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This note extends our method from (Buchholz [2]) in such a way that it ap-
plies also to the rather strong theory KPM. This theory was introduced and
analyzed proof-theoretically in (Rathjen [6]), where Rathjen establishes an
upper bound for its proof theoretic ordinal |[KPM|. The bound was given
in terms of a primitive recursive system 7 (M) of ordinal notations based on
certain ordinal functions x , ¥, (w < k < M, & regular) ? that had been
introduced and studied in (Rathjen [5]). ® In section 1 of this note we de-
fine and study a slightly different system of functions ¢, (kx < M) — where
Yum plays the role of Rathjen’s y — that is particularly well suited for our
purpose of extending [2]. In section 2 we describe how one obtains, by a
suitable modification of [2], an upper bound for |KPM]| in terms of the t,’s
from section 1. We conjecture that this bound is best possible and coincides
with the bound given in [6]. In section 3 we prove some additional properties

of the functions 1), which are needed to set up a primitive recursive ordinal
notation system of ordertype > 9¥*, where ¥* := 1), e\ is the upper bound

for [KPM| determined in section 2.

Remark
Another ordinal analysis of KPM has been obtained independently by T.
Arai in “Proof theory for reflecting ordinals II: recursively Mahlo ordinals.”

(Handwritten notes, 1989).

!The final version of this paper was written while the author was visiting Carnegie
Mellon University during the academic year 1990/91. I would like to express my sincere
thanks to Wilfried Sieg (who invited me) and all members of the Philosophy Department
of CMU for their generous hospitality.

2M denotes the first weakly Mahlo cardinal.

3The essential new feature of [5] is the function y, while the 1,’s (k < M) are obtained
by a straightforward generalization of previous constructions in [1],[3],[4].



1 Basic properties of the functions ¢, (k < M)

Preliminaries
The letters «, 3,7, 9, u, 0, &, n, ¢ always denote ordinals. On denotes the class
of all ordinals, and Lim the class of all limit numbers. Every ordinal « is

identified with the set {£ € On : £ < a} of its predecessors. For a < f
we set [, B[:= {€ : @ < & < B}. By + we denote ordinary (noncommuta-
tive) ordinal addition. An ordinal ov > 0 which is closed under + is called
an additive principal number. The class of all additive principal numbers is
denoted by AP. The Veblen function ¢ is defined by paf := ¢.(3), where
¢q is the ordering function of the class {# € AP : V& < a(ge(8) = B)}.
An ordinal v > 0 which is closed under ¢ (and thus also under +) is said to
be strongly critical. The class of all strongly critical ordinals is denoted by SC.

Some basic facts:

1. AP = {w*: a € On}

2. p0f =w’, p1f =¢e4

3. For each v > 0 there are uniquely determined n € IN and additive prin-
cipal numbers vy > ... > 7, such that vy =+ ...+ V.

4. For each v € AP \ SC there are uniquely determined &, < 7 such that

v = €.
5. Every uncountable cardinal is strongly critical.

Definition of SC'()

1. SC(0):=10

2. SC(y) :=={v},if y € SC

3. SC(vo+ ...+ ) :i=SC(%)U...USC(y,),ifn>Tand vo > ... > v,

are additive principal numbers.
4. 5C(ptn) := SC(E) U SC(n), if &1 < p&n.

We assume the existence of a weakly Mahlo cardinal M.
So every closed unbounded (club) set X C M contains at least one regular
cardinal, and M itself is a regular cardinal.



Definition 1.1

R:={a:w<a<M & «aregular}

M" := min{y € SC: M < v} = closure of MU {M} under +, ¢
SCu(y) = 5C(y)NM

Qo:=0, Q,:=X, for o > 0.
(2 := the function o +— €, restricted to o < M

Remark: Vk € R(k = Q, or 6 € {Qp41: 0 <M} )

Convention. In the following the letters k,m, 7 always denote elements of R.

Definition 1.2 (The collapsing functions 1))

By transfinite recursion on a we define ordinals ¢, and sets C'(a, f) € On

as follows. Under the induction hypothesis that ¢,£ and C'(&,n) are already

defined for all ¢ <a, m € R, n € On we set

1. C(a, B) := closure of S U {0, M} under +, ¢, 2, ¢|a,

where 1|a denotes the binary function given by

dom(¢|a) :={(m, &) {<a & TeR & 7, € CE P:£)}
(V1) (r,£) = k.

2. Yy :=min{f € Dy(«a) : C(a, ) Nk C B}

{BeR:aeC(a,M)=>aecC(a,p)} ifk=M

with DK(OZ) 3:{ {BZHGC(Q,/{):}I{GC(&,B)} if k <M

Abbreviation: Cy(a) := C(a, )

The first two lemmata are immediate consequences of Definition 1.2.

Lemma 1.1
a) oy <a & By <pf= Clay, o) C C(a, 5)

b)0#X COn & f=sup(X) = C(, ) = Uyex Cle,n)
¢) f <k = card(C(a,f)) < K

Lemma 1.2
C(a, ) = Upew C"(a, B),  where C™ (v, B) is defined by

(i) C%a,p) :=puU{0,M},
(i) C" ™ (a, B) :== {7y : SC(y) CC"(a, B)} U{Qy : 0 € C"(a, B)} U
U{vrg ¢ <a & m e C(a, B)NCH(E)}



Lemma 1.3

a) Cu(a) Nk =1ea <k

b) k <M= Ypa ¢ R

¢) Yo € SC\ {Qy: 0 < Qs }
d)/{EC(a/{)(:}KJEC'()

e) Cla, M) =M" = {¢: ¢ € Ou(§)}

f) v € Cxla) = v € COuly) & SCuly) = SC(v) \ {M}
g)v<a & yel(o,B) = uy € C(a,p)

Proof.

a),b) 1. Cx(a) Nk = 1 is a trivial consequence of the definition of ¢,a.
2. Let k = M. Obviously there exists a § < & such that R N [§, k[C
D, (c). Therefore in order to get 1, < k it suffices to prove that the set
U:={p€k:Cla,f) Nk C B} is closed unbounded (club) in .

i) closed: Let ) # X C U and 8 := sup(X) < k. Then C(a, ) Nk =
Ueex (C(a,§) N k) CUeex § = B, ie. BEU.

ii) unbounded: Let By < k. We define £, 41 := min{n : C(«, 8,) Nk C n} and
B := sup, ., Bn. Using L.1.1c we obtain £, < 3,41 < k. Hence By < 3 < kK
and C(a, 8) Nk = Upeo(Cla, Bn) NK) € Upew Bnr1 = B, ie. fo < B eU.

3. Let k < M. Starting with 3y := min(D,(«)) we define the ordinals 3, and
as in 2.(ii). Then we have § € D,(«a)NU and therefore ¢, < f < k. — Now
assume that ¢, € R. We prove 3, < 1. (Vn). By definition of 3, and by
L.1.1a we have 5y < ¢¥.a & [y € Lim. Hence 3y < ¢,c. From 3, < ¢¥,a € R
it follows that C'(«a, 8,) Nk C 9. and card(C(«, £,) N k) < P, and there-
fore fn11 < Y. From Vn(S, < .o € R) we get 8 < .. Contradiction.

c¢) 1. Obviously Cy(a) Nk is closed under ¢. Together with a) this implies
Yo € SC. — 2. We have (Yo = Q, > 0 = Y, € Ci()) and (by a) )
e & Cy(a). Hence oo & {Qy 10 < Q)

d) follows from L.1.1a, L.1.3a and the definition of ¢,

e) By L.1.3a VreR (£ < M) and therefore C(a, M) = M". As in d) one
obtains (« € C(a, M) & a € Cy(a)).

f) and g) follow from e).



Lemma 1.4

a) v € C(a, f) <= SC(y) € Cla, B)
b) Q, € C(w, B) <= 0 € C(a, B)

) k= Qo1 = Qo < Ppa < Qpyy
d) Q. —H:Q%a Y0

)
)

o

f) Q, <7<Qg+1 & yeC(a,B) = o€ C(a,p)

Proof. a) and b) follow from L.1.2 and L.1.3c. — e) follows from d), since
M € R and Qy = M. — f) follows from a),b),c),d) and L.1.2.

c) Let kK = Qy41. Then k € C(a, k) and thus k € Cy (). By a) and b) from
k= Q51 € Cua) we get Q, € Cy(a) Nk = Py

d) Take o € On such that Q, < ¢, < Q,41. Then we have 0 + 1 < k and
thus Cy(a) Nk = Yea < Qyp1 < Q = k. This implies Q41 ¢ Cy(«) and
then (by a),b)) o € Cy(«). Hence o < 0 < Q, < ,a.

Lemma 1.5
a) ap < a & ap € CM(Ot) = Ym0y < Py«

b) Yy = Yuan & ag,aq < M = ay =y

Proof.
a) From the premise we get g € Cyi(a) "M = ¢y by L.1.3a,g.
b) Assume Yy = Uyay & ap < ap < MY, Then oy € Cy(ag) € Cu(ary)

and therefore by a) ¥yag < vy, Contradiction.

Lemma 1.6
For k <M the following holds

a) ap < @« = Py < Y
b) ag < a & k,a9 € Cxlag) = ey < Ypav

Proof.

a) From ap < a it follows that C'(ag, xa) Nk C e By definition of ¢,
it therefore suffices to prove ¢y € {8 : Kk € C(ap, k) = Kk € C(, B)}. So
let k € C(ap, k). — We have to prove k € C(ag, ).

CASE 1: k¥ = Q,,.1. By Lemma 1.4c we have €, < ), and therefore
o+ 1 € C(ag, o) which implies x € C(ayg, 1e0).



CASE 2: k = Q,. From k € C(a, k) C C(a, k) we obtain k € Cy(ag)NCy ().
From this by L.1.2, L.1.3b, L.1.5b it follows that x = ¢ with £ < oy and
¢ € Cy(a). Now by L.1.4a, L.1.3a,e we get SC\(§) C Cr(a) NCu(§) NM =
Ci(a) Nk = Yy, and then & € C(a, ) (by L.1.3f). From this together
with £ < a we obtain k = Y& € C(ag, ) (by L.1.3g).

b) The premise together with a) implies oy < o & K, @y € Cy(a) N Cy(ayp)
which gives us ,ap € Cy(a) Nk = Pya.

Definition 1.3
For each set X C On we set H,(X) :=N{C(a,5) : X CC(a, f) & v < a}.

2 Ordinal analysis of KPM

In this section we show how one has to modify (and extend) [2] in order to
establish that the ordinal ¢g,epmy1 is an upper bound for [KPM|. Of course

we now assume that the reader is familiar with [2].

The theory KPM is obtained from KPi by adding the following axiom scheme:
(Mahlo) Vzdyo(x,y,?) — Fw[Ad(w) A VrewIycwd(z,y, Z)] (p € Ay)

We extend the infinitary system RS™ introduced in Section 3 of [2] by adding
the following inference rule:

F, B(LM) Q)
(Mah) (CYO +M < CY)
[, Jwelm(Ad(w) A B(w)) : «

where B(w) is of the form YrewIycwA(x,y) with k(A) C M.
Weset R:={a:w<a<M & aregular}.

Then all lemmata and theorems of Section 3 * are also true for the extended
system RS> (with almost literally the same proofs)®, and as an easy conse-

quence from Theorem 3.12 one obtains the

4We use boldface numerals to indicate reference to [2]

5Tn Theorem 3.8 one has to add the clause which corresponds to the new inference rule
(Mah). The last line in the proof of Lemma 3.14 has to be modified to “ .. cannot be the
main part of a (Ref)- or (Mah)-inference.”. At the end of the proof of Lemma 3.17 one
may add the remark “Due to the premise a < < k we have a < M, and therefore the
given derivation of T',C does not contain any applications of (Mah).”.
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Embedding Theorem for KPM
IfM € H and if H is closed under & s &R then for each theorem ¢ of KPM

M+n
there is an n € IN such that H|{q T oM.

Some more severe modifications have to be carried out on Section 4. The
first part of this section (down to Lemma 4.5) has to be replaced by Sec-

tion 1 of the present paper. Then the sets C'(«, 3) are no longer closed under
(m,€) — € (£ < «), but only under (¢)|«) as defined in Definition 1.2
above. Therefore we have to add “m, & € Cr(£)” to the premise of Lemma
4.6c, and accordingly a minor modification as to be made in the proof of
Lemma 4.7(.A1). But this causes no problems. A little bit problematic is the

fact that the function ¢ is not weakly increasing. In order to overcome this
difficulty we prove the following lemma.

Definition 2.1
For v = w” + ... 4+ w™ with 75 > ... > v, we set e(y) := w .

Further we set e(0) := On.

Lemma 2.1
Fory € Cu(y+1) and 0 < a < e(y) the following holds

a) Yu(v+1) <vu(y+a) & Cu(y+1) C Cul(y+a)
b)0<ay<a & ayeCy(y+1) = bu(y+ ap) < vu(y + @)

Proof:
a) follows from b).

b) We will prove (x) (v + 1) < ¢m(y + «). From this we get v+ ap €
Cu(y + 1) € Cu(y + «) and then by L.1.5a the assertion.

For v = 0 () is trivial. If v # 0 then v + o < M' and therefore v + a €
Ch(y + «) which (together with o < e()) implies v+ 1 € Cy(y + «). Hence
Um(y +1) <¢m(y + @) by L.1.5a.

Now we give a complete list of all modifications which have to be carried out
in [2] subsequent to Lemma 4.6 .

(1) Replace I by M in the definition of K.

(2) Add “n < v+ e(y)” to the premise of Lemma 4.7(.42).

(3) Add “wht* < e(v)” to the premise of Theorem 4.8.

(4) Add “m < e(y')” to the premise of (O) in the proof of Theorem 4.8.



(5) Insert the following proof of “i).a* < ¥,a&” at the end of the proof of (O):
“From ', i, € H,[O] we get a* € H[O]. From k(©) C Cy(y+ 1) C
Ci(a) & o' < a it follows that H.,[©] C Cy(@). Hence a* € Cy(@) and thus
Yt < Y@, since af < @.”

(6) Extend the proof of Theorem 4.8 by the following treatment of the case

where the last inference in the given derivation of " is an application of (Mah):
“5. Suppose that Jwely(Ad(w) A B(w)) € ' and H,[O] |% I, B(Ly) with
B(w) = VrzewdycwA(z,y) & ap+M <a & k(A) C M.

Then k =M (since T’ C X(k) and £ < M).

For 1 € Ty we set vy, := vy + whtoord - Then Cyi(y 4+ 1) € Cu(y,), and since
SC(|t]) € SCu(v) € Ymy., we have || < Py, and thus k(O,1) C Cu(y,).
From v, pu, a9 € H,[O] we get vy, € H,[O,1]. Consequently A(O,;v,, M, i),
and the Inversion-Lemma gives us H.[O][:] |% Io & Ly — JyeluA(ny).

Now we apply the I.H. and obtain H,:[O][¢] |m [y e & Ly — JyeLbmA(, y)
with af 1= 7, + Wt <y 4 rTetM = o* < g,

Let m:= ¢Yyo* & B, :=yar.  Then by L.4.7 7€ H[O] & 7 < Yya.
We also have VieT, (af € Cu(a*)) and thus YVieT, (B, < ).

The Boundedness-Lemma gives us now

Vi T(HalOl 2T, 0 ¢ Lo — Tyl A, y) ).

From this by an application of (\) we obtain Hz[O] X T, B(L,).

From L.2.5h and L.3.10 we get H[O] |% L, Ad(L,) with § :== w™>. We also
have Ha[O] 12 T, L, & Lo. Hence HA[O][SE2 T L, & Lo A Ad(L,) A B(L,) .

Now we apply (V) and obtain Hz[O)] |M r.”

(7) Replace T by M in the Corollary to Theorem 4.8 and in Theorem 4.9.
This yields the following Theorem.

THEOREM
Let 0% := pq, (emy1). Then for each Xi-sentence ¢ of L we have:

KPM F Vz(Ad(z) = ¢°) = Ly E ¢.
COROLLARY. |[KPM| < v, (enis1).



3 Further properties of the functions 1,

We prove four theorems which together with [..1.3a,b,c and L..1.4a-e provide a
complete basis for the definition of a primitive recursive wellordering (OT,<)
which is isomorphic to (C'(MF,0), <). (The set OT consists of terms built up
from the constants 0, M by the function symbols +, ¢, £2, ¢, such that for
each v € C'(MY,0) there is a unique term ¢ € OT with [t| = v, and for all
s,t € OT one has (s < t < |s| < |t|). Here |t| denotes the canonical value
of ¢t. For details see [1], [4], [5].)

Now the letters o, 3,7, 6, i, 0,&,m, ¢ always denote ordinals less than MT.
So, for all & we have a € Cy(«) and SC(«) \ {M} = SCy () C Py

Definition 3.1

max SCy(a) if k=M & SCy(a) #0
sy (@) == :
0 otherwise

Lemma 3.1
a) scg() < e
b) =M & sc(8) < Yoo = € Cyla)

Proof. Trivial (cf. L.1.a,e,f and L.1.4a).

Lemma 3.2
Let k € Cy(a) & we Cr(B). Then

VB < k<t & scp(f) < Yo = Urff < Yp

Proof. By L.1.4c,d it follows that €, = 7 and €y, 3 = 5. Therefore if
k = Qy1q then ¢, 8 < Q, < Y¥ra, and we may now assume that €, = k. Then
by L.1.2 and L.1.3b we obtain k = ¢y with v < a & v € Ci(a) N Cu (7).
By L.1.4a and L1.3a we get SCy(7y) C Cy(a)NCuy(y)NM = Cy(a) Nk = 0.
From ¢, < k = ¢y < 7 it follows that ¢y ¢ Cr(5) and thus g < v or
VB < sem(y). — I 8 < scp(y) then .8 < Ya, since SCy(y) C Yya.
If scm(y) < ¢ & 7 = M then we have § < v < a and § € Ci(«)
(since sc;(B) < xa), from which we get 1,5 € Cx(a) Nk = Y. — For
7 = M the proof is now finished. — If scyi(y) < ¢¥,8 & 7 < M then
buy < <M & scm(y) < ¥ which (according to what we already proved
for m = M) implies k = Yy < Y. Contradiction.
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Definition 3.2
K(m, B, k, &) abbreviates the disjunction of (K1),...,(K4) below:

(K1) 7 < ¢ua
K2) .8 <scy(a)

) m=k & B<a & sc;(f) < Ypa
) UaB < k<7 & sci(f) <

Lemma 3.3
Let k€ Cyla) & me C(B).

a) “K(m, f,k,a) & “K(k,a,m,8) = k=71 & a=0
b) ’C(ﬂ-7 /87 "{’7 a) : ,[7[}71'/8 S wlﬁ)a
c) K(m,B,k,a) & B € Cr(B) = ¢xf <

Proof. a) is a logical consequence of the linearity of <. b) and c) follow
immediately from L.1.3a, L.1.5a, L.1.6, L..3.1, L.3.2.

As an immediate consequence from lemma 3.3 we get

Theorem 3.1
kya € Cula) & m,0€Cr(f) & Yo=Y = k=71 & a=[.

Theorem 3.2

Let k€ Cyla) & m, 5 € Cr(B).

a) U <y = K(m, B, k,«)

b) Yrf € Cula) <= (Urf <ua or[B<a & w8 € Cyla)])

Proof. a) “<" follows from L.3.3b. “=" follows from L.3.3a,c.

b) The “«<” part is trivial. So let us assume that ¢,a < 1,0 € Cy(a). By
L.1.2 and L.1.3c this implies the existence of 7,& € Cy(a) N C,(§) with £ < «
and ¢, = 1;£. From this by Theorem 3.1 we obtain 7 = 7 € Cy(«) and
f=¢€Chla)na.

Theorem 3.3
k€ Cula) <= k€ {Quy1:0 <M}U{Ypué: € < a} U{M}

Proof. 1. “=7 follows from L[.1.2 and L.1.3b. — 2. By L.1.3d we have
(k € Cyla) & k € Cla,k)). — 3. If K = Qyyq then 0 +1 < k and thus
k€ Clay,k). —4. If kK =1y& with € < athen £ € Oy (&) = C (&, k) C Cla, k)
and thus k € C(a, k).
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Theorem 3.4
k=011 = Cyla)=Ca,Q, +1)

Proof by induction on a. So let us assume that C.(§) = C(£,Q, + 1), for
all £ < a. — We have to prove ¢, C C(a, Q, + 1). As we will show below
the L.H. implies that § := C(«,Q, + 1) Nk is in fact an ordinal. Obviously
k € C(a, ) and C(a, f) Nk C Ca,Q, + 1) Nk = 5 and thus .o < 3, i.e.
Y C C(a, 2y +1). = CLAIM: v € C(a, Qo +1) Nk = v C C(a, 2, +1).
Proof. 1. Q, < v € SC. Then v = ;£ with £ < a & €& € C(§).
Since €, < v < kK = Qy41, we have 7 = k and therefore by the above I.H.
Ci(§) = C(§,Q, +1). Hence v =1§ C C(§,Q +1) C Ca, Uy + 1),

2. Let v be arbitrary and vy := max({0} U SC(v)). Then (by 1. above)
Y U {1} C C(a, 2, +1). From this we get v C v* C C(a, Q, + 1), where
v* :=min{n € SC : v, < n}.

COROLLARY. tg,a = C(a,0) N
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