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This note extends our method from (Bu
hholz [2℄) in su
h a way that it ap-plies also to the rather strong theory KPM. This theory was introdu
ed andanalyzed proof-theoreti
ally in (Rathjen [6℄), where Rathjen establishes anupper bound for its proof theoreti
 ordinal jKPMj. The bound was givenin terms of a primitive re
ursive system T (M) of ordinal notations based on
ertain ordinal fun
tions � ;  � (! < � < M; � regular) 2 that had beenintrodu
ed and studied in (Rathjen [5℄). 3 In se
tion 1 of this note we de-�ne and study a slightly di�erent system of fun
tions  � (� � M) { where M plays the rôle of Rathjen's � { that is parti
ularly well suited for ourpurpose of extending [2℄. In se
tion 2 we des
ribe how one obtains, by asuitable modi�
ation of [2℄, an upper bound for jKPMj in terms of the  �'sfrom se
tion 1. We 
onje
ture that this bound is best possible and 
oin
ideswith the bound given in [6℄. In se
tion 3 we prove some additional propertiesof the fun
tions  � whi
h are needed to set up a primitive re
ursive ordinalnotation system of ordertype > #?, where #? :=  
1"M+1 is the upper boundfor jKPMj determined in se
tion 2.RemarkAnother ordinal analysis of KPM has been obtained independently by T.Arai in \Proof theory for re
e
ting ordinals II: re
ursively Mahlo ordinals."(Handwritten notes, 1989).1The �nal version of this paper was written while the author was visiting CarnegieMellon University during the a
ademi
 year 1990/91. I would like to express my sin
erethanks to Wilfried Sieg (who invited me) and all members of the Philosophy Departmentof CMU for their generous hospitality.2M denotes the �rst weakly Mahlo 
ardinal.3The essential new feature of [5℄ is the fun
tion �, while the  �'s (� < M) are obtainedby a straightforward generalization of previous 
onstru
tions in [1℄,[3℄,[4℄.1



1 Basi
 properties of the fun
tions  � (� � M)PreliminariesThe letters �; �; 
; Æ; �; �; �; �; � always denote ordinals. On denotes the 
lassof all ordinals, and Lim the 
lass of all limit numbers. Every ordinal � isidenti�ed with the set f� 2 On : � < �g of its prede
essors. For � � �we set [�; �[:= f� : � � � < �g. By + we denote ordinary (non
ommuta-tive) ordinal addition. An ordinal � > 0 whi
h is 
losed under + is 
alledan additive prin
ipal number. The 
lass of all additive prin
ipal numbers isdenoted by AP. The Veblen fun
tion ' is de�ned by '�� := '�(�), where'� is the ordering fun
tion of the 
lass f� 2 AP : 8� < �('�(�) = �)g.An ordinal 
 > 0 whi
h is 
losed under ' (and thus also under +) is said tobe strongly 
riti
al. The 
lass of all strongly 
riti
al ordinals is denoted by SC.Some basi
 fa
ts:1. AP = f!� : � 2 Ong2. '0� = !� ; '1� = "�3. For ea
h 
 > 0 there are uniquely determined n 2 IN and additive prin-
ipal numbers 
0 � : : : � 
n su
h that 
 = 
0 + : : :+ 
n.4. For ea
h 
 2 AP n SC there are uniquely determined �; � < 
 su
h that
 = '��.5. Every un
ountable 
ardinal is strongly 
riti
al.De�nition of SC(
)1. SC(0) := ;2. SC(
) := f
g, if 
 2 SC3. SC(
0 + : : : + 
n) := SC(
0) [ : : : [ SC(
n), if n � 1 and 
0 � : : : � 
nare additive prin
ipal numbers.4. SC('��) := SC(�) [ SC(�), if �; � < '��.We assume the existen
e of a weakly Mahlo 
ardinal M.So every 
losed unbounded (
lub) set X � M 
ontains at least one regular
ardinal, and M itself is a regular 
ardinal.
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De�nition 1.1R := f� : ! < � � M & � regulargM� := minf
 2 SC : M < 
g = 
losure of M [ fMg under +; 'SCM(
) := SC(
) \M
0 := 0 ; 
� := �� for � > 0.
 := the fun
tion � 7! 
� restri
ted to � < MRemark: 8� 2 R( � = 
� or � 2 f
�+1 : � < Mg )Convention. In the following the letters �; �; � always denote elements of R.De�nition 1.2 (The 
ollapsing fun
tions  �)By trans�nite re
ursion on � we de�ne ordinals  �� and sets C(�; �) � Onas follows. Under the indu
tion hypothesis that  �� and C(�; �) are alreadyde�ned for all � < � ; � 2 R ; � 2 On we set1. C(�; �) := 
losure of � [ f0;Mg under +; ';
;  j�,where  j� denotes the binary fun
tion given bydom( j�) := f(�; �) : � < � & � 2 R & �; � 2 C(�;  ��)g( j�)(�; �) :=  ��.2.  �� := minf� 2 D�(�) : C(�; �) \ � � �gwith D�(�) := ( f� 2 R : � 2 C(�;M)) � 2 C(�; �)g if � = Mf� : � 2 C(�; �)) � 2 C(�; �)g if � < MAbbreviation: C�(�) := C(�;  ��)The �rst two lemmata are immediate 
onsequen
es of De�nition 1.2.Lemma 1.1a) �0 � � & �0 � � =) C(�0; �0) � C(�; �)b) ; 6= X � On & � = sup(X) =) C(�; �) = S�2X C(�; �)
) � < � =) 
ard(C(�; �)) < �Lemma 1.2C(�; �) = Sn<! Cn(�; �), where Cn(�; �) is de�ned by(i) C0(�; �) := � [ f0;Mg,(ii) Cn+1(�; �) := f
 : SC(
) � Cn(�; �)g [ f
� : � 2 Cn(�; �)g [[ f �� : � < � & �; � 2 Cn(�; �) \ C�(�)g3



Lemma 1.3a) C�(�) \ � =  �� < �b) � < M =)  �� 62 R
)  �� 2 SC n f
� : � < 
�gd) � 2 C(�; �)() � 2 C�(�)e) C(�;M) = M� = f� : � 2 CM(�)gf) 
 2 C�(�) =) 
 2 CM(
) & SCM(
) = SC(
) n fMgg) 
 < � & 
 2 C(�; �) =)  M
 2 C(�; �)Proof.a),b) 1. C�(�) \ � =  �� is a trivial 
onsequen
e of the de�nition of  ��.2. Let � = M. Obviously there exists a Æ < � su
h that R \ [Æ; �[�D�(�). Therefore in order to get  �� < � it suÆ
es to prove that the setU := f� 2 � : C(�; �) \ � � �g is 
losed unbounded (
lub) in �.i) 
losed: Let ; 6= X � U and � := sup(X) < �. Then C(�; �) \ � =S�2X(C(�; �) \ �) � S�2X � = �, i.e. � 2 U .ii) unbounded: Let �0 < �. We de�ne �n+1 := minf� : C(�; �n) \ � � �g and� := supn<! �n. Using L.1.1
 we obtain �n � �n+1 < �. Hen
e �0 � � < �and C(�; �) \ � = Sn<!(C(�; �n) \ �) � Sn<! �n+1 = �, i.e. �0 � � 2 U .3. Let � < M. Starting with �0 := min(D�(�)) we de�ne the ordinals �n and �as in 2.(ii). Then we have � 2 D�(�)\U and therefore  �� � � < �. | Nowassume that  �� 2 R. We prove �n <  �� (8n). By de�nition of �0 and byL.1.1a we have �0 �  �� & �0 62 Lim. Hen
e �0 <  ��. From �n <  �� 2 Rit follows that C(�; �n) \ � �  �� and 
ard(C(�; �n) \ �) <  ��, and there-fore �n+1 <  ��. From 8n(�n <  �� 2 R) we get � <  ��. Contradi
tion.
) 1. Obviously C�(�) \ � is 
losed under '. Together with a) this implies �� 2 SC. | 2. We have ( �� = 
� > � )  �� 2 C�(�)) and (by a) ) �� 62 C�(�). Hen
e  �� 62 f
� : � < 
�g.d) follows from L.1.1a, L.1.3a and the de�nition of  ��.e) By L.1.3a 8�2R( �� < M) and therefore C(�;M) = M�. As in d) oneobtains (� 2 C(�;M), � 2 CM(�)).f) and g) follow from e).
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Lemma 1.4a) 
 2 C(�; �)() SC(
) � C(�; �)b) 
� 2 C(�; �)() � 2 C(�; �)
) � = 
�+1 =) 
� <  �� < 
�+1d) 
� = � =) 
 �� =  ��e) 
 M� =  M�f) 
� � 
 � 
�+1 & 
 2 C(�; �) =) � 2 C(�; �)Proof. a) and b) follow from L.1.2 and L.1.3
. { e) follows from d), sin
eM 2 R and 
M = M. { f) follows from a),b),
),d) and L.1.2.
) Let � = 
�+1. Then � 2 C(�; �) and thus � 2 C�(�). By a) and b) from� = 
�+1 2 C�(�) we get 
� 2 C�(�) \ � =  ��.d) Take � 2 On su
h that 
� �  �� < 
�+1. Then we have � + 1 < � andthus C�(�) \ � =  �� < 
�+1 < 
� = �. This implies 
�+1 62 C�(�) andthen (by a),b) ) � 62 C�(�). Hen
e  �� � � � 
� �  ��.Lemma 1.5a) �0 < � & �0 2 CM(�) =)  M�0 <  M�b)  M�0 =  M�1 & �0; �1 < M� =) �0 = �1Proof.a) From the premise we get  M�0 2 CM(�) \M =  M� by L.1.3a,g.b) Assume  M�0 =  M�1 & �0 < �1 < M�. Then �0 2 CM(�0) � CM(�1)and therefore by a)  M�0 <  M�1. Contradi
tion.Lemma 1.6For � < M the following holdsa) �0 < � =)  ��0 �  ��b) �0 < � & �; �0 2 C�(�0) =)  ��0 <  ��Proof.a) From �0 < � it follows that C(�0;  ��) \ � �  ��. By de�nition of  ��0it therefore suÆ
es to prove  �� 2 f� : � 2 C(�0; �) ) � 2 C(�0; �)g. Solet � 2 C(�0; �). { We have to prove � 2 C(�0;  ��).CASE 1: � = 
�+1. By Lemma 1.4
 we have 
� <  �� and therefore� + 1 2 C(�0;  ��) whi
h implies � 2 C(�0;  ��).5



CASE 2: � = 
�. From � 2 C(�0; �) � C(�; �) we obtain � 2 C�(�0)\C�(�).From this by L.1.2, L.1.3b, L.1.5b it follows that � =  M� with � < �0 and� 2 C�(�). Now by L.1.4a, L.1.3a,e we get SCM(�) � C�(�) \ CM(�) \M =C�(�) \ � =  ��, and then � 2 C(�0;  ��) (by L.1.3f). From this togetherwith � < �0 we obtain � =  M� 2 C(�0;  ��) (by L.1.3g).b) The premise together with a) implies �0 < � & �; �0 2 C�(�) \ C�(�0)whi
h gives us  ��0 2 C�(�) \ � =  ��.De�nition 1.3For ea
h set X � On we set H
(X) := TfC(�; �) : X � C(�; �) & 
 < �g.2 Ordinal analysis of KPMIn this se
tion we show how one has to modify (and extend) [2℄ in order toestablish that the ordinal  
1"M+1 is an upper bound for jKPMj. Of 
oursewe now assume that the reader is familiar with [2℄.The theory KPM is obtained from KPi by adding the following axiom s
heme:(Mahlo) 8x9y�(x; y; ~z )! 9w[Ad(w) ^ 8x2w9y2w�(x; y; ~z )℄ (� 2 �0)We extend the in�nitary system RS1 introdu
ed in Se
tion 3 of [2℄ by addingthe following inferen
e rule:(Mah) �; B(LM) : �0�; 9w2LM(Ad(w) ^B(w)) : � (�0 +M < �)where B(w) is of the form 8x2w9y2wA(x; y) with k(A) � M.We set R := f� : ! < � � M & � regularg.Then all lemmata and theorems of Se
tion 3 4 are also true for the extendedsystem RS1(with almost literally the same proofs)5, and as an easy 
onse-quen
e from Theorem 3.12 one obtains the4We use boldfa
e numerals to indi
ate referen
e to [2℄5In Theorem 3.8 one has to add the 
lause whi
h 
orresponds to the new inferen
e rule(Mah). The last line in the proof of Lemma 3.14 has to be modi�ed to \: : : 
annot be themain part of a (Ref)- or (Mah)-inferen
e.". At the end of the proof of Lemma 3.17 onemay add the remark \Due to the premise � � � < � we have � < M, and therefore thegiven derivation of �; C does not 
ontain any appli
ations of (Mah).".6



Embedding Theorem for KPMIf M 2 H and if H is 
losed under � 7! �R then for ea
h theorem � of KPMthere is an n 2 IN su
h that Hj !M+nM+ n �M:Some more severe modi�
ations have to be 
arried out on Se
tion 4. The�rst part of this se
tion (down to Lemma 4.5) has to be repla
ed by Se
-tion 1 of the present paper. Then the sets C(�; �) are no longer 
losed under(�; �) 7!  �� (� < �), but only under ( j�) as de�ned in De�nition 1.2above. Therefore we have to add \�; � 2 C�(�)" to the premise of Lemma4.6
, and a

ordingly a minor modi�
ation as to be made in the proof ofLemma 4.7(A1). But this 
auses no problems. A little bit problemati
 is thefa
t that the fun
tion  M is not weakly in
reasing. In order to over
ome thisdiÆ
ulty we prove the following lemma.De�nition 2.1For 
 = !
0 + : : :+ !
n with 
0 � : : : � 
n we set e(
) := !
n+1.Further we set e(0) := On.Lemma 2.1For 
 2 CM(
 + 1) and 0 < � < e(
) the following holdsa)  M(
 + 1) �  M(
 + �) & CM(
 + 1) � CM(
 + �)b) 0 < �0 < � & �0 2 CM(
 + 1) =)  M(
 + �0) <  M(
 + �)Proof:a) follows from b).b) We will prove (�)  M(
 + 1) �  M(
 + �). From this we get 
 + �0 2CM(
 + 1) � CM(
 + �) and then by L.1.5a the assertion.For 
 = 0 (�) is trivial. If 
 6= 0 then 
 + � < M� and therefore 
 + � 2CM(
+�) whi
h (together with � < e(
)) implies 
+1 2 CM(
+�). Hen
e M(
 + 1) �  M(
 + �) by L.1.5a.Now we give a 
omplete list of all modi�
ations whi
h have to be 
arried outin [2℄ subsequent to Lemma 4.6 .(1) Repla
e I by M in the de�nition of �K.(2) Add \� < 
 + e(
)" to the premise of Lemma 4.7(A2).(3) Add \!�+� < e(
)" to the premise of Theorem 4.8.(4) Add \� � e(
0)" to the premise of (2) in the proof of Theorem 4.8.7



(5) Insert the following proof of \ ��� �  � b�" at the end of the proof of (2):\From 
0; �0; �0 2 H
0 [�℄ we get �� 2 H
0 [�℄. From k(�) � C�(
 + 1) �C�(b�) & 
0 < b� it follows that H
0 [�℄ � C�(b�). Hen
e �� 2 C�(b�) and thus ��� �  � b�, sin
e �� < b�."(6) Extend the proof of Theorem 4.8 by the following treatment of the 
asewhere the last inferen
e in the given derivation of � is an appli
ation of (Mah):\5. Suppose that 9w2LM(Ad(w) ^B(w)) 2 � and H
[�℄ j�0� �; B(LM) withB(w) � 8x2w9y2wA(x; y) & �0 +M < � & k(A) � M.Then � = M (sin
e � � �(�) and � � M).For � 2 TM we set 
� := 
 + !�+�0+j�j. Then CM(
 + 1) � CM(
�), and sin
eSC(j�j) � SCM(
�) �  M
�, we have j�j <  M
� and thus k(�; �) � CM(
�).From 
; �; �0 2 H
[�℄ we get 
� 2 H
[�; �℄. Consequently A(�; �; 
�;M; �),and the Inversion-Lemma gives us H
[�℄[�℄ j�0� �; � 62 L0 ! 9y2LMA(�; y).Now we apply the I.H. and obtain H��� [�℄[�℄ j M���� �; � 62 L0 ! 9y2LMA(�; y)with ��� := 
� + !�+�0 < 
 + !�+�0+M =: �� < b�.Let � :=  M�� & �� :=  M��� . Then by L.4.7 � 2 Hb�[�℄ & � <  M b�.We also have 8�2T�(��� 2 CM(��)) and thus 8�2T�(�� < �).The Boundedness-Lemma gives us now8� 2 T�(Hb�[�℄[�℄ j��� �; � 62 L0 ! 9y2L�A(�; y) ).From this by an appli
ation of (V) we obtain Hb�[�℄ j�� �; B(L�).From L.2.5h and L.3.10 we get Hb�[�℄ jÆ0 �; Ad(L�) with Æ := !�+5. We alsohave Hb�[�℄ j0� �; L� 62 L0. Hen
e Hb�[�℄ jÆ + 2� �; L� 62 L0 ^ Ad(L�) ^ B(L�) .Now we apply (W) and obtain Hb�[�℄ j M b�� � ."(7) Repla
e I by M in the Corollary to Theorem 4.8 and in Theorem 4.9.This yields the following Theorem.THEOREMLet #? :=  
1("M+1). Then for ea
h �1-senten
e � of L we have:KPM ` 8x(Ad(x)! �x) =) L#? j= �:COROLLARY. jKPMj �  
1("M+1).
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3 Further properties of the fun
tions  �We prove four theorems whi
h together with L.1.3a,b,
 and L.1.4a-e provide a
omplete basis for the de�nition of a primitive re
ursive wellordering (OT,�)whi
h is isomorphi
 to (C(M�; 0); <). (The set OT 
onsists of terms built upfrom the 
onstants 0; M by the fun
tion symbols +; '; 
;  , su
h that forea
h 
 2 C(M�; 0) there is a unique term t 2 OT with jtj = 
, and for alls; t 2 OT one has (s � t , jsj < jtj). Here jtj denotes the 
anoni
al valueof t. For details see [1℄, [4℄, [5℄.)Now the letters �; �; 
; Æ; �; �; �; �; � always denote ordinals less than M�.So, for all � we have � 2 CM(�) and SC(�) n fMg = SCM(�) �  M�.De�nition 3.1s
�(�) := ( maxSCM(�) if � = M & SCM(�) 6= ;0 otherwiseLemma 3.1a) s
�(�) <  ��b) � = M & s
�(�) <  �� =) � 2 C�(�)Proof. Trivial (
f. L.1.a,e,f and L.1.4a).Lemma 3.2Let � 2 C�(�) & � 2 C�(�). Then �� < � < � & s
�(�) <  �� =)  �� <  ��Proof. By L.1.4
,d it follows that 
� = � and 
 �� =  ��. Therefore if� = 
�+1 then  �� � 
� <  ��, and we may now assume that 
� = �. Thenby L.1.2 and L.1.3b we obtain � =  M
 with 
 < � & 
 2 C�(�) \ CM(
).By L.1.4a and L1.3a we get SCM(
) � C�(�)\CM(
)\M = C�(�)\� =  ��.From  �� < � =  M
 < � it follows that  M
 62 C�(�) and thus � � 
 or �� � s
M(
). { If  �� � s
M(
) then  �� <  ��, sin
e SCM(
) �  ��.If s
M(
) <  �� & � = M then we have � � 
 < � and � 2 C�(�)(sin
e s
�(�) <  ��), from whi
h we get  �� 2 C�(�) \ � =  ��. { For� = M the proof is now �nished. { If s
M(
) <  �� & � < M then M
 < � < M & s
M(
) <  �� whi
h (a

ording to what we already provedfor � = M) implies � =  M
 <  ��. Contradi
tion.9



De�nition 3.2K(�; �; �; �) abbreviates the disjun
tion of (K 1); : : : ; (K 4) below:(K 1) � �  ��(K 2)  �� � s
�(�)(K 3) � = � & � < � & s
�(�) <  ��(K 4)  �� < � < � & s
�(�) <  ��Lemma 3.3Let � 2 C�(�) & � 2 C�(�).a) :K(�; �; �; �) & :K(�; �; �; �) =) � = � & � = �b) K(�; �; �; �) =)  �� �  ��
) K(�; �; �; �) & � 2 C�(�) =)  �� <  ��Proof. a) is a logi
al 
onsequen
e of the linearity of < . b) and 
) followimmediately from L.1.3a, L.1.5a, L.1.6, L.3.1, L.3.2.As an immediate 
onsequen
e from lemma 3.3 we getTheorem 3.1�; � 2 C�(�) & �; � 2 C�(�) &  �� =  �� =) � = � & � = �.Theorem 3.2Let � 2 C�(�) & �; � 2 C�(�).a)  �� <  �� () K(�; �; �; �)b)  �� 2 C�(�) () ( �� <  �� or [� < � & �; � 2 C�(�)℄)Proof. a) \(" follows from L.3.3b. \)" follows from L.3.3a,
.b) The \(" part is trivial. So let us assume that  �� �  �� 2 C�(�). ByL.1.2 and L.1.3
 this implies the existen
e of �; � 2 C�(�)\C� (�) with � < �and  �� =  � �. From this by Theorem 3.1 we obtain � = � 2 C�(�) and� = � 2 C�(�) \ �.Theorem 3.3� 2 C�(�) () � 2 f
�+1 : � < Mg [ f M� : � < �g [ fMgProof. 1. \)" follows from L.1.2 and L.1.3b. { 2. By L.1.3d we have(� 2 C�(�) , � 2 C(�; �)). { 3. If � = 
�+1 then � + 1 < � and thus� 2 C(�; �). { 4. If � =  M� with � < � then � 2 CM(�) = C(�; �) � C(�; �)and thus � 2 C(�; �). 10



Theorem 3.4� = 
�+1 =) C�(�) = C(�;
� + 1)Proof by indu
tion on �. So let us assume that C�(�) = C(�;
� + 1), forall � < �. { We have to prove  �� � C(�;
� + 1). As we will show belowthe I.H. implies that � := C(�;
� + 1) \ � is in fa
t an ordinal. Obviously� 2 C(�; �) and C(�; �) \ � � C(�;
� + 1) \ � = � and thus  �� � �, i.e. �� � C(�;
� +1). { CLAIM: 
 2 C(�;
� +1)\ � =) 
 � C(�;
� +1).Proof. 1. 
� < 
 2 SC. Then 
 =  �� with � < � & � 2 C�(�).Sin
e 
� < 
 < � = 
�+1, we have � = � and therefore by the above I.H.C�(�) = C(�;
� + 1). Hen
e 
 =  �� � C(�;
� + 1) � C(�;
� + 1).2. Let 
 be arbitrary and 
0 := max(f0g [ SC(
)). Then (by 1. above)
0 [ f
0g � C(�;
� + 1). From this we get 
 � 
� � C(�;
� + 1), where
� := minf� 2 SC : 
0 < �g.COROLLARY.  
1� = C(�; 0) \ 
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