A Note on the Ordinal Analysis of KPM

W. BUCHHOLZ

Mathematisches Institut der Universität München¹

This note extends our method from (Buchholz [2]) in such a way that it applies also to the rather strong theory KPM. This theory was introduced and analyzed proof-theoretically in (Rathjen [6]), where Rathjen establishes an upper bound for its proof theoretic ordinal [KPM]. The bound was given in terms of a primitive recursive system $\mathcal{T}(M)$ of ordinal notations based on certain ordinal functions χ , ψ_{κ} ($\omega < \kappa < M$, κ regular)² that had been introduced and studied in (Rathjen [5]).³ In section 1 of this note we define and study a slightly different system of functions ψ_{κ} ($\kappa \leq M$) – where ψ_{M} plays the rôle of Rathjen's χ – that is particularly well suited for our purpose of extending [2]. In section 2 we describe how one obtains, by a suitable modification of [2], an upper bound for |KPM| in terms of the ψ_{κ} 's from section 1. We conjecture that this bound is best possible and coincides with the bound given in [6]. In section 3 we prove some additional properties of the functions ψ_{κ} which are needed to set up a primitive recursive ordinal notation system of ordertype > ϑ^{\star} , where $\vartheta^{\star} := \psi_{\Omega_1} \varepsilon_{M+1}$ is the upper bound for KPM determined in section 2.

Remark

Another ordinal analysis of KPM has been obtained independently by T. Arai in "Proof theory for reflecting ordinals II: recursively Mahlo ordinals." (Handwritten notes, 1989).

¹The final version of this paper was written while the author was visiting Carnegie Mellon University during the academic year 1990/91. I would like to express my sincere thanks to Wilfried Sieg (who invited me) and all members of the Philosophy Department of CMU for their generous hospitality.

²M denotes the first weakly Mahlo cardinal.

³The essential new feature of [5] is the function χ , while the ψ_{κ} 's ($\kappa < M$) are obtained by a straightforward generalization of previous constructions in [1],[3],[4].

1 Basic properties of the functions $\psi_{\kappa}(\kappa \leq M)$

Preliminaries

The letters $\alpha, \beta, \gamma, \delta, \mu, \sigma, \xi, \eta, \zeta$ always denote ordinals. On denotes the class of all ordinals, and Lim the class of all limit numbers. Every ordinal α is identified with the set $\{\xi \in \text{On} : \xi < \alpha\}$ of its predecessors. For $\alpha \leq \beta$ we set $[\alpha, \beta] := \{\xi : \alpha \leq \xi < \beta\}$. By + we denote ordinary (noncommutative) ordinal *addition*. An ordinal $\alpha > 0$ which is closed under + is called an *additive principal number*. The class of all additive principal numbers is denoted by AP. The Veblen function φ is defined by $\varphi\alpha\beta := \varphi_{\alpha}(\beta)$, where φ_{α} is the ordering function of the class $\{\beta \in \text{AP} : \forall \xi < \alpha(\varphi_{\xi}(\beta) = \beta)\}$. An ordinal $\gamma > 0$ which is closed under φ (and thus also under +) is said to be strongly critical. The class of all strongly critical ordinals is denoted by SC.

Some basic facts:

- 1. AP = { $\omega^{\alpha} : \alpha \in \text{On}$ }
- 2. $\varphi 0\beta = \omega^{\beta}$, $\varphi 1\beta = \varepsilon_{\beta}$
- 3. For each $\gamma > 0$ there are uniquely determined $n \in \mathbb{N}$ and additive principal numbers $\gamma_0 \geq \ldots \geq \gamma_n$ such that $\gamma = \gamma_0 + \ldots + \gamma_n$.
- 4. For each $\gamma \in AP \setminus SC$ there are uniquely determined $\xi, \eta < \gamma$ such that $\gamma = \varphi \xi \eta$.
- 5. Every uncountable cardinal is strongly critical.

Definition of $SC(\gamma)$

- 1. $SC(0) := \emptyset$
- 2. $SC(\gamma) := \{\gamma\}, \text{ if } \gamma \in SC$
- 3. $SC(\gamma_0 + \ldots + \gamma_n) := SC(\gamma_0) \cup \ldots \cup SC(\gamma_n)$, if $n \ge 1$ and $\gamma_0 \ge \ldots \ge \gamma_n$ are additive principal numbers.
- 4. $SC(\varphi \xi \eta) := SC(\xi) \cup SC(\eta)$, if $\xi, \eta < \varphi \xi \eta$.

We assume the existence of a weakly Mahlo cardinal M.

So every closed unbounded (club) set $X \subseteq M$ contains at least one regular cardinal, and M itself is a regular cardinal.

Definition 1.1

$$\begin{split} \mathbf{R} &:= \{ \alpha : \omega < \alpha \leq \mathbf{M} \ \& \ \alpha \text{ regular} \} \\ \mathbf{M}^{\Gamma} &:= \min\{ \gamma \in \mathbf{SC} : \mathbf{M} < \gamma \} = \text{ closure of } \mathbf{M} \cup \{ \mathbf{M} \} \text{ under } +, \varphi \\ SC_{\mathbf{M}}(\gamma) &:= SC(\gamma) \cap \mathbf{M} \\ \Omega_0 &:= 0 \ , \ \Omega_{\sigma} := \aleph_{\sigma} \text{ for } \sigma > 0. \\ \boldsymbol{\Omega} &:= \text{ the function } \sigma \mapsto \Omega_{\sigma} \text{ restricted to } \sigma < \mathbf{M} \end{split}$$

Remark: $\forall \kappa \in \mathbb{R}(\kappa = \Omega_{\kappa} \text{ or } \kappa \in {\Omega_{\sigma+1} : \sigma < M})$

Convention. In the following the letters κ, π, τ always denote elements of R.

Definition 1.2 (The collapsing functions ψ_{κ})

By transfinite recursion on α we define ordinals $\psi_{\kappa}\alpha$ and sets $C(\alpha, \beta) \subseteq$ On as follows. Under the induction hypothesis that $\psi_{\pi}\xi$ and $C(\xi, \eta)$ are already defined for all $\xi < \alpha$, $\pi \in \mathbb{R}$, $\eta \in$ On we set

1. $C(\alpha, \beta) := \text{closure of } \beta \cup \{0, M\} \text{ under } +, \varphi, \Omega, \psi | \alpha,$

where $\psi | \alpha$ denotes the binary function given by

$$dom(\psi|\alpha) := \{ (\pi,\xi) : \xi < \alpha \& \pi \in \mathbf{R} \& \pi, \xi \in C(\xi,\psi_{\pi}\xi) \} (\psi|\alpha)(\pi,\xi) := \psi_{\pi}\xi.$$

2. $\psi_{\kappa} \alpha := \min\{\beta \in \mathcal{D}_{\kappa}(\alpha) : C(\alpha, \beta) \cap \kappa \subseteq \beta\}$ with $\mathcal{D}_{\kappa}(\alpha) := \begin{cases} \{\beta \in \mathbb{R} : \alpha \in C(\alpha, \mathbb{M}) \Rightarrow \alpha \in C(\alpha, \beta)\} & \text{if } \kappa = \mathbb{M} \\ \{\beta : \kappa \in C(\alpha, \kappa) \Rightarrow \kappa \in C(\alpha, \beta)\} & \text{if } \kappa < \mathbb{M} \end{cases}$

Abbreviation: $C_{\kappa}(\alpha) := C(\alpha, \psi_{\kappa}\alpha)$

The first two lemmata are immediate consequences of Definition 1.2.

Lemma 1.1

a) $\alpha_0 \leq \alpha \& \beta_0 \leq \beta \Longrightarrow C(\alpha_0, \beta_0) \subseteq C(\alpha, \beta)$ b) $\emptyset \neq X \subseteq \text{On } \& \beta = \sup(X) \implies C(\alpha, \beta) = \bigcup_{\eta \in X} C(\alpha, \eta)$ c) $\beta < \kappa \implies \operatorname{card}(C(\alpha, \beta)) < \kappa$

Lemma 1.2 $C(\alpha,\beta) = \bigcup_{n < \omega} C^{n}(\alpha,\beta), \quad \text{where } C^{n}(\alpha,\beta) \text{ is defined by}$ (i) $C^{0}(\alpha,\beta) := \beta \cup \{0, M\},$ (ii) $C^{n+1}(\alpha,\beta) := \{\gamma : SC(\gamma) \subseteq C^{n}(\alpha,\beta)\} \cup \{\Omega_{\sigma} : \sigma \in C^{n}(\alpha,\beta)\} \cup \bigcup \{\psi_{\pi}\xi : \xi < \alpha \& \pi, \xi \in C^{n}(\alpha,\beta) \cap C_{\pi}(\xi)\}$

Lemma 1.3

a) $C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa} \alpha < \kappa$ b) $\kappa < \mathbf{M} \Longrightarrow \psi_{\kappa} \alpha \notin \mathbf{R}$ c) $\psi_{\kappa} \alpha \in \mathrm{SC} \setminus \{\Omega_{\sigma} : \sigma < \Omega_{\sigma}\}$ d) $\kappa \in C(\alpha, \kappa) \Longleftrightarrow \kappa \in C_{\kappa}(\alpha)$ e) $C(\alpha, \mathbf{M}) = \mathbf{M}^{\Gamma} = \{\xi : \xi \in C_{\mathbf{M}}(\xi)\}$ f) $\gamma \in C_{\kappa}(\alpha) \Longrightarrow \gamma \in C_{\mathbf{M}}(\gamma) \& SC_{\mathbf{M}}(\gamma) = SC(\gamma) \setminus \{\mathbf{M}\}$ g) $\gamma < \alpha \& \gamma \in C(\alpha, \beta) \Longrightarrow \psi_{\mathbf{M}} \gamma \in C(\alpha, \beta)$

Proof.

a),b) 1. $C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa} \alpha$ is a trivial consequence of the definition of $\psi_{\kappa} \alpha$. 2. Let $\kappa = M$. Obviously there exists a $\delta < \kappa$ such that $\mathbb{R} \cap [\delta, \kappa] \subseteq \mathcal{D}_{\kappa}(\alpha)$. Therefore in order to get $\psi_{\kappa} \alpha < \kappa$ it suffices to prove that the set $U := \{\beta \in \kappa : C(\alpha, \beta) \cap \kappa \subseteq \beta\}$ is closed unbounded (club) in κ .

i) closed: Let $\emptyset \neq X \subseteq U$ and $\beta := \sup(X) < \kappa$. Then $C(\alpha, \beta) \cap \kappa = \bigcup_{\xi \in X} (C(\alpha, \xi) \cap \kappa) \subseteq \bigcup_{\xi \in X} \xi = \beta$, i.e. $\beta \in U$.

ii) unbounded: Let $\beta_0 < \kappa$. We define $\beta_{n+1} := \min\{\eta : C(\alpha, \beta_n) \cap \kappa \subseteq \eta\}$ and $\beta := \sup_{n < \omega} \beta_n$. Using L.1.1c we obtain $\beta_n \leq \beta_{n+1} < \kappa$. Hence $\beta_0 \leq \beta < \kappa$ and $C(\alpha, \beta) \cap \kappa = \bigcup_{n < \omega} (C(\alpha, \beta_n) \cap \kappa) \subseteq \bigcup_{n < \omega} \beta_{n+1} = \beta$, i.e. $\beta_0 \leq \beta \in U$.

3. Let $\kappa < M$. Starting with $\beta_0 := \min(\mathcal{D}_{\kappa}(\alpha))$ we define the ordinals β_n and β as in 2.(ii). Then we have $\beta \in \mathcal{D}_{\kappa}(\alpha) \cap U$ and therefore $\psi_{\kappa}\alpha \leq \beta < \kappa$. — Now assume that $\psi_{\kappa}\alpha \in \mathbb{R}$. We prove $\beta_n < \psi_{\kappa}\alpha \ (\forall n)$. By definition of β_0 and by L.1.1a we have $\beta_0 \leq \psi_{\kappa}\alpha \& \beta_0 \notin \text{Lim}$. Hence $\beta_0 < \psi_{\kappa}\alpha$. From $\beta_n < \psi_{\kappa}\alpha \in \mathbb{R}$ it follows that $C(\alpha, \beta_n) \cap \kappa \subseteq \psi_{\kappa}\alpha$ and $\operatorname{card}(C(\alpha, \beta_n) \cap \kappa) < \psi_{\kappa}\alpha$, and therefore $\beta_{n+1} < \psi_{\kappa}\alpha$. From $\forall n(\beta_n < \psi_{\kappa}\alpha \in \mathbb{R})$ we get $\beta < \psi_{\kappa}\alpha$. Contradiction.

c) 1. Obviously $C_{\kappa}(\alpha) \cap \kappa$ is closed under φ . Together with a) this implies $\psi_{\kappa}\alpha \in \text{SC.}$ — 2. We have $(\psi_{\kappa}\alpha = \Omega_{\sigma} > \sigma \Rightarrow \psi_{\kappa}\alpha \in C_{\kappa}(\alpha))$ and (by a)) $\psi_{\kappa}\alpha \notin C_{\kappa}(\alpha)$. Hence $\psi_{\kappa}\alpha \notin \{\Omega_{\sigma} : \sigma < \Omega_{\sigma}\}$.

d) follows from L.1.1a, L.1.3a and the definition of $\psi_{\kappa}\alpha$.

e) By L.1.3a $\forall \pi \in \mathbb{R}(\psi_{\pi} \xi < M)$ and therefore $C(\alpha, M) = M^{\Gamma}$. As in d) one obtains $(\alpha \in C(\alpha, M) \Leftrightarrow \alpha \in C_{M}(\alpha))$.

f) and g) follow from e).

Lemma 1.4

a) $\gamma \in C(\alpha, \beta) \iff SC(\gamma) \subseteq C(\alpha, \beta)$ b) $\Omega_{\sigma} \in C(\alpha, \beta) \iff \sigma \in C(\alpha, \beta)$ c) $\kappa = \Omega_{\sigma+1} \implies \Omega_{\sigma} < \psi_{\kappa}\alpha < \Omega_{\sigma+1}$ d) $\Omega_{\kappa} = \kappa \implies \Omega_{\psi_{\kappa}\alpha} = \psi_{\kappa}\alpha$ e) $\Omega_{\psi_{M}\alpha} = \psi_{M}\alpha$ f) $\Omega_{\sigma} \leq \gamma \leq \Omega_{\sigma+1} \& \gamma \in C(\alpha, \beta) \implies \sigma \in C(\alpha, \beta)$

Proof. a) and b) follow from L.1.2 and L.1.3c. -e) follows from d), since $M \in R$ and $\Omega_M = M$. -f) follows from a),b),c),d) and L.1.2.

c) Let $\kappa = \Omega_{\sigma+1}$. Then $\kappa \in C(\alpha, \kappa)$ and thus $\kappa \in C_{\kappa}(\alpha)$. By a) and b) from $\kappa = \Omega_{\sigma+1} \in C_{\kappa}(\alpha)$ we get $\Omega_{\sigma} \in C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa}\alpha$.

d) Take $\sigma \in \text{On such that } \Omega_{\sigma} \leq \psi_{\kappa} \alpha < \Omega_{\sigma+1}$. Then we have $\sigma + 1 < \kappa$ and thus $C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa} \alpha < \Omega_{\sigma+1} < \Omega_{\kappa} = \kappa$. This implies $\Omega_{\sigma+1} \notin C_{\kappa}(\alpha)$ and then (by a),b)) $\sigma \notin C_{\kappa}(\alpha)$. Hence $\psi_{\kappa} \alpha \leq \sigma \leq \Omega_{\sigma} \leq \psi_{\kappa} \alpha$.

Lemma 1.5

a) $\alpha_0 < \alpha \& \alpha_0 \in C_{\mathcal{M}}(\alpha) \implies \psi_{\mathcal{M}} \alpha_0 < \psi_{\mathcal{M}} \alpha$ b) $\psi_{\mathcal{M}} \alpha_0 = \psi_{\mathcal{M}} \alpha_1 \& \alpha_0, \alpha_1 < \mathcal{M}^{\Gamma} \implies \alpha_0 = \alpha_1$

Proof.

a) From the premise we get $\psi_{M}\alpha_{0} \in C_{M}(\alpha) \cap M = \psi_{M}\alpha$ by L.1.3a,g. b) Assume $\psi_{M}\alpha_{0} = \psi_{M}\alpha_{1} \& \alpha_{0} < \alpha_{1} < M^{\Gamma}$. Then $\alpha_{0} \in C_{M}(\alpha_{0}) \subseteq C_{M}(\alpha_{1})$ and therefore by a) $\psi_{M}\alpha_{0} < \psi_{M}\alpha_{1}$. Contradiction.

Lemma 1.6

For $\kappa < M$ the following holds a) $\alpha_0 < \alpha \implies \psi_{\kappa} \alpha_0 \le \psi_{\kappa} \alpha$ b) $\alpha_0 < \alpha \& \kappa, \alpha_0 \in C_{\kappa}(\alpha_0) \implies \psi_{\kappa} \alpha_0 < \psi_{\kappa} \alpha$

Proof.

a) From $\alpha_0 < \alpha$ it follows that $C(\alpha_0, \psi_{\kappa} \alpha) \cap \kappa \subseteq \psi_{\kappa} \alpha$. By definition of $\psi_{\kappa} \alpha_0$ it therefore suffices to prove $\psi_{\kappa} \alpha \in \{\beta : \kappa \in C(\alpha_0, \kappa) \Rightarrow \kappa \in C(\alpha_0, \beta)\}$. So let $\kappa \in C(\alpha_0, \kappa)$. – We have to prove $\kappa \in C(\alpha_0, \psi_{\kappa} \alpha)$.

CASE 1: $\kappa = \Omega_{\sigma+1}$. By Lemma 1.4c we have $\Omega_{\sigma} < \psi_{\kappa} \alpha$ and therefore $\sigma + 1 \in C(\alpha_0, \psi_{\kappa} \alpha)$ which implies $\kappa \in C(\alpha_0, \psi_{\kappa} \alpha)$.

CASE 2: $\kappa = \Omega_{\kappa}$. From $\kappa \in C(\alpha_0, \kappa) \subseteq C(\alpha, \kappa)$ we obtain $\kappa \in C_{\kappa}(\alpha_0) \cap C_{\kappa}(\alpha)$. From this by L.1.2, L.1.3b, L.1.5b it follows that $\kappa = \psi_{\mathrm{M}} \xi$ with $\xi < \alpha_0$ and $\xi \in C_{\kappa}(\alpha)$. Now by L.1.4a, L.1.3a,e we get $SC_{\mathrm{M}}(\xi) \subseteq C_{\kappa}(\alpha) \cap C_{\mathrm{M}}(\xi) \cap \mathrm{M} = C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa}\alpha$, and then $\xi \in C(\alpha_0, \psi_{\kappa}\alpha)$ (by L.1.3f). From this together with $\xi < \alpha_0$ we obtain $\kappa = \psi_{\mathrm{M}} \xi \in C(\alpha_0, \psi_{\kappa}\alpha)$ (by L.1.3g).

b) The premise together with a) implies $\alpha_0 < \alpha \& \kappa, \alpha_0 \in C_{\kappa}(\alpha) \cap C_{\kappa}(\alpha_0)$ which gives us $\psi_{\kappa}\alpha_0 \in C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa}\alpha$.

Definition 1.3

For each set $X \subseteq$ On we set $\mathcal{H}_{\gamma}(X) := \bigcap \{ C(\alpha, \beta) : X \subseteq C(\alpha, \beta) \& \gamma < \alpha \}.$

2 Ordinal analysis of KPM

In this section we show how one has to modify (and extend) [2] in order to establish that the ordinal $\psi_{\Omega_1} \varepsilon_{M+1}$ is an upper bound for |KPM|. Of course we now assume that the reader is familiar with [2].

The theory KPM is obtained from KPi by adding the following axiom scheme: (Mahlo) $\forall x \exists y \phi(x, y, \vec{z}) \rightarrow \exists w [Ad(w) \land \forall x \in w \exists y \in w \phi(x, y, \vec{z})] \qquad (\phi \in \Delta_0)$

We extend the infinitary system RS^{∞} introduced in Section 3 of [2] by adding the following inference rule:

(Mah)
$$\frac{\Gamma, B(\mathsf{L}_{\mathrm{M}}) : \alpha_{0}}{\Gamma, \exists w \in \mathsf{L}_{\mathrm{M}}(Ad(w) \land B(w)) : \alpha} \quad (\alpha_{0} + \mathrm{M} < \alpha)$$

where B(w) is of the form $\forall x \in w \exists y \in w A(x, y)$ with $k(A) \subseteq M$.

We set $R := \{ \alpha : \omega < \alpha \leq M \& \alpha \text{ regular} \}.$

Then all lemmata and theorems of Section 3^{4} are also true for the extended system RS^{∞} (with almost literally the same proofs)⁵, and as an easy consequence from Theorem **3.12** one obtains the

⁴We use boldface numerals to indicate reference to [2]

⁵In Theorem **3.8** one has to add the clause which corresponds to the new inference rule (Mah). The last line in the proof of Lemma **3.14** has to be modified to "... cannot be the main part of a (Ref)- or (Mah)-inference.". At the end of the proof of Lemma **3.17** one may add the remark "Due to the premise $\alpha \leq \beta < \kappa$ we have $\alpha < M$, and therefore the given derivation of Γ, C does not contain any applications of (Mah).".

Embedding Theorem for KPM

If $M \in \mathcal{H}$ and if \mathcal{H} is closed under $\xi \mapsto \xi^{R}$ then for each theorem ϕ of KPM there is an $n \in \mathbb{N}$ such that $\mathcal{H}|\frac{\omega^{M+n}}{M+n} \phi^{M}$.

Some more severe modifications have to be carried out on Section 4. The first part of this section (down to Lemma 4.5) has to be replaced by Section 1 of the present paper. Then the sets $C(\alpha, \beta)$ are no longer closed under $(\pi, \xi) \mapsto \psi_{\pi} \xi$ ($\xi < \alpha$), but only under ($\psi | \alpha$) as defined in Definition 1.2 above. Therefore we have to add " $\pi, \xi \in C_{\pi}(\xi)$ " to the premise of Lemma 4.6c, and accordingly a minor modification as to be made in the proof of Lemma 4.7(\mathcal{A} 1). But this causes no problems. A little bit problematic is the fact that the function ψ_{M} is not weakly increasing. In order to overcome this difficulty we prove the following lemma.

Definition 2.1

For $\gamma = \omega^{\gamma_0} + \ldots + \omega^{\gamma_n}$ with $\gamma_0 \ge \ldots \ge \gamma_n$ we set $\mathbf{e}(\gamma) := \omega^{\gamma_n+1}$. Further we set $\mathbf{e}(0) := \text{On}$.

Lemma 2.1

For $\gamma \in C_{\mathrm{M}}(\gamma + 1)$ and $0 < \alpha < \mathbf{e}(\gamma)$ the following holds a) $\psi_{\mathrm{M}}(\gamma + 1) \leq \psi_{\mathrm{M}}(\gamma + \alpha) \& C_{\mathrm{M}}(\gamma + 1) \subseteq C_{\mathrm{M}}(\gamma + \alpha)$ b) $0 < \alpha_{0} < \alpha \& \alpha_{0} \in C_{\mathrm{M}}(\gamma + 1) \Longrightarrow \psi_{\mathrm{M}}(\gamma + \alpha_{0}) < \psi_{\mathrm{M}}(\gamma + \alpha)$

Proof:

a) follows from b).

b) We will prove (*) $\psi_{M}(\gamma + 1) \leq \psi_{M}(\gamma + \alpha)$. From this we get $\gamma + \alpha_{0} \in C_{M}(\gamma + 1) \subseteq C_{M}(\gamma + \alpha)$ and then by L.1.5a the assertion.

For $\gamma = 0$ (*) is trivial. If $\gamma \neq 0$ then $\gamma + \alpha < M^{\Gamma}$ and therefore $\gamma + \alpha \in C_{\mathrm{M}}(\gamma + \alpha)$ which (together with $\alpha < \mathbf{e}(\gamma)$) implies $\gamma + 1 \in C_{\mathrm{M}}(\gamma + \alpha)$. Hence $\psi_{\mathrm{M}}(\gamma + 1) \leq \psi_{\mathrm{M}}(\gamma + \alpha)$ by L.1.5a.

Now we give a complete list of all modifications which have to be carried out in [2] subsequent to Lemma **4.6**.

- (1) Replace I by M in the definition of K.
- (2) Add " $\eta < \gamma + \mathbf{e}(\gamma)$ " to the premise of Lemma 4.7(\mathcal{A} 2).
- (3) Add " $\omega^{\mu+\alpha} < \mathbf{e}(\gamma)$ " to the premise of Theorem 4.8.
- (4) Add " $\pi \leq e(\gamma')$ " to the premise of (\Box) in the proof of Theorem 4.8.

(5) Insert the following proof of " $\psi_{\kappa}\alpha^* \leq \psi_{\kappa}\hat{\alpha}$ " at the end of the proof of (\Box): "From $\gamma', \mu', \alpha' \in \mathcal{H}_{\gamma'}[\Theta]$ we get $\alpha^* \in \mathcal{H}_{\gamma'}[\Theta]$. From $\mathbf{k}(\Theta) \subseteq C_{\kappa}(\gamma + 1) \subseteq C_{\kappa}(\hat{\alpha})$ & $\gamma' < \hat{\alpha}$ it follows that $\mathcal{H}_{\gamma'}[\Theta] \subseteq C_{\kappa}(\hat{\alpha})$. Hence $\alpha^* \in C_{\kappa}(\hat{\alpha})$ and thus $\psi_{\kappa}\alpha^* \leq \psi_{\kappa}\hat{\alpha}$, since $\alpha^* < \hat{\alpha}$."

(6) Extend the proof of Theorem 4.8 by the following treatment of the case where the last inference in the given derivation of Γ is an application of (Mah):

"5. Suppose that $\exists w \in \mathsf{L}_{\mathsf{M}}(Ad(w) \land B(w)) \in \Gamma$ and $\mathcal{H}_{\gamma}[\Theta] \mid \frac{\alpha_{0}}{\mu} \Gamma, B(\mathsf{L}_{\mathsf{M}})$ with $B(w) \equiv \forall x \in w \exists y \in w A(x, y) \& \alpha_{0} + \mathsf{M} < \alpha \& \mathsf{k}(A) \subseteq \mathsf{M}.$ Then $\kappa = \mathsf{M}$ (since $\Gamma \subseteq \Sigma(\kappa)$ and $\kappa \leq \mathsf{M}$).

For $\iota \in \mathcal{T}_{\mathrm{M}}$ we set $\gamma_{\iota} := \gamma + \omega^{\mu + \alpha_{0} + |\iota|}$. Then $C_{\mathrm{M}}(\gamma + 1) \subseteq C_{\mathrm{M}}(\gamma_{\iota})$, and since $SC(|\iota|) \subseteq SC_{\mathrm{M}}(\gamma_{\iota}) \subseteq \psi_{\mathrm{M}}\gamma_{\iota}$, we have $|\iota| < \psi_{\mathrm{M}}\gamma_{\iota}$ and thus $k(\Theta, \iota) \subseteq C_{\mathrm{M}}(\gamma_{\iota})$. From $\gamma, \mu, \alpha_{0} \in \mathcal{H}_{\gamma}[\Theta]$ we get $\gamma_{\iota} \in \mathcal{H}_{\gamma}[\Theta, \iota]$. Consequently $\mathcal{A}(\Theta, \iota; \gamma_{\iota}, \mathrm{M}, \mu)$, and the Inversion-Lemma gives us $\mathcal{H}_{\gamma}[\Theta][\iota] \mid \frac{\alpha_{0}}{\mu} \Gamma, \iota \notin \mathsf{L}_{0} \to \exists y \in \mathsf{L}_{\mathrm{M}}\mathcal{A}(\iota, y)$.

Now we apply the I.H. and obtain $\mathcal{H}_{\alpha_{\iota}^{*}}[\Theta][\iota] \stackrel{\psi_{\mathrm{M}}\alpha_{\iota}^{*}}{\cdot} \Gamma, \iota \notin \mathsf{L}_{0} \to \exists y \in \mathsf{L}_{\mathrm{M}}A(\iota, y)$ with $\alpha_{\iota}^{*} := \gamma_{\iota} + \omega^{\mu + \alpha_{0}} < \gamma + \omega^{\mu + \alpha_{0} + \mathrm{M}} =: \alpha^{*} < \widehat{\alpha}.$

Let $\pi := \psi_{\mathrm{M}} \alpha^* \& \beta_{\iota} := \psi_{\mathrm{M}} \alpha_{\iota}^*$. Then by L.4.7 $\pi \in \mathcal{H}_{\widehat{\alpha}}[\Theta] \& \pi < \psi_{\mathrm{M}} \widehat{\alpha}$. We also have $\forall \iota \in \mathcal{T}_{\pi}(\alpha_{\iota}^* \in C_{\mathrm{M}}(\alpha^*))$ and thus $\forall \iota \in \mathcal{T}_{\pi}(\beta_{\iota} < \pi)$.

 $The \ Boundedness-Lemma \ gives \ us \ now$

$$\forall \iota \in \mathcal{T}_{\pi}(\mathcal{H}_{\widehat{\alpha}}[\Theta][\iota] \mid \frac{\rho_{\iota}}{\pi} \Gamma, \iota \notin \mathsf{L}_{0} \to \exists y \in \mathsf{L}_{\pi}A(\iota, y)).$$

From this by an application of (Λ) we obtain $\mathcal{H}_{\widehat{\alpha}}[\Theta] \mid \frac{\pi}{\cdot} \Gamma, B(\mathsf{L}_{\pi}).$

From L.2.5h and L.3.10 we get $\mathcal{H}_{\widehat{\alpha}}[\Theta] \mid \frac{\delta}{0} \Gamma, Ad(\mathsf{L}_{\pi})$ with $\delta := \omega^{\pi+5}$. We also have $\mathcal{H}_{\widehat{\alpha}}[\Theta] \mid \frac{0}{\cdot} \Gamma, \mathsf{L}_{\pi} \notin \mathsf{L}_{0}$. Hence $\mathcal{H}_{\widehat{\alpha}}[\Theta] \mid \frac{\delta+2}{\cdot} \Gamma, \mathsf{L}_{\pi} \notin \mathsf{L}_{0} \wedge Ad(\mathsf{L}_{\pi}) \wedge B(\mathsf{L}_{\pi})$. Now we apply (\bigvee) and obtain $\mathcal{H}_{\widehat{\alpha}}[\Theta] \mid \frac{\psi_{\mathrm{M}}\widehat{\alpha}}{\cdot} \Gamma$."

(7) Replace I by M in the Corollary to Theorem 4.8 and in Theorem 4.9. This yields the following Theorem.

THEOREM

Let $\vartheta^* := \psi_{\Omega_1}(\varepsilon_{M+1})$. Then for each Σ_1 -sentence ϕ of \mathcal{L} we have: $\mathrm{KPM} \vdash \forall x (Ad(x) \to \phi^x) \implies L_{\vartheta^*} \models \phi.$ $\mathrm{COROLLARY}. |\mathrm{KPM}| \le \psi_{\Omega_1}(\varepsilon_{M+1}).$

3 Further properties of the functions ψ_{κ}

We prove four theorems which together with L.1.3a,b,c and L.1.4a-e provide a complete basis for the definition of a primitive recursive wellordering (OT, \prec) which is isomorphic to $(C(M^{\Gamma}, 0), <)$. (The set OT consists of terms built up from the constants $\underline{0}$, \underline{M} by the function symbols $\underline{+}, \underline{\varphi}, \underline{\Omega}, \underline{\psi}$, such that for each $\gamma \in C(M^{\Gamma}, 0)$ there is a unique term $t \in OT$ with $|t| = \gamma$, and for all $s, t \in OT$ one has $(s \prec t \Leftrightarrow |s| < |t|)$. Here |t| denotes the canonical value of t. For details see [1], [4], [5].)

Now the letters $\alpha, \beta, \gamma, \delta, \mu, \sigma, \xi, \eta, \zeta$ always denote ordinals less than M^{Γ} . So, for all α we have $\alpha \in C_{M}(\alpha)$ and $SC(\alpha) \setminus \{M\} = SC_{M}(\alpha) \subseteq \psi_{M}\alpha$.

Definition 3.1

 $\mathsf{sc}_{\kappa}(\alpha) := \begin{cases} \max SC_{\mathrm{M}}(\alpha) & \text{if } \kappa = \mathrm{M} \& SC_{\mathrm{M}}(\alpha) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$

Lemma 3.1

a) $\operatorname{sc}_{\kappa}(\alpha) < \psi_{\kappa}\alpha$ b) $\pi = M$ & $\operatorname{sc}_{\pi}(\beta) < \psi_{\kappa}\alpha \implies \beta \in C_{\kappa}(\alpha)$

Proof. Trivial (cf. L.1.a,e,f and L.1.4a).

Lemma 3.2

Let $\kappa \in C_{\kappa}(\alpha)$ & $\pi \in C_{\pi}(\beta)$. Then $\psi_{\pi}\beta < \kappa < \pi$ & $\mathsf{sc}_{\pi}(\beta) < \psi_{\kappa}\alpha \implies \psi_{\pi}\beta < \psi_{\kappa}\alpha$

Proof. By L.1.4c,d it follows that $\Omega_{\pi} = \pi$ and $\Omega_{\psi_{\pi}\beta} = \psi_{\pi}\beta$. Therefore if $\kappa = \Omega_{\sigma+1}$ then $\psi_{\pi}\beta \leq \Omega_{\sigma} < \psi_{\kappa}\alpha$, and we may now assume that $\Omega_{\kappa} = \kappa$. Then by L.1.2 and L.1.3b we obtain $\kappa = \psi_{M}\gamma$ with $\gamma < \alpha \& \gamma \in C_{\kappa}(\alpha) \cap C_{M}(\gamma)$. By L.1.4a and L1.3a we get $SC_{M}(\gamma) \subseteq C_{\kappa}(\alpha) \cap C_{M}(\gamma) \cap M = C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa}\alpha$. From $\psi_{\pi}\beta < \kappa = \psi_{M}\gamma < \pi$ it follows that $\psi_{M}\gamma \notin C_{\pi}(\beta)$ and thus $\beta \leq \gamma$ or $\psi_{\pi}\beta \leq \mathrm{sc}_{M}(\gamma)$. – If $\psi_{\pi}\beta \leq \mathrm{sc}_{M}(\gamma)$ then $\psi_{\pi}\beta < \psi_{\kappa}\alpha$, since $SC_{M}(\gamma) \subseteq \psi_{\kappa}\alpha$. If $\mathrm{sc}_{M}(\gamma) < \psi_{\pi}\beta \& \pi = M$ then we have $\beta \leq \gamma < \alpha$ and $\beta \in C_{\kappa}(\alpha)$ (since $\mathrm{sc}_{\pi}(\beta) < \psi_{\kappa}\alpha$), from which we get $\psi_{\pi}\beta \in C_{\kappa}(\alpha) \cap \kappa = \psi_{\kappa}\alpha$. – For $\pi = M$ the proof is now finished. – If $\mathrm{sc}_{M}(\gamma) < \psi_{\pi}\beta \& \pi < M$ then $\psi_{M}\gamma < \pi < M \& \mathrm{sc}_{M}(\gamma) < \psi_{\pi}\beta$ which (according to what we already proved for $\pi = M$) implies $\kappa = \psi_{M}\gamma < \psi_{\kappa}\alpha$. Contradiction.

Definition 3.2

 $\begin{array}{l} \mathcal{K}(\pi,\beta,\kappa,\alpha) \text{ abbreviates the disjunction of } (\mathcal{K}\,1),\ldots,(\mathcal{K}\,4) \text{ below:} \\ (\mathcal{K}\,1) \quad \pi \leq \psi_{\kappa}\alpha \\ (\mathcal{K}\,2) \quad \psi_{\pi}\beta \leq \mathsf{sc}_{\kappa}(\alpha) \\ (\mathcal{K}\,3) \quad \pi = \kappa \ \& \ \beta < \alpha \ \& \ \mathsf{sc}_{\pi}(\beta) < \psi_{\kappa}\alpha \\ (\mathcal{K}\,4) \quad \psi_{\pi}\beta < \kappa < \pi \ \& \ \mathsf{sc}_{\pi}(\beta) < \psi_{\kappa}\alpha \end{array}$

Lemma 3.3

Let $\kappa \in C_{\kappa}(\alpha)$ & $\pi \in C_{\pi}(\beta)$. a) $\neg \mathcal{K}(\pi, \beta, \kappa, \alpha)$ & $\neg \mathcal{K}(\kappa, \alpha, \pi, \beta) \implies \kappa = \pi$ & $\alpha = \beta$ b) $\mathcal{K}(\pi, \beta, \kappa, \alpha) \implies \psi_{\pi}\beta \leq \psi_{\kappa}\alpha$ c) $\mathcal{K}(\pi, \beta, \kappa, \alpha)$ & $\beta \in C_{\pi}(\beta) \implies \psi_{\pi}\beta < \psi_{\kappa}\alpha$

Proof. a) is a logical consequence of the linearity of <. b) and c) follow immediately from L.1.3a, L.1.5a, L.1.6, L.3.1, L.3.2.

As an immediate consequence from lemma 3.3 we get

Theorem 3.1

 $\kappa, \alpha \in C_{\kappa}(\alpha) \& \pi, \beta \in C_{\pi}(\beta) \& \psi_{\kappa} \alpha = \psi_{\pi} \beta \implies \kappa = \pi \& \alpha = \beta.$

Theorem 3.2

Let $\kappa \in C_{\kappa}(\alpha)$ & $\pi, \beta \in C_{\pi}(\beta)$. a) $\psi_{\pi}\beta < \psi_{\kappa}\alpha \iff \mathcal{K}(\pi, \beta, \kappa, \alpha)$ b) $\psi_{\pi}\beta \in C_{\kappa}(\alpha) \iff (\psi_{\pi}\beta < \psi_{\kappa}\alpha \text{ or } [\beta < \alpha \& \pi, \beta \in C_{\kappa}(\alpha)])$

Proof. a) " \Leftarrow " follows from L.3.3b. " \Rightarrow " follows from L.3.3a,c.

b) The " \Leftarrow " part is trivial. So let us assume that $\psi_{\kappa}\alpha \leq \psi_{\pi}\beta \in C_{\kappa}(\alpha)$. By L.1.2 and L.1.3c this implies the existence of $\tau, \xi \in C_{\kappa}(\alpha) \cap C_{\tau}(\xi)$ with $\xi < \alpha$ and $\psi_{\pi}\beta = \psi_{\tau}\xi$. From this by Theorem 3.1 we obtain $\pi = \tau \in C_{\kappa}(\alpha)$ and $\beta = \xi \in C_{\kappa}(\alpha) \cap \alpha$.

Theorem 3.3

 $\kappa \in C_{\kappa}(\alpha) \iff \kappa \in \{\Omega_{\sigma+1} : \sigma < \mathcal{M}\} \cup \{\psi_{\mathcal{M}}\xi : \xi < \alpha\} \cup \{\mathcal{M}\}$

Proof. 1. " \Rightarrow " follows from L.1.2 and L.1.3b. – 2. By L.1.3d we have $(\kappa \in C_{\kappa}(\alpha) \Leftrightarrow \kappa \in C(\alpha, \kappa))$. – 3. If $\kappa = \Omega_{\sigma+1}$ then $\sigma + 1 < \kappa$ and thus $\kappa \in C(\alpha, \kappa)$. – 4. If $\kappa = \psi_{\mathrm{M}} \xi$ with $\xi < \alpha$ then $\xi \in C_{\mathrm{M}}(\xi) = C(\xi, \kappa) \subseteq C(\alpha, \kappa)$ and thus $\kappa \in C(\alpha, \kappa)$.

Theorem 3.4 $\kappa = \Omega_{\sigma+1} \implies C_{\kappa}(\alpha) = C(\alpha, \Omega_{\sigma} + 1)$

Proof by induction on α . So let us assume that $C_{\kappa}(\xi) = C(\xi, \Omega_{\sigma} + 1)$, for all $\xi < \alpha$. – We have to prove $\psi_{\kappa} \alpha \subseteq C(\alpha, \Omega_{\sigma} + 1)$. As we will show below the I.H. implies that $\beta := C(\alpha, \Omega_{\sigma} + 1) \cap \kappa$ is in fact an ordinal. Obviously $\kappa \in C(\alpha, \beta)$ and $C(\alpha, \beta) \cap \kappa \subseteq C(\alpha, \Omega_{\sigma} + 1) \cap \kappa = \beta$ and thus $\psi_{\kappa} \alpha \leq \beta$, i.e. $\psi_{\kappa} \alpha \subseteq C(\alpha, \Omega_{\sigma} + 1)$. – CLAIM: $\gamma \in C(\alpha, \Omega_{\sigma} + 1) \cap \kappa \implies \gamma \subseteq C(\alpha, \Omega_{\sigma} + 1)$. Proof. 1. $\Omega_{\sigma} < \gamma \in$ SC. Then $\gamma = \psi_{\pi} \xi$ with $\xi < \alpha$ & $\xi \in C_{\pi}(\xi)$. Since $\Omega_{\sigma} < \gamma < \kappa = \Omega_{\sigma+1}$, we have $\pi = \kappa$ and therefore by the above I.H. $C_{\kappa}(\xi) = C(\xi, \Omega_{\sigma} + 1)$. Hence $\gamma = \psi_{\kappa} \xi \subseteq C(\xi, \Omega_{\sigma} + 1) \subseteq C(\alpha, \Omega_{\sigma} + 1)$.

2. Let γ be arbitrary and $\gamma_0 := \max(\{0\} \cup SC(\gamma))$. Then (by 1. above) $\gamma_0 \cup \{\gamma_0\} \subseteq C(\alpha, \Omega_{\sigma} + 1)$. From this we get $\gamma \subseteq \gamma^* \subseteq C(\alpha, \Omega_{\sigma} + 1)$, where $\gamma^* := \min\{\eta \in SC : \gamma_0 < \eta\}$.

COROLLARY. $\psi_{\Omega_1} \alpha = C(\alpha, 0) \cap \Omega_1$

References

- [1] Buchholz, W.: A new system of proof-theoretic ordinal functions. Annals of Pure and Applied Logic 32 (1986), 195-207.
- [2] Buchholz, W.: A simplified version of local predicativity. In: Proceedings Proof Theory Meeting, Leeds '90. To appear.
- [3] Buchholz, W. and Schütte, K.: Ein Ordinalzahlsystem für die beweistheoretische Abgrenzung der Π¹₂-Separation und Bar-Induktion. Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (1983)
- [4] Jäger,G.: ρ-inaccessible ordinals, collapsing functions and a recursive notation system. Arch. math. Logik 24 (1984), 49-62.
- [5] Rathjen, M.: Ordinal Notations Based on a Weakly Mahlo cardinal. Arch. math. Logic 29 (1990), 249-263.
- [6] Rathjen, M.: Proof-Theoretic Analysis of KPM. Arch. math. Logic 30 (1991), 377-403.

Mathematisches Institut der Universität München Theresienstr. 39, D-8000 München 2, Germany