,) € OT.

The elements of OT are called ordinal terms. We identify n € IN with the ordinal term Dg0e...0 Dg0.
————
n

Abbreviation. g := w := Dgl, Q, := D,0 for o > 0.
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Theorem 8.5. For a,c € OT we have

(a) c<a & ofc) <o(a);

(b) Goec < a & ofc) € Cy(o(a)).

Proof by induction on the length of ¢ simultaneous for (a),(b):

(a) We only prove “=”. The reverse implication follows from “="”, since < is total.

Let ¢ = Dycg oc19...0¢p,, a = D,yag 0aq6...0a, with principal terms c1, ..., ¢y, a1, ..., Gp.

1. 0 < p: From ¢, < ... X ¢1 X Dyeg we get by TH o(e,) < ... < o(er) € o(Dyen) = 9y0(c) < Qpiq and
thus o(c) < Qr41 < Q, <o(D,ap) < o(a).

2. 0 = pand ¢ < ag: By IH o(cy) < o(ag). Since Dyco € OT, we have G,co < ¢o and thus by TH
o(cg) € C(o(eo), ¥s0(co)). Hence ¥,0(co) < ¥,0(ap) by Theorem 8.2d. Now o(c) < o(a) follows as in 1.
(using that ¥,0(a) is additively closed).

.o=p&cy=ag & cre...0¢;, < ar6...0a,: Immediate by TH.

(b) Abbreviation: C := C,(o(a)).

1. ¢ = ¢go...0¢,: Then o(cp), ...,0(cy) are additive principal numbers with o(cg) > ... > o(e,) by LH.(a).
Goe<a & Ne,Goci <a B A, o(c) e C &' o) e C.

2. ¢c=Dyc with u < o: Then Gagz 0 and o(c) € Q41 CQ, CC.

3. ¢ = D,co with 0 < p: Then G0 < ¢p and therefore by LH. o(co) € Cp(0(co)) ().

“=7: e} UGorco = Goe < a B o(co) < o(a) & o(co) € € X o(e) = po(co) € C.

“e”: 1. 0 = p Phyolco) = o(c) € C Nyt =Pyola) = olco) <ola) = cp <a Cncogco Gyc < a.

2. 0 < Yoo(a) < Qoq1 <ole) € C = YPu(o(co)) = o(c) = 1, (§) for some ¢ € C with £ < o(a) and
g€ Cu(e) IR 5(ey) = £ < o(a) &olco) =€ € C B Gy(e) = {0} UGoeo < a.

Corollary. (OT, <) is a wellordering.
Definition. OTy:={a € OT :a < D;0}

Theorem 8.6.

(a) {o(a) : a € OT} = C(9Qy, 1), and the mapping o[OT is injective.

(b) {o(a) : a € OTy} = () = ||0Ty, < || (= order type of the wellordering (OTy, <)).

Proof:

(a) 1. Obviously C'(92,,1) € Q, (+). 2. From 8.5a it follows that o[OT is injective.

3. By induction on the definition of C'(92,,1) we prove: v € C(Q,,,1) = Ja € OT(y = o(a)).

3.1. v =0: trivial.

3.2. y=¢&+m: € =o0(age...0a,), n = o(bpe...0b,,)) with a;,b; € OT and ag > ... = an, bo = ... = by
Then, for some k < n+1, a := age...0a,—18bpe...aby, € OT and v = o(a).

3.3. y=9,(&) with £ < Q, & €€ C(Qu, 1) & € € Cy(€):

By IH we have b € OT with £ = o(b). o(b) € Cy(0(h)) % Gyb<b=Dybe OT and vy = o(Dyb).

4. a € OT = o(a) € C(y,1): Proof by induction on £(a), using 8.2a and 8.5b.

a=DybeOT = be OT & Gob < b o(b) € C, (R, 1) & o(b) € T, (0(0)) D o(a) = 1y (0(b)) € C(, 1).
(b) Note that o(D10) = 91 (0) *2% 0. Therefore (and by 8.5a, 8.6a), a — o(a) maps OTy order preserving
onto C(Qy,1) N 2 Co(Q) N = (). This implies [|OTy, < || = 1o ().

49



Fundamental sequences

In order to get a better insight into the structure (T, <) and a better understanding of the collapsing functions
1)y we now present an assignment of (fundamental) sequences to the elements of T. For each term a € T we
define its (cofinality) type tp(a) € {0,1,w} U{Q,q1 : p < w} and a family (a[z])zefp(a)| Of terms a[z] € T,
such that the following holds, where [0| := 0, |1| := {0}, |w| :== N, |Q,41| :={Dy,b:b € T}

Theorem 8.7.

(a) z € |tp(a)] = a[z] < a

(b) z,2' € |tp(a)] & z < z' = a[z] < a[z']

(c)tp(a) =1 = a=al0]D1

(d) a,c € OT & c<a&tp(a) #1 = Jx € OT N |tp(a)|(c < a[z])
(e) a,z € OT & = € |tp(a)] = a[z] € OT

Note that, according to Theorem 8.7, only for a € OT and only relative to (OT, <) is the family (a[z]) z¢|tp(a)|
a fundamental sequence of a in the proper sense. But later we will give a natural interpretation of the terms

a € T as wellfounded trees (so-called tree ordinals) which harmonizes with the assignment (a,z) — alz].

Definition of tp(a) and a[z] for a € T, = € |tp(a)|
tp(0) :=

tp(Dy > — 1, (Dy0)[0] := 0.

tp(Dp+10) := Quy1, (Dyuta0)[z] := 2.

tp(a) =1 = tp(Dya) :=w, (Dgya)[i] :== (Dyal0]) - (i+1).

tp(a) € {wlU{Qu41:p <o} = tp(Dya) :=tp(a), (Ds,a)[z] := Dsalz].

tp(a) = Qi1 & u >0 = tp(Dya) :=w, (Dsa)[i] := Dyalz;] with zo := Q, 2py1 = Dyalzy).
tp(

.\'F”.U‘r';?’!\"!—‘

ap®...0a,) :=tp(an), (age...sa,)[x] := (aps...0a,_1) B a,[x] (n>1).

For technical reasons we also set a[n] := a[0], if tp(a) = 1.

Proof of Theorem 8.7:
(a),(b),(c) are easily verified by induction on £(a).

(d) is also proved by induction on f(a). Here all cases except 5., 6. are straightforward. So let us assume
D,c®é < Dya. Then ¢ < a, and by IH ¢ < a[z] for some = € OT N |tp(a)|. Hence Dyc ® é < Dyalx].
If tp(a) € {w}U{Quq1 : 1 < o}, we have (Dya)[z] = Dsalx] and we are done.
Now let us assume that tp(a) = Q41 with g > o.
By induction on £(a) one can prove
(1) tp(a) = Q41 & c€ OT & a[Q,] K c<a = Jz =D, (bdl) € OT(b e G c & ¢ < alz])
from which we conclude
(2) tp(a) =Qu41 & c€ OT & a[Q,] X c& {c}UG c<a =
= e OT(L(b) < l(c) & {b}UG,b < a& c<a[D,(bd1)])
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Obviously (2) suggests to define zo := Q,, Zn41 := Dyalx,] in order to obtain by induction on £(c)
(3) tp(a) = Q41 & c € OT & {c} UG c < a = In(c < alz,]).

(Induction step: premise & a[zg] < ¢ & 3¢ OT(£(b) < {(c) & {b}UG,b < a& c < a[D,(bd1)]) &

= b€ OTIn(b < a[zy] & ¢ < a[D,(b®1)]) = Fb € OT3In(c < a[D,(bd1)] < a[Dyalzy]] = alzn+1]) )

Now In(D,c@® ¢ < (Dya)[n]) is obtained as follows:
OT>D,c®é¢ < Dya s GueCGre<c=<a g In(Dyc® ¢ < Dyalzy] = (Dya)n]).

Proof of (1):

1. a =Qu41: Then ¢ = Do @ ¢ < Dy, (co®l). Let b:= co.

2. a =ap ® a1 with tp(ar) = Qyq1:

Then ¢ = ag ® ¢1 with a1[Q,] < ¢1 < a1, and the claim follows immediately from the IH.
3. a = D,ao with p < p: Then tp(ag) = Q1 and alz] = D, aolz].

Further ¢ = D,co @ é with ao[Q,] < ¢ < ap.

By IH we get ¢y < ag[z] for some z = D, (bd1) € OT with b € G,co.

Since p < p, Gueo C Gpe. From ¢y < aplz] we get ¢ < Dyagz] = alz].

For the proof of 8.7e we need some preparations.

Definition.

b=<<,a :<= b=<a&VoVe(b<c=<a=G,b<LGcUG,z).

Lemma 8.8.

b<<,a& Goa<a& Gy <b — G,b<b.

Proof: We have G,b < G,a UG,z < a.

Assumption: b < G,b. Then there exists a subterm d of b with minimal length such that b < G,d < a.
By the minimality of d we have d = D,c with G,c < b < ¢ < a. Using b<<;a and G,z < b we obtain
Gsb R Gye UG x < b. Contradiction.

Lemma 8.9.

bp <<zb = a® by <,aDband D, by <<, D,b.

Proof:

1. Suppose a® by <c=<a®b. Then ¢ = a® ¢y with bg < cg < b.

Hence G,(a ® by) = GoaUGsby X G,aUG,cUG,z =GrcUG,z.

2. Suppose Dby X ¢ =X D,b. Then ¢ = (Dco) ® ¢1 with by < ¢g < b. If p < o, then G,(D,by) = 0.
Now let 4 > 0. Using the premise by <<, b we obtain G,by =< G,co UG, x, and then

Go(Dybo) = {bo} UGsbo = {co} UGsco UG,z C Gre UG,

Lemma 8.10.
(a) a € T&tp(a) = Quy1 & = € |tp(a)] = ar] <, a.
(b)y a e T & tp(a) € {1,w} = a[j] <oa
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Proof by induction on £(a):
(a) By 8.7a we have a[z] < a. — Suppose a[z] < ¢ < a. We have to prove G a[z] X G,cUG,z.
1. a = D0 or a = D11 0: trivial.
2. a =D,b with tp(b) = Q41 & p < 0:
By LH. we get b[z] <<, b and then a[z] = D,b[z] <<, D,b = a by 8.9.
3. a = (age...0an) (n>1):
By LH. we get a,[z] <<, a, and then a[z] = (age...0a,_1) & ay[2] <<, (ag®...0a, 1) & a,, = a by 8.9.
(b) By 8.7a we have a[j] < a. — Suppose a[j] < ¢ < a. We have to prove G,a[j] < G,c.
1. a = Dyb with tp(b) = 1: Then a[j] = (D,b[0]) - (j+1) and G,a[j] = G,(D,b[0]).
By LH. and 3.5 we get D,b[0] <<0D,b = a.
We also have D,b[0] < ¢ < a and therefore G,(D,b[0]) < G,c.
2. a = D,b and tp(b) = Q41 with o < p: Then a[j] = D,bz;] with o = Q,,, z;11 = D,blz;].
Suppose that p < o, since otherwise G ,a[j] = 0.
From afj] < ¢ < a it follows that ¢ = (D,co) ® ¢1 with bla;] < co <.
By (a) we have Vi(b[z;] <<¢,b). By side induction on i we prove G,b[z;] = G,co U {1} for i < j:
] <<osb & blmi] < co < b = Gobls] < Gy U Gys < {0} U Gco U {1},
c {0,1} if i =0

(x) Gom; STH

{ = {blzi—1]} UG,blxi—1] X {eo}UG,coU{1} ifi>0

(+)
Now we obtain Ga[j] = {blz;]} UG, blz;] 2 {co} UG,c0 U {1} < Gpe. [(+) b[0] < blzo] R co = 1 < co.]
3. a = D,b with tp(b) =w or a = (age...ea,) (n > 1) with tp(a,) = w: as in (a).
Proof of 8.7e by induction on £(a):

1. a = (agpe...ea,) € OT (n > 1): Then ag,...,a, € OT and a,[z] < a, < ... < ap.

By LH. we have ap[z] € OT. Hence a[z] = (ag®...0a,-1) ® ay[z] € OT.

2. a=Dyb € OT: Then b € OT and G,b < b.

2.1. tp(b) = 1: By L.H. and 8.10 we obtain b[0] € OT and b[0] <<0b.

From b[0] <<opb and G,b < b we get G,b[0] < b[0] by 8.8. Hence a[z] = (D,b[0]) - (z+1) € OT.

2.2. a = Dyb with tp(b) € {w} U {Qu41: 1 < o}: By LH. and 8.10 we have blz] € OT and b[z] <<, b.
Since z € |tp(b)| with tp(b) € {w} U {Qu41 : p < o}, we have G,z < b[z].

By 8.8 from b[z] <<, b & G,b < b & G,z < bx] we get G,b[x] < b[x]. Hence a[z] = D,b[z] € OT.
2.3. tp(b) = Q41 with 0 < p: Then alz] = D,blz;] with 29 = Q, 41 = D,blzs].

We have to show D,b[z;] € OT.

(1) Gublx;] C Gyblz] [ since o < ]
(2) Vi(z; € OT = blx;] € OT) [ by ILH. ]
(3) Gox; < b[z;] = Gyb[z;] < bla;] [ ;] <<a0,b & Gob < b & Gou; < bla;] & Gyblai] < blxi] ]
(4) Gyz; < b[z;]

SIH+(3)
[Side Ind. on i: Gexo C {0,1} < b[xo]. Go(zit1) = {blx;]} UGsblx;] =< blx;] < blxit1] ]
(5) z; € OT and ali] € OT.

92



Proof by induction on i: 1. g =, € OT.

2. 2, € OT "' bja;) € OT & G,bfas] < blwi] ¥ 2541 = D,blai] € OT and ali] = D,bfz;] € OT.
Lemma 8.11

0#a€ 0Ty = tp(a) € {1,w} and o(a) = {
Proof:

We only show that o(a) = sup,,cn(0(a[n])+1) if tp(a) = w. Let a € OTy with tp(a) = w.

Then a[n] < a & a[n] € OT, (by 8.7a,e) and o(a[n]) < o(a) (by 8.5a). Now let v < o(a). Then (by 8.6b)
v = o(e) for some ¢ € OTy with ¢ < a. Theorem 8.7d yields ¢ < a[n] for some n € IN. Hence v < o(a[n]).

o(al0]) +1 if tp(a) =

1
suppen(0(a[n))+1) if tp(a) = w

Lemma 8.12.

(a) a<eg = a€Ch(a) & po(a) =w™.

b)0<o&a<eq,+1 = a€Cp(a)& hy(a) =wtT> =0, wo.

Proof: Exercise.

Lemma 8.13.

a € 0T = (a < DoQyy1 < no D, with o > v occurs in a).

Proof:

“=7: a = Doay9...0 Doa,, with Goa; < a; < Qy41.

By induction on £(a) one obtains: a € T & {a} U Gpa < Q11 = a € T(v) :=T(0,s, Do, ...,D,).
[a = Dyag & {a} UGpa < Qyy1 = Dyp110 = o <v+1 & {ao} UGoap = Goa < Qg1 |
“<”: left to the reader.

Tree ordinals

Inductive definition of classes T, of tree ordinals

1.0:=()eT,

22.a€eT, = a+l:=(a)eT,

3. Vn € N(ay, € Ty) = (@n)new € Ty

4. p<o&VEeT(ag €Ty) = (ag)er, € Ty

T« :=U,<y, Ts . The elements of T, are called tree ordinals (denoted by e, 3,7).
Note

Every a € T, is of the form (e,),e; with I € {0,{0},IN}U{T, : p<o}.

We define [|(av,).erl] := sup, ¢ (f|ow|| + 1).

Abbreviations

0:=0,n+l:=m+1, 1:=1, Qo := W)nen, Lput1 := (§)¢er,

Definition of « + 8 and a - n
a+0::a,a+(ﬂ5)5€1 = (a+,@5)5€[ lfI;é@,
a-0:=0,a(n+l):=(a-n)+a

Proposition. (a) a,8€T, =2 a+B€T,, b)a+B+v)=(@+8)+~vy
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Definition of D, : T, — T,

The definition of D, (ax) proceeds by transf. rec. on a simultaneously for all ¢ < w.
D(0):=1,D,(0):=Q,if ¢ #0

D, (a+1) := (Dy () - (n+1))

nelN
(Dy () ¢e if I € {IN}U{T, : u<o}
Dy ((ee)eer) = q (D, (exe,)), e if I =T, with u >0

with &, := @, &, =Dy (ae,)

Remark

For a = (ag)ecr € Ty \ {0} we have I, (o) = { (D (c0) - (n+1)), i 1= {0}

(D, (aﬁ))gel otherwise -

This means that on T, the function D, behaves like the ordinal function

a— wlte (if 0 > 0) or a - w® (if 0 = 0).

Now we are going to prove that ||Dy D™ (0)|| equals ¢ovoi™ (0). By comparing the definition of I, with the
assignment of fundamental sequences above and taking Theorems 8.5, 8.7 into consideration this should be
more or less clear. To obtain a rigorous proof we introduce the canonical interpretation t : T — T, and

show that this respects the fundamental sequences (a[7])ze|tp(a)-

Definition of t: T — T.,. t(D,a0%...06D,, an_1):=Dyot(ar) +...+ Dy, t(an_1)

Theorem 8.14. For each a € T we have

(i) tp(a) =1 = t(a) =t(al0]) +1,

(i) tp(a) =w = t(a) = (t(a[n]))nen,

(iii) tp(a) = Qup1 = t(a) = (ag)eer, With Va € [Q,11[(t(a[z]) = ag(a))

Proof:

Let FS(a) abbreviate the claim (1)&(ii)&(iii). Then in a straightforward way one proves
(1) FS(a) & FS(b) = FS(bda), (2) FS(a) = FS(Dsa),

from which one obtains (Va € T)FS(a) by induction on £(a).

Theorem 8.15. a € OTy = o(a) = ||t(a)]|

Proof by induction on o(a):

Let a # 0. By L.8.11 tp(a) € {1,w} and o(a) = {O(G[OD +1 if tp(a)

sup, e (0(aln])+1) if tp(a)
If tp(a) = w then t(a) 54t (t(a[n]))new and therefore
t(a)]| = sup, en (lIt(@[n))[|+1) = sup,ep(o(aln]) + 1) “E o(a)

The case “tp(a) = 17 is treated in the same way.

1
"

Corollary. ||D0]D):(/m) )|l = ¢0¢1(/m) (0).
Proof:
Do D™ (0)]

Def Def

1£(DoDI™0)]| 2 o(DeDI™0) = w1pi™ (0).
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§11 Wellfoundedness proofs in ID,
TO = {0} @] {ngg@...@Doan 1ag, ..., 0y € T, n Z 0}
Let v < w be fixed.

A (X,a) & tpa) € {0,1,w}U{Qyu41:p <o} &V e W(tp(a))(az] € X),

where W (0) := 0, W(1) := {0}, W(w) := N, W(Qu41) := |Quq1 | "W, = {D,be W, :be T}
A (X):={z eT:2,(X,2)}.

W, = ({X C T:2,(X) C X}

X@ :={yeT:adyec X}

X:={yeT:Vze X(z® D,y € X)}

W*:={ze€T:Vo<v(D,x € Wy}

Lemma 11.1.

(a) A (X)C X &aceX = A (X)) C X (5 <v).

(b) a,beW, = adbeW, (o0 <v).

Lemma 11.2. 2,(X)C X = 2, (X) C X.

Lemma 11.3. A, (W*) C W*.

Lemma 11.4. If a € T contains no symbol D, with ¢ > v, then 2,(X) C X — a € X.
Lemma 11.5. If a € T contains no symbol D, with o > v, then a € Wj.

Theorem 11.6. |ID,| = to(eq,+1)-

Proof: 1. By Corollary 10.5 we have |ID,| < ¢o(eq,+1)-

2. Let o < 9o(eq,+1); then a < ||Dy (]D),(,m) (0))]] for some m.

Let a := DoD{™0. As shown above, ID,  a € Wy; hence o < ||ID)0(ID),(,m) (0)]] = ||t(a)|| = lalw, < [ID,].
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89 Theories for Iterated Inductive Definitions

Definition

Let M be a set, and ® : P(M) — P(M) monotone, i.e. VX,V € B(M)( X CY = &(X) C &(Y)
Io =N{X € B(M) : &(X) C X} (the intersection of all ®-closed subsets of M)

We say that the set I is inductively defined by ®.

Definitions of this kind are called (generalized) inductive definitions.

Lemma 9.1

(a) (X)) C X = I, C X, foreach set X C M.

(b) ®(I5) =Ig. So, I is the least ®-closed set and also the least fixpoint of ®.
I;N®X)CX = I CX.

Proof:

(a) trivial.

(b) HS: ®(I5) C Iy. Proof: VX(®(X)C X = I, C X) *2™ VX ($(X) C X = &(I;) C B(X)
B(I,) C X :(X)C X} =T, — HS = V:=(,)CI, = &
() IgN®X)CX = dI,NX)Cd(I)NB(X)=I,NX ¥ I, CI,NXCX.

Definition. 1§ := ®(I3*) with I3* := U, _, 5 (a€On)

Lemma 9.2.

(a)a<f = I3 CI5 ; (b) I$H = ®(13) ;

(c) Ig* =1 for some o € On ; (d) I 15> =1¢, then V3 > a(I5 = ).
Proof:

(a) trivial.

b) 137 = o) 2 a(p).

(c) Otherwise F : On — PB(M), a — I§ would be injective. But then (M) would not be a set.
(d) 1. By induction on g we get I3 C Iy for all §: LH. = I5° C Iy = I = ®(I57) C &(I) = 1.
2. I3 =13 = ®(I5%) = [, CI5* C I3 for B> a.

Definition.

For each relation R C M xM let &g : P(M) = VM), Pr(X) :={z € M :VyRz(y € X)}.
Acc(M,R) :=1s, (the accessible part of (M,R) )

(Acc(M,R) = {XCM :VzeM (VyRz(y € X) =>x € X)})

Lemma 9.4.

Let R be a binary relation on M, and Acc := Acc(M, R).

(a) Va[z € M & VyRz(y € Acc) & z € Acc].

(b) V& € Acc[VyRxz(y € X) = 2 € X] = Acc C X, for every X C M. (R[Acc is wellfounded)
(c) R wellfounded <= M = Acc.
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Proof:

(a) follows from 9.1b. (b) follows from 9.1c.

(c) “=”: By (a) we have Vz € M (VyRz(y € Acc) = z € Acc).
By R-induction from this we get Vo € M (z € Acc).

“<”: follows from (b).

Definition. For z € I let |z|g := min{a : z € I§}

Lemma 9.5. If & = &y then |z|e = sup{|y|s+1: yRz} for every z € Acc(M, R).
Proof:

r€elf & e d(3) & VyRa(y € I5%) & VyRz(|yle < a).

Hence |z|¢ = min{a : 2 € I$} = min{a : VyRz(Jy|s < @)} =sup{|y|ls+1:yRx}
Syntax

If P is a unary predicate symbol, and A, F' are formulas, and F = AzF then A(P/F) denotes the result of
substituting F for P in A, i.e. the formula resulting from A be replacing every atom Pt by F ().

Definition. Let £ be 1st-order language, and X a set variable (unary predicate symbol) not in £. A positive
operator form in L is an £ U {X}-formula 2 in which X occurs only positively (i.e. 20 has no subformula
—Xt) and which has at most one free variable z.

We use the following abbreviations: A(F,t) := A(X/F,z/t) , UF) C F :=Ve(A(F,z) = F(x)).

For each positive operator form 2l we introduce a (new) unary predicate symbol Py.

Definition of the languages £, (0 < o < w)

Ly := PR U {=}, the language of arithmetic as so far.

Lyi1 := Lo U {Py : A positive operator form in £, }

Loy = Ua<w Ly

Remark. £, C L,41.

Definition of lev(A)

lev(A) :=0if A is an Lo[X]-literal

lev(Pyt) := lev(2), lev(=Pyt) :=lev(2A) + 1

lev(A A B) :=lev(AV B) := max{lev(A),lev(B)}

lev(VzA) :=lev(dzA) :=lev(A)

lev(Py) :=lev() , lev(l) := max{lev(A): A eI}

Remark
lev(Py) < o for each predicate symbol Py in L,
lev(A) < o for each L,-formula A.

From now on A, B, C denote L. ,-formulas.
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The proof system ID,
The language of ID, is £,.

The inference symbols of ID, are those of Z (in the language £, ) together with

A(Pa,t) ,
(Clpy) Tmt (IndP2t)

~(A(F)CF), ~Put, F(t)

The infinitary proof systems IDY° (o < w)

The language of IDS° consists of all closed £, -formulas A.

We use P [P,, resp.] as syntactic variable for the predicate symbols Py [with lev(2() = u, resp.].
Definition

AX (IDY°) := set of all sequents A such that

— all elements of A are closed literals,
~ANTRUE; #0 or A contains a subset {Ps,~Pt} with sV =tV and lev(P) < 0.

The inference symbols of ID° are the following
(Axa) A if Ae AX(ID;?), and the symbols (A ,), (\/2), (Cute) of Z in the language L<,;

A(Py, 1) Pt ...AP (g€ |P])
T;‘t (lev(Py) < o) (Qpy) 7

|P| := set of all cutfree ID;’-derivations, where p :=lev(P) , Al :=T(q)\ {Pt}

(CIPmt)

(lev(P) < o)

The set IDS° of all IDS°-derivations is introduced by an inductive definition (as given in §4 for arbitrary proof

systems &) under the assumption that the sets ID;” for u < o are already defined. — IDZ, :={J, _,, ID;°.

As usual we write ID° 3 d b, T to express that d is a derivation (in ID°) with I'(d) C I and crk(d) < m.
(For the definition of crk(d) (cut-rank of d) cf. §4.)

The (Qp¢)-rule can be motivated as follows (with p := lev(P) < o):
Imitating the constructive interpretation of implication we start by saying:

“An IDJ’-derivation of Pt — B is an operation q — d, transforming every

cutfree 1D} -derivation of Pt into an ID°-derivation of B 7.
This may be replaced by the stricter version:

“An ID° -derivation of Pt — B is an operation q — d, transforming every

cutfree 1D -derivation of A — Pt into an ID.°-derivation of A — B (for any formula A)”.

In terms of the Tait-calculus used here this amounts to the following rule:

(Qp¢) If for each A and each cutfree ID°-derivation q of A, Pt ,
dy is an ID°-derivation of A,T', then (dy).e|p| is an ID,°-derivation of —Pt,T" ”.

Now (Qp¢) is just a combination of (€p;) and (Cutp;).
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The following definitions and Theorem 9.6 are needed for the embedding of ID, into IDJ°, i.e., for deriving
—(A(F)CF), ~Pyt, F(t) by means of (Qp,¢).

Definitions (Substitution)
For each closed L£,-formula A let ¢4 be the canonical cutfree ID°-derivation of - A, A.
=QA(F,t),A(F,t) -F(t), F(t)
e r = Vo NaFin-rFinCaFEncrn = WF,HOAF (), ~A(F,t), F(t)  with G :==(A(F) C F).
G,-A(F,t), F(t)

Given P = Py, a predicate F, and a sequent II we define an operation Sg]_- : IDﬁfV(P) — IDZ,, which
transforms any derivation d € IDjg,(p) of [',II into a derivation d* := Sg}-(d) of G,T,II(P/F). Roughly
speaking d* results from d by substituting certain occurrences of P by F. In doing so, some inferences
A(P,t) A(F,t)
CI ) )
(Clr) )

are turned into

which is not an inference of IDZ,.

e e r
| I
G,Q[(]'—, t) Ga_&[(fa t)aj:(t)

G, F(t)

Therefore those inferences (Clp;) are replaced by

(Cut)

The precise definition of Sg #(d) runs as follows
CUtQ[(].'7t)Sg7L]J_—AO(I) (dg)etm,]_- if 7 = CIPt with Pt € II

SBr(Z(d)er) =4 T*(Sp P (d,)) if 7=\, or \/f with A € TI

el
I(Szl;[,f(db))Lg otherwise
where (A 4)* := /\A(P/]—') ) (Vix)* = Vil(P/]-')'
A, if A=A A and ¢ € {0,1}

Abbreviation. A[/] := {B(:U/L) if A= 33;B and . €T

The following theorem is easily verified. Note that the axioms Ax;_p psy do not belong to IDi’:v( P) !

Theorem 9.6

IDR,(py 2 d o T,IT & tk(A(F,2)) <m = Sp (d) bm ~(A(F)CF),T,(P/F).

Proof:

Abb.: G :=-A(F)CF, A*:= A(P/F),I* :=T(P/F) ={A*: AT}, (A" :=As » (VD* = Vs
Let IDi5,(py 2 d = Z(d.).er Fo T, II. Then A(Z) C T, 1T and IDg, (p) 2 d, o T, 1L, A,(Z) for all v € 1.
1. T = Clp; with Pt € II: By IH S™20(D)(dy) },,, G, T, T1*, A(F, t).

By definition ey ; o G, =A(F,t), F(t). Hence S™(d) Fp, G, T, TI*, since F(t) € IT*.

2. T= /A4 or 'y with A € II: Let IT, := TU A,(Z). Then by IH S™(d,) F,, G,T,TI*.

Now A, (Z)* = {A[¢]*} = {A*[t]} = A, (Z*) and A(Z*) = {A*} CTT*.

Hence 8" (d,) b, G,T,1I*, A, (Z*) (Vi € I) and thus S"(d) = Z7* (S™ (dL))LeI Fm G, T, IT%.

3. Otherwise: Then A(Z) CT or A = A* for all A € A(Z). Hence A(Z) C T, TI*.

By IH S%(d,) b G,T,11*, A,(Z), for all + € I. Hence S™(d) = I(SH(dL))LEI. Fm G, T, 1T

[If A(Z) Z T, then 7T = Axa with (A N TRUEg # 0 or {=P't, P's} C A with lev(P') < lev(P)) or

T = Clpiy with lev(P’) < lev(P) & P’ # P.]]
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Embedding of ID, into ID;°

For each closed ID,-derivation h we define an ID;°-derivation h* such that h*° F,, T'(h) for some m € IN.
0. (Axa)® := Axa

L (Avpaho)>® = AVZA(hO(m/t)OO)tGTO
{ c?t ifn=0

. where
CutF(ﬂ)en_lc?t ifn>0

2. (Ind%'hg)>® :=

ni=tV, ept F) SFL(n), Fo(t), eo = ho(z/0)®, e; := Cutpsei_1ho(x/i)® fori >0 .
_ Ax-pipy SEg) . (g e |Pt))

Qpy
4. Otherwise: (Zhg...hp—1)® :=Th® ... h°

n

3. (Ind2")> -

Theorem 9.7 (Embedding)

ID,>hFT & hclosed = ID° 5 A% b, T for some m € IN.

Proof: straightforward.

Especially (Indl;ilt)Oo Fm 2(A(F)CF),~Pt, F(t) (where P = Py) is obtained from:

00 Theorem 9.
q € |Pt] = IDS,p) 3 q o ALY, Pt TR0 ST (g) b ~(A(F)CF), AP F(1).

Abbreviations
A\-For := set of all formulas of the shape A A B or Yz A.
A" -For := TRUE, U A-For U set of all formulas Pyt.

Theorem 9.8

By tree recursion one can define operations 7%, R¢, €, Dy on IDZ,, with the following properties:
(N-Inversion) dt,, T,C & C € \-For = JL(d) -y, C[t] .

(Reduction) et T,C & dbF,, T,-C & C e \"-For & rk(C) < m = Re(e,d) by, T
(Elimination) db,u1 T = £(d) Fp T.

(Collapsing) dFoT &lev(T) <o = ID° 3 Dy(d) Fo T.

Proof:

For d =7(d,),er € IDZ, and e € IDZT, we define

JE(dr) if 7= Ac
L(d) = -F
Je(d) {I(Jg(dL))LeI otherwise (¢ € \-For)
Cutepy JE(e)Re(e,do) if T=\1p
Re(e,d) =1 € if 7= Ax{-c,c} (C € \"-For)

I(Rc(e,db))LGI otherwise (i.e., if -C ¢ A(Z))
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Re(E(dy),E(dy))  if T = Cute with C € AT -For
E(d) =< Roc(E(dr),E(dy)) if T = Cute with -C € AT -For.

Z(&(d,)) e otherwise

» Dy(dp,(4p)) if T =Qp; with p:=lev(P) >0
o(d) = {I(Da(db))bef otherwise
One easily verifies that the so defined operations have the asserted properties.

Let us look at D, (d) for d = Qpi(dy)4efoyuip| Fo T with lev(T') <o < p:=lev(P).
Then do o T, Pt and d, o T, AP? for all ¢ € |[P] (7).

By IH ID;° 5 qo := D,(do) o T, Pt. Hence go € |P| and AL* CT.

Now (f) yields dy, Fo I', and by IH we get ID5” 5 Dy (dy,) Fo T

Remark: The definition of D, (d) almost automatically arises if one pursues the goal to eliminate from d all

Qp-inferences with lev(P) > o.

Definition
For 2 with lev(2) = 0 let I§ := {n : A(I5*,n)}, where I§* := ., Iy (o € On).

In|a :=min{a:n eIy} (ifn e lU,co,Id)

|ID, | := sup{|n|y : lev(A) =0 & ID, - Pyn}  (proof-theoretic ordinal of ID,)

Remark

The proof theoretic ordinal of a theory Th is commonly defined as the supremum of the ordertypes of primitive
recursive wellorderings < which are provably wellfounded in Th. In the language £, the wellfoundedness of
< is expressed by the formula VzPy_ 2 where %A(X,z) := Vy(y < * = Xy). Since the ordertype of < is
equal to sup{|n|y, +1:n € Iig}, it easily follows that the proof theoretic ordinal of ID, is less or equal to
the ordinal |ID, | defined above. That actually both ordinals coincide follows from Theorem 1.3.11 in [P0o98]
where it is shown that the proof theoretic ordinal of a theory Th D PA is equal to its IT}-ordinal.

For d € IDZ, let ||d|| := hgt(d), i.e. || Z(d,).erl| := sup,e;(||d.]|[4+1)  (length, depth, height of d).

By (V,I<%) we denote the expansion of the standard model N where

each predicate constant Py of level 0 is interpreted by Iia.

Theorem 9.9 (Boundedness)
IDX5dro T & lev(l) =0 = (N, I<Ily =T

Proof by induction on ||d||.
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Theorem 9.10.
If h is a closed ID,-derivation of T' with lev(T") = 0 then
(N, 1<) ET with a = ||Do(E™(h*°))|| for some m € IN.

Proof:

ID, 5>h+T "MXM 1D 5 oo T for some m

Cutelim  1pyoo 5 gm (%) |y T

CoLSE s 5 Py (E™(h)) ko T

Boundedness (a7 1<e) = T with a := ||Do(E™ (h))||

Definition

Ny := sup{||Do(E™(h*>))|| : m € IN and h a closed ID,-derivation with endsequent of level 0 }

Then Theorem 9.10 shows that [ID,| < n,. In what follows we will prove 1, < sup o9 (0) = ¥o(eq, +1)-
meIN

Remark

Note the similarity between

“ Dy (d) = Dy (dp, (4y)) if d=Qp(d,) with g =lev(P) >0 ”

1e{0}U|P|

and

“(Dya)[l] = Dya[D,a[Q,]] if a € T and tp(a) = Quyq with g >0 7.

This observation will be pursued in §10.

§10 Majorization of infinitary derivations by tree ordinals

We are now going to relate infinitary derivations d € IDJ° to tree ordinals . From every derivation d € IDS°
one obtains a tree ordinal o(d) essentially by deleting all inference symbols (and possibly other data) assigned
to the nodes of d (namely o(Z(d,).er) := (0(d.)),,)-
should equal t(a) for suitable a € OT (at least if d = h> with h € ID,). But this doesn’t work; instead one

Now the first idea which comes into mind is that o(d)

can establish a weaker relation between o(d) and t(a), namely that in a certain sense o(d) is “embeddable”
into t(a). Below we will define a relation d < a (d is magjorized by a) between infinitary derivations d and
tree ordinals «, which corresponds to this informal notion of embeddability.
The main properties of < will be:
() dea & deDF = || < lal,
(iiy dea & d € ID)° = £(d) <D, (),
(i) dva = Dy(d) «Dy ().
Mainly by means of (i)-(iii) we will establish that ||Do(E™ (h>))|| < ||Do D™ *2(0)|| and thus
D, | <y < sup [DyDF (O)]] ie. [ID,] < sup ot (0) = tho(ca, +1)-
meN meIN
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The following definition and lemma are auxiliary.

Definition of a®, <° and <«

5 o if @ =ap+l or a = (a;)ien
a® = .
aq, if a=(ag)eer,

B a <= (a#0&B=a") or (a=(a)ien & JEN(B = a;))

< (K, resp.) is the transitive (transitive and reflexive, resp.) closure of <.

Lemma 10.1

@) a#0 = (Yyda)®? =vda®® & D, (a)® =D, (a®)
(b) 1<D, ()

)B<Ka = v+ v+

(d) B<a = D, (8) <D, (a)

(&) n € Qy € Qyyq

Proof of (a):

1. a=ap+l: D, (a)® =Dy, (ag) - 1 =D, ().

2. a = (a;)ien: Dy (@)® =Dy (ag) = D, ().

3. a = (ag)eer,: Do (@) =Dy (aq,) =D; (a).

Proof of (c):

l.a#0& B =a® Then D, (B) =D, (a®) =D, ().
2. (a = (ay)iew & B = ay): Then D, (@) = (D, (;))iew & D, (B) = D, (ary)-

Definition of d <« (Majorization)

d < o (o majorizes d) if, and only if, one of the following clauses holds:

(a1) d=T(d;)ieiz| With T # Qp and a = B+1 with d; < 8 for all i € |7|

(€2) d=Qp,(dy)setoruip,| & @ = (g)eer, & Vg€ {0}U|P,|VE € Ty(g<€ = d, <)
(<«3) daB & B K

(By convention 0 < e for any c.)

Lemma 10.2. d<a & ac Ty = ||d|| <||la].

Theorem 10.3.
(a) daa = Jk(d) <«

(b)daa = SP 5(d) <Q, + a for each o
(c)edB&d<a = Re(e,d)<B+a
(d)daaeT, = £(d) <D, ()

(e) deax = Dy(d) <D, (cx)

Proof by induction on a:

We only carry out the essential cases of (c),(d),(e).

(c) 1. d = Ax{-c,c}: Rle,d) =e<1fLB+ a.
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2.d= Vliodo & a= a0+1 & d() dQyp:

Rle,do) 4 B+ o & J(e) 9 B<B+a0 = Rie,d) = Cut T(e)R(e, do) < (B+ o) +1 =B+
3.d= QPH(dq)qej & a= (ag)ge']ru & Vg e IVE € Tu(ng =d, <1a5):

IH= VgeIVEe T, (qg<a€ = Rie,dy)<B+ag) = Rie,d) =Qp, (R(e,dq))qel 4(B+ ag)eer, =B+ a.

(d) 1. d = Cutedpd; with C € /\+—F0r, and @ = ap+1 & do,dy <ap: IV = £(d;) <D, () (:C>) E(d) =

Rec(E(do),E(dr)) <Dy () + Dy () =Dy (exg) -2 = E(d) « (]D),, (ao) - (n—l—l))nE]N =D, ().
2.d= qu (dq)qe{o}u|PH| & o= (ag)ge']r” & Vq S {0}U|PM|V£ € Tu(ng = dq <1a5):

Since a € T, we have y < v and D, (o) = (I, (af))geﬂ‘ .
IH = Vg e {0}U|P,|VE € Ty (g€ = E(dy) a Dy (axe)) Def E(d) =Qp, (g(dq))qe{o}ulpul 4 (ID),, (ag))gem.
(e) 1. d =7Z(d;)ier with Z # Qp and a = B+1 with d; «B for alli € I: TH = Vi(D,(d;) <D, (8)) =
= Dy (d) = I(Dy(d;))ier 4Dy (B) + 1 < D, (B) + Ry KD, (B) + Dy (B) KDy (B + 1).

2.d= QPH(dq)qej & a= (ag)ge']ru & Vq e IVE € Tu(ng = dq <1a5):

21. p<o: IH= Vge IVE € Ty(q<& = Dy(dy) <Dy (ag)) =

= D,(d) = QP# (Da(dq))qel < (D, (aﬁ))ﬁeﬂ’u =D, ().

2.2. > o: Then D,(d) = DU(dDH(dO)) and D, () = (D5 (¢, ))new with £y = Qy, €, =Dy (ag,).
09&y = do <oy, 8 g = Dy(do) 4Dy (ag,) =& = dg o, =
D, (d) = Da(dq) 1D, (afl) < (Da (O‘Ei)) Dy ().

€N —

Theorem 10.4 (Embedding). For each closed ID,-derivation h we have h*> < €2, -(2+n(h)),
where n(Zhg...hm—_1) := max{0,n(hg),...,n(hm_1)} + 1.
Proof:

Axy_ SIS (). . (g € |Pt
By definition (Ind%")> = X{~Pt,Pt} pr (q)...(q € |Pt])

Qpy
By Theorem 10.3b we have Vq € |P,|V€ € T, (g<& = 81{3??} (q) <2, + &) which together
with V& € T, (Ax(-ps,pry < Q0 + §) yields (Ind7H> aQ, + Quev(p)+1 L2y +Q, = Q2.

The other cases are easy.

Theorem 10.5. Let v > 0. If h is a closed ID,-derivation of T with lev(T') = 0 then
(N, I°%) =T with a = ||Dy (D™ (0)]| for some m € IN.

Proof:
Theorem 9.10 = (N, I<%) E T with a = ||Do(E™(h*))|| for some m < w.
10. Def 1..10.1b,d 1o.
oo Thi10:4 Q,-(2+n) <, 1 "% b, (0) Th.103d.e
1.10.2

Do(£™ (7)) « Do D +2(0) ==~ | Do(£™ (h))]| < Do +2(0)]].

Corollary
IDy | < sup,,,en (Do (7 (0)]| = o (e, +1)-
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Two Applications

Let T := {a € T : a principal term } and OT := 0T NT.

As one easily sees, the set T can be inductively generated by

g, ..y @p_1 €T (n>0)& o <w = D,(apge...0a,_1) € T.

Hence T is nothing other than the set of all finite, ordered trees with labels ¢ < w, and each term a =
aoo...0a,_1 € T can be considered as a tree with immediate subtrees ag, ..., a,_1 € T and an unlabeled root.
The assignment of (fundamental) sequences (a[z]),c|tp(a)| can then be seen as the definition of a reduction
procedure (or rewriting relation) a <, a[z] on T. In [Bu87] this reduction procedure (restricted to Ty :=
{Dyage...0Dgan_1 : ag, -...,an—1 € T}) had been cooked up as a so-called hydra game, where in the i*" round
of the game (or battle) the hydra a transforms itself into a new hydra a[n;]. Using Theorem 8.14 and Theorem
10.5 one easily concludes that the hydra game terminates (i.e., Va € ToV(n;)iew3k(a[no][n1]...[nx] =0) ),

and that this fact is not provable in ID,:

Let Wy be inductively defined by the rule: a € Tp & [a # 0 = Vn(a[n] € Wy)] = a € Wh.

Then “a € Wy” says that each <>-reduction sequence starting with a terminates. Hence “Va € To(a € Wy)”
expresses termination of the hydra game. Now using Theorem 8.14 by induction on t(a) we get

Va € To(a € Wo & |alw, = [|t(a)]]).

The unprovability result is obtained as follows

D, - Va(DoDZ0 € W) "22° ImVn(|DeD"0|w, < [[DpD™(0)]]) =

= dm(|DoD™0|w, < |[t(DoD™0)|| = |DoD™0|w, ). Contradiction.

Another interesting observation about the system (OT, <) is due to Okada [Ok88] and provides a rather
short proof of H. Friedman’s result that the extended Kruskal Theorem on finite labeled trees implies the
wellfoundedness of (OT, <) (provably in ACAg). This runs as follows.

First we define a binary relation C on T such that a C b is equivalent to “there exists a homeomorphic

embedding f : a — b satisfying Friedman’s gap condition (including the gap condition for the root)”.

Definition of a C b for a,b € T
Let a = D,(ap®...2am—1) and b = D, (boe...0by_1).

a C b iff one of the following two clauses holds

(i) p =0 and Finjective ¢ : {0,...,m—1} — {0,...,n—1} such that a; C b, for i <m,
(i) p<oandJj <n(albd;).

Then we define a relation <* C < and prove Ya,b € OAT(a Cb= a=x*b).

Definition

a<*b = a<b&Vp(Gra X G,b) (with X <Y & Ve e XFyeY(z<y))
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Lemma 4.1

(a) a <*b = Dya <* D,b

(b) Dya <*b& p< o & Gy;b<b = D,a <* D,b

Proof:

(a)a<*b& GyDya# 0 = G,D,a={a}UG,a < {b}UG,b=G,D,b.

(b)l. Dya<x*b&kpu<p<o = G,D,a <G,bC G,D,b. Hence Vu(G,D,a < G, Dsb).

2. Proof of D,a < D,b: Let p = o (otherwise the claim is trivial). Then a € G,(D,a) < G,b < b.

Theorem 4.2
a,be OT&alb = a<b

Proof: By induction on £(b) we prove the stronger statement a <* b.

Let a = D,(ap®...0am—1) and b = D, (boe...0b,_1).

(i) p=0 & Vi <m(a; C by;)) & Vi, j <m(i # j = q(i) # q(j)): By IH we have a; <* by(;) for i < m. From
this we get (ap®...0am,_1) <* (boo...0b,_1) and then by L.4.1a a = D, (ape...0a,;,—1) <* Ds(bge...0b,_1) = b.
(ii) p < o and 3j < n(a C b;): By IH we have a <* b; <* (bg#...8bp_1) =: ¢. Since b = D,c € OT, we also
have G,c < ¢. By L.4.1b this yields a = D,(age...6am—1) <* Dyc =b.

66



