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Introduction

If nowadays “Gentzen’s consistency proof for arithmetic” is mentioned, one usually refers to [Ge38] while

Gentzen’s first (published) consistency proof, i.e. [Ge36], is widely unknown or ignored. The present paper

is intended to change this unsatisfactory situation by presenting [Ge36, IV. Abschnitt] in a slightly modified

and modernized form.

The method from [Ge36] can be roughly summarized as follows: By recursion on the build-up of d, for each

derivation d in a suitably designed finitary proof system Z of first order arithmetic a family (d[n])n∈|tp(d)|

of reduced Z-derivations is defined such that
. . .End(d[n]) . . . (n ∈ |tp(d)|)

End(d)
(where End(d) denotes the end-

sequent of d) forms an inference tp(d) in cutfree ω-arithmetic with repetition rule Rep. Obviously, if d is a

derivation of falsum ⊥, i.e. if End(d) = ⊥, then tp(d) can only be an instance of Rep, so that d[0] is again a

derivation of ⊥. In a second step, to each d an ordinal o(d) < ε0 is assigned such that o(d[n]) < o(d) for all

n ∈ |tp(d)|. Then the consistency of Z follows by (quantifierfree) transfinite induction up to ε0.

Actually Gentzen’s terminology is somewhat different. First (in §13 of [Ge36]) Gentzen defines reduction

steps on sequents. Such a reduction step I may involve a certain ‘option’ (Wahlfreiheit), so that the result

of applying I to a sequent Π actually is a family of sequents
(
I(Π, n)

)
n∈|I|. Then (in §14 of [Ge36]) for

each Z-derivation d (whose endsequent is not an axiom) a reduction step on derivations, d  (d[n])n∈|I|,

is defined such that ∀n ∈ |I|
(
End(d[n]) = I(End(d), n)

)
, where I is a reduction step on sequents, uniquely

determined by d. Here, in contrast to Gentzen, we also regard Rep as a reduction step on sequents — with

|Rep| = {0} and Rep(Π, 0) = Π.

The outline of the paper is as follows. In §1 and §2 we repeat relevant parts of [Ge36] using to a great extent

Gentzen’s own words (in the translation by M. E. Szabo [Sz69]). Thereby we do not hesitate to deviate from

the original text (in content or form) whenever we think it is appropriate or facilitates understanding. The

main point where we deviate from [Ge36] (besides omitting conjunction &) is the following: In the reduction

steps on sequents concerning an antecedent formula ∀xF or ¬A (13.51, 13.53) we always require that this

formula is retained in the reduced sequent while Gentzen allows to omit it. As a consequence we also have

to modify the reduction steps on atomic Z-derivations (which will be deferred till §5). In §3 we present the

main definitions and proofs of §2 in a more condensed style (and with some further modifications). This

facilitates the work in §4 where we assign to each Z-derivation d an ordinal o(d) < ε0 and prove that each

reduction step on a derivation d lowers its ordinal, i.e. we prove that o(d[n]) < o(d) for all n ∈ |tp(d)|.
Our ordinal assignment is essentially that of [KB81] which on first sight looks very different from Gentzen’s

original assignment in [Ge36], where certain finite decimal fractions were used as notations for ordinals < ε0.

But in the appendix we will show that actually both ordinal assignments are rather closely related. In §6
we give an interpretation of Z in an infinitary system Z∞. This way we obtain a semantic explanation for

Gentzen’s reduction steps on Z-derivations and for the ordinal assignment of §4. Finally, in §7 we indicate

how the approach of §§3,4 can easily be adapted to calculi with multisuccedent sequents.
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§1 Formal language, reduction steps on sequents

The following symbols will serve for the formation of formulae: Variables (for natural numbers) which are

divided into free and bound variables; the constant 0 and the unary function symbol S (successor); predicate

symbols (each of a fixed arity); the logical connectives ¬,∀. 2

Terms are generated from the constant 0 and free variables by iterated application of S.

The terms 0,S0,SS0, . . . are called numerals. In the following we identify numerals and natural numbers.

Formulas:

1. If P is an n-ary predicate symbol and t1, . . . , tn are terms, then Pt1 . . . tn is a (prime) formula.

If t1, . . . , tn are numerals, then Pt1 . . . tn is called a minimal formula.

2. If A is a formula, then so is ¬A.

3. From a given formula we obtain another formula by replacing a free variable by a bound variable x not

yet occurring in the formula and prefixing ∀x.

We assume that to each minimal formula a truth value “true” or “false” is assigned.

We use ⊥ as abbreviation for some fixed false minimal formula (e.g. 0 = S0).

Abbreviation. A ≈ B :⇔ either A = B or A,B are both false minimal formulas.

Remark. A ≈ ⊥ ⇔ A is a false minimal formula.

A sequent is an expression of the form Γ→B where Γ is a finite sequence of formulae.

The formulae in Γ are called the antecedent formulae and B the succedent formula of the sequent.

We also call Γ the antecedent of Γ→B.

A formula (sequent) is called closed if no free variable occurs in it.

Abbreviations.

A ∈ Γ :⇔ A occurs in the sequence Γ.

Γ ⊆ Γ′ :⇔ for all formulas A, if A ∈ Γ then A ∈ Γ′ (e.g. A,B,A,A ⊆ B,B,A,C).

Definition (Reduction steps on sequents)

On a closed sequent Π an individual reduction step can be carried out in the following way.

13.21. Suppose that the succedent formula of the sequent Π has the form ∀xF (x). In that case we replace

it by a formula F (n), i.e., by a formula which results from F (x) by the substitution of an arbitrarily chosen

numeral n for the variable x.

13.23. Suppose that the succedent formula of the sequent Π has the form ¬A. In that case we replace it by

the formula ⊥ and, at the same time, adjoin the formula A to the antecedent of the sequent.

13.4. Suppose that the succedent formula of the sequent Π is a true minimal formula; or: that the succedent

formula is a false minimal formula and that one of the antecedent formulae of Π is also a false minimal

formula. Then we say that the sequent Π has (or, is in) endform, and no reduction step is defined.

13.5. Suppose that the succedent formula of Π is a false minimal formula, and that none of the antecedent

formulae of Π is a false minimal formula. In that case the following two different kinds of reduction step are

permissible (counterpart of 13.2):

13.51. Suppose that an antecedent formula has the form ∀xF (x). We adjoin a formula F (k) (k an arbitrary

numeral) to the antecedent.

2 We omit conjunction ‘&’ in order to keep the focus on the essential things.
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13.53. Suppose that an antecedent formula has the form ¬A. We replace the succedent formula by A.

In condensed form these reduction steps are described by the following schemata (reading them bottom-up):

(R∀xF (x))
. . .Γ→F (n) . . . (n∈IN)

Γ→∀xF (x)
; (R¬A)

A,Γ→⊥
Γ→¬A ;

(Lk∀xF (x))
F (k),Γ→C

Γ→C with C ≈ ⊥ and ∀xF (x) ∈ Γ;

(L0
¬A)

Γ→A
Γ→C with C ≈ ⊥ and ¬A ∈ Γ.

In the sequel, each of the symbols R∀xF , R¬A, L0
∀xF , L0

¬A is used as the name of the respective reduction

step (as shown above). But the above schemata can also be read as inferences in ω-arithmetic; therefore the

symbols R∀xF , R¬A, L0
∀xF , L0

¬A will also be called inference symbols. Another reason is that this term has

already been used in several previous publications (e.g., in [Bu97]) — and “reduction step symbol” would

sound too clumsy.

§2 Reduction steps on derivations

Definition (The system Z of pure number theory).

Derivable objects of Z are sequents.

The axioms (or initial sequents) of Z will be specified in §5.

Inference Rules

∀-introduction:
Γ→F (a)

Γ→∀xF (x)
, if the free variable a does not occur in the conclusion.

¬-introduction:
A,Γ→⊥
Γ→¬A

complete induction:
Γ→F (0) F (a),Γ→F (Sa)

Γ→F (t)
, if the free variable a does not occur in the conclusion.

chain rule:
Γ0→A0 . . . . . . Γl→Al

Γ→C , if there exists j ≤ l such that C ≈ Aj and ∀i ≤ j(Γi ⊆ Γ, A0, . . . , Ai−1).

In addition we require that no free variable is vanishing, i.e., that every free variable occurring in

one of the premises Γi→Ai, also occurs in the conclusion Γ→C.

Abbreviation.

d ` Γ→C :⇔ d is a Z-derivation (i.e., a derivation in Z) and the endsequent of d is Γ→C.

A derivation is called closed if its endsequent is closed.

For each closed derivation d, whose endsequent is not in endform (13.4) we shall now define the reduction

step on d and at the same time prove the following: by such a step the derivation is transformed into another

closed derivation and its endsequent is thereby modified in the following way: At most one reduction step

according to 13.2 or 13.5 is carried out on the sequent. (It may thus happen that an endsequent remains

entirely unchanged.) The reduction step on a derivation is unambiguous, except in the case in which the

endsequent undergoes a transformation according to a reduction step on sequents involving a choice (13.21);

here the choice may be made arbitrarily; if this has been done, the reduction step is then also unambiguous.

If the endsequent of d has endform according to 13.4, no reduction step is defined for this derivation.
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Definitions.

1. The result of carrying out the reduction step on d is denoted by d[n] where in case 13.21, n is the

‘arbitrarily choosen numeral’, and n = 0 otherwise.

2. If the reduction step on d causes a reduction step on the endsequent Π of d then tp(d) denotes the name

of this latter reduction step1 and tp(d)(Π, n) denotes the result of applying tp(d) to Π, where n plays the

same role as in 1.

3. If the reduction step on d does not change the endsequent of d, we set tp(d) := Rep and Rep(Π, n) := Π.

4. The arity of d is defined by arity(d) :=

 IN if tp(d) = R∀xF
∅ if the endsequent of d has endform
{0} otherwise

Summing up, by recursion on the build-up of d we will define tp(d) and d[n] and simultaneously prove

Theorem 2.1.

If d is a closed Z-derivation of Π and if n ∈ arity(d), then d[n] ` tp(d)(Π, n).

In the following we assume that d is a closed Z-derivation whose endsequent is not in endform.

14.21. The axioms of Z are treated later (in §5).

14.22. We now consider the case where the endsequent is the result of the application of a rule of inference
and we presuppose that for the derivations of the premises the reduction step has already been defined and
the validity of the associated assertion (i.e. Theorem 2.1) demonstrated.

14.23. Suppose that the endsequent of d is the result of a ∀-introduction or a ¬-introduction. It (i.e. the
endsequent) is then eliminated and its premise taken for the new endsequent, where, in the case of a ∀-
introduction, every occurrence of the free variable a must be replaced throughout the derivation d0 of this
premise by an arbitrarily chosen numeral n.

The derivation has obviously remained correct, and the endsequent has become a reduced endsequent in the
sense of 13.21 or 13.23.

In other words:

If d =


d0(a)

Γ→F (a)

Γ→∀xF (x)

, then d[n] := d0(n) =

 d0(n)

Γ→F (n)
and tp(d) := R∀xF (x).

If d =


d0

A,Γ→⊥
Γ→¬A

, then d[0] := d0 and tp(d) := R¬A.

14.24. Suppose that the endsequent of d is the result of a ‘complete induction’.

d =


d0

Γ→F (0)

d1(a)

F (a),Γ→F (Sa)

Γ→F (n)

(Since d is closed, the induction term is a numeral k.)

Then we set d[0] :=


d0

Γ→F (0)

d1(0)

F (0),Γ→F (1)

d1(1)

F (1),Γ→F (2) . . . . . .

d1(k−1)

F (k−1),Γ→F (k)

Γ→F (k)
and tp(d) := Rep.

1 cf. end of §1
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14.25. The last case to be considered is that in which the endsequent is the conclusion of a ‘chain rule’

inference: d =


d0

Γ0→A0. . . . . .

dl

Γl→Al
Θ→D

The premise whose succedent formula provides the succedent formula of the endsequent, I shall call the

‘major premise’. If the succedent of the endsequent is a false minimal formula, we choose as major premise

the first premise (in the given order) whose succedent formula is also a false minimal formula. This does not

change the correctness of the ‘chain rule’ inference.

So there is a j ≤ l such that Aj ≈ D, ∀i ≤ j(Γi ⊆ Θ, A0, . . . , Ai−1) and, if Aj is a false minimal formula

then none of A0, . . . , Aj−1 is a false minimal formula.

From these preliminaries it follows that the major premise Γj→Aj can in no case be in endform (13.4), for

otherwise the endsequent Θ→D would obviously also have to be in endform, and this was assumed not to

be the case. Hence a reduction step can be carried out on the derivation of the major premise. In respect

on this reduction step, i.e. in respect on tp(dj), I distinguish four cases (14.251-14.254).

14.251. Suppose that the major premise undergoes a change according to 13.2 in the reduction step on its

derivation dj , i.e. tp(dj) = RAj and Aj = D. In that case the endsequent is subjected to the appropriate

reduction step for sequents according to 13.2; any choice that arises is to be made arbitrarily. The reduction

step for derivations is then carried out on the derivation dj of the major premise and, whenever a choice

exists, the same choice is to be made as before. The succedent formulae of both sequents are now the

same once again and the ‘chain rule’ inference is once again correct. Thus, the reduction step for the entire

derivation d is completed.

In other words, tp(d) := tp(dj) and

d[n] :=


d0

Γ0→A0. . .

dj [n]

Γj→F (n) . . .

dl

Γl→Al
Θ→F (n)

if Aj = D = ∀xF (x);

d[0] :=


d0

Γ0→A0. . .

dj [0]

A,Γj→⊥ . . .

dl

Γl→Al
A,Θ→⊥

if Aj = D = ¬A.

14.252. Suppose that the major premise undergoes a change according to 13.5 in the reduction step on

its derivation, and the affected antecedent formula B also occurs in the antecedent of the endsequent, i.e.

tp(dj) = LkB with B ∈ Θ. In that case the reduction step is carried out on the derivation of the major

premise and the endsequent is modified according to the corresponding reduction step on sequents (13.5), so

that the ‘chain rule’ inference becomes again correct.

In other words, tp(d) := tp(dj) and

d[0] :=


d0

Γ0→A0. . .

dj [0]

F (k),Γj→Aj . . .

dl

Γl→Al
F (k),Θ→D

if B = ∀xF (x);

d[0] :=


d0

Γ0→A0. . .

dj [0]

Γj→A . . .

dl

Γl→Al
Θ→A

if B = ¬A.
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14.253. (Principal case) Suppose that the major premise, say ∆→C, undergoes a change according to 13.5

in the reduction step on its derivation and that the affected antecedent formula (V ) is a formula that does

not occur among the antecedent formulae of the endsequent, since it agrees with the succedent formula of

an earlier premise; suppose further that this premise, call it Γ→V , undergoes a change during the reduction

step on its derivation which, in that case, must necessarily be a change according to 13.2. (Since V cannot

be a minimal formula.) – Suppose that the endsequent of the whole derivation has the form Θ→D. I shall

distinguish two subcases depending on whether V has the form ∀xF (x) or ¬A.

Suppose first that V has the form ∀xF (x). In that case an antecedent formula F (k) is adjoined in the

reduction step according to 13.51 on ∆→C; in the reduction step on Γ→∀xF (x) which must be carried out

according to 13.21, the same symbol k may be chosen for the numeral to be substituted, so that Γ→F (k)

results. We now form three ‘chain-rule’ inferences: the premises of the first are those of the original ‘chain-

rule’ inference, but with Γ→F (k) in place of Γ→∀xF (x); its conclusion: Θ→F (k). A correct result. The

premises of the second are those of the original ‘chain rule’ inference, except that ∆→C is replaced by the

sequent that was reduced according to 13.51; its conclusion: F (k),Θ→D. This is also a correct ‘chain rule’

inference. The third ‘chain-rule’ inference again yields the endsequent Θ→D from Θ→F (k) and F (k),Θ→D.

Together with each one of the sequents used we must of course write down the complete derivation of each

sequent so that altogether we now have another correct derivation.

If V has the form ¬A, then ∆→C is reduced to ∆→A, and Γ→¬A to A,Γ→⊥. We now form, as before, two

‘chain-rule’ inferences with the conclusions A,Θ→⊥ and Θ→A. With their order interchanged, these two

yield by a third ‘chain-rule’ inference again Θ→D. (Note that D, like C and ⊥, is a false minimal formula.)

In other words, if d =

 . . .

di

Γ→V . . .

dj

∆→C . . .

Θ→D

with major premise ∆→C, tp(dj) = LkV and V 6∈ Θ,

we set tp(d) := Rep, while the reduced derivation d[0] depends on the form of V .

If V = ∀xF (x), then d[0] :=


d{0}

Θ→F (k)

d{1}

F (k),Θ→D
Θ→D

where d{0} :=

 . . .

di[k]

Γ→F (k) . . .

dj

∆→C . . .

Θ→F (k)

and d{1} :=

 . . .

di

Γ→V . . .

dj [0]

F (k),∆→C . . .

F (k),Θ→D

If V = ¬A, then d[0] :=


d{0}

Θ→A

d{1}

A,Θ→⊥
Θ→D

where d{0} :=

 . . .

di

Γ→V . . .

dj [0]

∆→A . . .

Θ→A

and d{1} :=

 . . .

di[0]

A,Γ→⊥ . . .

dj

∆→C . . .

A,Θ→⊥
14.254. We are still left with the following possibilities: the major premise remains unchanged in the

reduction step on its derivation; or: its change is of the kind assumed at 14.253, and the premise Γ→V
remains unchanged in the reduction step on its derivation. — In both cases we carry out the reduction step

on the derivation of the unchanged remaining premise, and this completes the reduction.
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However, if this reduction step on the derivation of the unchanged remaining premise is according to 14.253,

we proceed somewhat differently, namely: we carry out this reduction step, but without completing the

prescribed third ‘chain-rule’ inference; instead, we take the two premises of this ‘chain-rule’ inference and

insert them in place of its conclusion in the sequence of premises of that ‘chain-rule’ inference which concludes

the derivation as a whole. This obviously leaves that ‘chain-rule’ inference correct. The endsequent is not

changed.

Let us have a closer look on one of these cases; namely the case where the premise ∆→C (= Γj→Aj) remains

unchanged in the reduction step on its derivation dj , and where this reduction step is according to 14.253.

Then dj [0] =


dj{0}

Γj→B

dj{1}

B,Γj→A′j
Γj→Aj

for some B and A′j ≈ Aj ≈ D.

We set tp(d) := Rep and

d[0] :=


d0

Γ0→A0 . . .

dj−1

Γj−1→Aj−1

dj{0}

Γj→B

dj{1}

B,Γj→A′j

dj+1

Γj+1 → Aj+1 . . .

dl

Γl→Al
Θ→D

The definition of the reduction step on a derivation and the proof of Theorem 2.1 are now complete.

As an immediate consequence from Theorem 2.1 one obtains

Corollary 2.1.

If d ` →⊥ then d[0] ` →⊥.

Proof:

By Theorem 2.1 we get d[0] ` tp(d)(→⊥, 0). Since no reduction step is applicable to →⊥, it cannot be that

tp(d) is RA or LkA. Hence tp(d) = Rep and thus tp(d)(→⊥, 0) =→⊥.

Remark (Consistency of Z). In §4 we will assign to each Z-derivation d an ordinal o(d) < ε0 and prove

that o(d[n]) < o(d) whenever d[n] is defined (Theorem 4.2). Together with Corollary 2.1 this implies the

consistency of Z via (quantifierfree) induction up to ε0.

§3 Reduction steps on derivations revisited

In this section we present the contents of §§1,2 in a more condensed style. In the course of this we also carry

out some minor modifications on Gentzen’s original approach, namely

• In the reduction steps Lk∀xF and L0
¬A it is no longer required that the succedent C is a false minimal

formula. Accordingly the notion “endform” will be modified, and the condition “Aj ≈ C” in the chain

rule will be replaced by “Aj ∈ {C,⊥}”.

• Each chain rule inference will now have an explicitly shown rank which is an upper bound on the ranks

of all its cut formulas.

Some preliminary definitions and abbreviations

1. A ≈ > :⇔ A is a true minimal formula.

2. Γ→C has (or, is in) endform :⇔ C ≈ > or Γ contains a false minimal formula.

3. rk(C) :=

{
0 if C is atomic
rk(A) + 1 if C = ∀xA or C = ¬A
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4. If X is a formula or sequent, then FV(X) denotes the set of all free variables occurring in X.

5. Π ranges over sequents; for Π = Γ→C we set A,Π := A,Γ→C and Π.A := Γ→A.

6. An inference symbol is an expression of one of the following three kinds:

RA with rk(A) > 0 or A ≈ >, LkA with rk(A) > 0 or A ≈ ⊥, Rep.

7. For each inference symbol I we define

• its arity |I| :=

{
IN if I = R∀xF
∅ if I = RA or I = LkA with rk(A) = 0
{0} otherwise

• the result of applying (the reduction step denoted by) I to Π under choice n:

I(Π, n) :=



Π.F (n) if I = R∀xF

F (k),Π if I = Lk∀xF

A,Π.⊥ if I = R¬A

Π.A if I = Lk¬A

Π otherwise

• the relation I / Π (I is permissible for Π):

I / Γ→C :⇔ I = RC or I = LkA with A ∈ Γ or I = Rep

Definition.

The figure
Γ0→A0 . . . Γl→Al

Γ→C is called a chain rule inference of rank r if there exists a j ≤ l such that

Aj ∈ {C,⊥} and ∀i ≤ j(Γi ⊆ Γ, A0, . . . , Ai−1) and ∀i < j(rk(Ai) ≤ r).

Inductive Definition of d ` Π (d is a Z-derivation with endsequent Π)

1. Atomic derivations (axioms): cf. §5.

2. If d0 ` Γ→F (a) and a 6∈ FV(Γ→∀xF (x)), then Ia∀xF (x)d0 ` Γ→∀xF (x).

3. If d0 ` A,Γ→⊥, then I¬Ad0 ` Γ→¬A.

4. If d0 ` Γ→F (0) and d1 ` F (a),Γ→F (Sa) and a 6∈ FV(Γ→F (t)), then Inda,tF d0d1 ` Γ→F (t).

5. If di ` Πi with FV(Πi) ⊆ FV(Π) for i = 0, . . . , l, and

if
Π0 . . . Πl

Π
is a chain rule inference of rank r, then KrΠd0 . . . dl ` Π.

A derivation is called closed iff its endsequent is closed.

Lemma 3.1.

Assume Πi = Γi→Ai (i = 0, . . . , j0) and Π = Γ→C with

Aj0 ∈ {C,⊥} and ∀i ≤ j0(Γi ⊆ Γ, A0, . . . , Ai−1).

Further, let I0, . . . , Ij0 be inference symbols such that ∀i ≤ j0(Ii / Πi & Ii 6/ Π).

Then ∃i, j, k(i < j ≤ j0 & Ii = RAi & Ij = LkAi & 0 < rk(Ai)).

Proof :

From Ij0 / Πj0 & Ij0 6/ Π & Aj0 ∈ {C,⊥} it follows that Ij0 ∈ L (i.e. Ij0 = LkB for some B and k). Hence

there exists the least j ≤ j0 such that Ij ∈ L. Assume Ij = LkB . Then LkB / Πj & LkB 6/ Π which implies

B ∈ Γj \ Γ ⊆ {A0, . . . , Aj−1}. So we have Ij = LkAi for some i < j. By minimality of j and since i < j ≤ j0,

we have Ii 6∈ L and Ii / Πi & Ii 6/ Π, which implies Ii = RAi . Finally, from RAi / Πi & LkAi / Πj we

conclude (rk(Ai) = 0⇒ Ai ≈ >) & (rk(Ai) = 0⇒ Ai ≈ ⊥), hence rk(Ai) > 0.
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Definition 3.2. (tp(d) and d[n])

For each closed Z-derivation d we now define an inference symbol tp(d) and, for each n ∈ |tp(d)|, a closed

Z-derivation d[n]. In the main case 5.1. where d is ‘critical’ we also define the auxiliary derivations d{0},
d{1} and the formula A(d). The whole definition proceeds by recursion on the build-up of d. In parallel we

observe that tp(d) is permissible for Π (i.e., tp(d) / Π) whenever d ` Π.

1. d atomic: cf. §5.

2. d = Ia∀xF d0: Then tp(d) := R∀xF and d[n] := d0(a/n).

3. d = I¬Ad0: Then tp(d) := R¬A and d[0] := d0.

4. d = Inda,kF d0d1 with d0 ` Γ→F (0) and d1 ` F (a),Γ→F (Sa):

Then tp(d) := Rep and d[0] := KrΓ→F (k)d0 d1(a/0) . . . d1(a/k−1), where r := rk(F ).

5. d = KrΠd0 . . . dl with Π = Γ→C and di ` Πi = Γi→Ai (i ≤ l):

Abbreviation: KrΠ′(i/d
′
1 . . . d

′
m) := KrΠ′d0 . . . di−1d

′
1 . . . d

′
mdi+1 . . . dl.

Let j0 be minimal s.t. Aj0 ∈ {C,⊥} & ∀i ≤ j0( Γi ⊆ Γ, A0, . . . , Ai−1 ).

We say that d is critical if ∀i ≤ j0(tp(di) 6/ Π).

5.1. d critical:

Then due to Lemma 3.1, and since ∀i ≤ l(tp(di) / Πi) there exists a pair (i, j) such that

i < j ≤ j0, tp(di) = RAi , tp(dj) = LkAi (for some k) and 0 < rk(Ai).

We take the least such pair and set tp(d) := Rep and d[0] := Kr−1
Π d{0}d{1} where

d{0} := KrΠ.A(d)

{
(i/di[k]) if Ai = ∀xF
(j/dj [0]) if Ai = ¬A , d{1} := KrA(d),Π

{
(j/dj [0]) if Ai = ∀xF
(i/di[0]) if Ai = ¬A ,

and A(d) :=
{
F (k) if Ai = ∀xF
A if Ai = ¬A .

5.2. d not critical: Let i ≤ j0 be minimal such that tp(di) / Π.

5.2.1. di critical:

Then tp(d) := Rep and d[0] := Kr
′

Π (i/di{0}, di{1}) with r′ := max{rk(A(di)), r}.

5.2.2. di not critical: Then tp(d) := tp(di) and d[n] := Krtp(d)(Π,n)(i/di[n]).

Lemma 3.3. If d ` Π, then tp(d) / Π.

Theorem 3.4. For d ` Π the following holds:

(a) If d = KrΠd0 . . . dl is critical, then d{0} ` Π.A(d), d{1} ` A(d),Π, and rk(A(d)) < r.

(b) ∀n ∈ |tp(d)|
(
d[n] ` tp(d)(Π, n)

)
.

Proof by simultaneous induction on the build-up of d:

(a) The premise “d critical” yields that we are in Case 5.1 of Definition 3.2.

Subcase Ai = ∀xF :

By assumption we have dν ` Πν for all ν ≤ l. From di ` Πi and dj ` Πj together with tp(di) = RAi and

tp(dj) = LkAi we get di[k] ` Πi.F (k) and dj [0] ` F (k),Πj by IH(b).

Since
Π0 . . . Πi−1 Πi.F (k) . . .

Π.F (k)
and

Π0 . . . Πj−1 F (k),Πj . . . Πj0 . . .

F (k),Π
are chain inferences of degree r,

we conclude d{0} ` Π.F (k) and d{1} ` F (k),Π. Further rk(A(d)) = rk(F (k)) < rk(Ai) ≤ r.
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Subcase Ai = ¬A:

Similar to the previous case, only that now dj [0] ` Πj.A and di[0] ` A,Πi.⊥, and we apply the chain

inferences
Π0 . . . Πj−1 Πj.A . . .

Π.A
and

Π0 . . . Πi−1 A,Πi.⊥ . . .

A,Π
to obtain d{0} ` Π.A and d{1} ` A,Π.

(b) We follow the case distinction of Definition 3.2.:

1. d atomic: cf. §5.

2.-4.: Left to the reader.

5. d = KrΠd0 . . . dl:

5.1. d critical: Then tp(d) = Rep and d[0] = Kr−1
Π d{0}d{1}. By (a) we have d{0} ` Π.A(d), d{1} ` A(d),Π,

and rk(A(d)) < r. Hence d[0] ` Π, i.e. ∀n ∈ |tp(d)|(d[n] ` tp(d)(Π, n)).

5.2. d not critical, and i is minimal s.t. tp(di) / Π:

5.2.1. di critical: By IH(a) we have, di{0} ` Πi.A(di) and di{1} ` A(di),Πi. Further,

Π0 . . . Πi−1 Π.A(di) A(di),Πi Πi+1 . . . Πl

Π
is a chain inference of degree r′ := max{rk(A(di)), r}.

Hence d[0] = Kr
′

Π (i/di{0}di{1}) ` Π, which yields the claim, since tp(d) = Rep.

5.2.2. di not critical: Then tp(d) = tp(di), and by IH(b) we have di[n] ` tp(di)(Πi, n) for all n ∈ |tp(di)|.

Further,
Π0 . . . Πi−1 tp(di)(Πi, n) Πi+1 . . . Πl

tp(di)(Π, n)
is a chain inference of rank r.

Since tp(d) = tp(di), we conclude d[n] = Krtp(d)(Π,n)(i/di[n]) ` tp(d)(Π, n) for all n ∈ |tp(d)|.

Corollary. If d ` →⊥, then d[0] ` →⊥.

Proof:

From d ` →⊥ by Lemma 3.3 we get tp(d) / →⊥, which implies tp(d) = Rep. Now by Theorem 3.4b we

conclude d[0] ` Rep(→⊥, 0), i.e. d[0] ` →⊥.

§4 Ordinal assignment and termination proof

In this section we will assign to each Z-derivation d an ordinal o(d) < ε0 and prove that if d is a closed

Z-derivation then o(d[n]) < o(d) for all n ∈ |tp(d)|. The ordinal o(d) will be defined via the auxiliary notions

dg(d) (degree of d) and õ(d) (pre-ordinal of d). 1

Definition of dg(d) < ω and õ(d), o(d) < ε0

For atomic d cf. §5.

Otherwise

dg(d) :=


dg(d0) if d = Ia∀xF d0 or d = I¬Ad0

max{dg(d0)−1,dg(d1)−1, r} if d = Inda,tF d0d1 with r := rk(F )

max{dg(d0)−1, . . . ,dg(dl)−1, r} if d = KrΠd0 . . . dl

õ(d) :=


õ(d0) + 1 if d = Ia∀xF d0 or d = I¬Ad0

ωõ(d0)#ωõ(d1)+1 if d = Inda,tF d0d1

ωõ(d0)# . . .#ωõ(dl) if d = KrΠd0 . . . dl

o(d) := ωdg(d)(õ(d)), where ω0(α) := α, ωn+1(α) := ωωn(α).

1 This ordinal assignment is essentially that of [KB81].
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Remark. õ(d(a/t)) = õ(d) and dg(d(a/t)) = dg(d).

Lemma 4.1. For each closed Z-derivation d the following holds:

(a) If d is not critical then dg(d[n]) ≤ dg(d) & õ(d[n]) < õ(d), for all n ∈ |tp(d)|.
(b) If d is critical then:

(i) dg(d{ν}) ≤ dg(d) & õ(d{ν}) < õ(d), for ν = 0, 1.

(ii) dg(d[0]) < dg(d) & õ(d[0]) < ωõ(d) & rk(A(d)) < dg(d)

Proof by induction on the build-up of d:

Notation: In the following we omit the subscript of KrΠ.

Assume d ` Π. As before we follow the case distinction of Definition 3.2.

1. d atomic: cf. §5.

2. d = Ia∀xF d0: Then tp(d) = R∀xF and d[n] = d0(a/n).

So we have dg(d[n]) = dg(d0(a/n)) = dg(d0) = dg(d) and õ(d[n]) = õ(d0(a/n)) = õ(d0) < õ(d).

3. d = I¬Ad0: similar to 2.

4. d = Inda,kF d0d1: Then tp(d) = Rep and d[0] = Krd0 d1(a/0) . . . d1(a/k−1), where r = rk(F ).

So we have dg(d[0]) ≤ max{dg(d0)−1,dg(d1)−1, r} = dg(d) and

õ(d[0]) = ωõ(d0) #ωõ(d1)·k < ωõ(d0) #ωõ(d1)+1 = õ(d).

5. d = Krd0 . . . dl:

5.1. d critical: Then tp(d) = Rep and d[0] = Kr−1d{0}d{1} where

either d{0} = Kr(i/di[k]) & d{1} = Kr(j/dj [0]) or d{0} = Kr(j/dj [0]) & d{1} = Kr(i/di[0]).

By IH(a), dg(di[k]) ≤ dg(di) & õ(di[k]) < õ(di) and dg(dj [0]) ≤ dg(dj) & õ(dj [0]) < õ(dj).

This yields dg(d{ν}) ≤ dg(d) & õ(d{ν}) < õ(d) for ν = 0, 1.

Hence dg(d[0]) = max{dg(d{0})−1,dg(d{1})−1, r−1} < dg(d) and õ(d[0]) = ωõ(d{0})#ωõ(d{1}) < ωõ(d).

By Theorem 3.4a we have rk(A(d)) < r, thence rk(A(d)) < dg(d).

5.2. d not critical, and i is minimal s.t. tp(di) / Π:

5.2.1. di critical: Then tp(d) = Rep and d[0] = Kr
′
(i/di{0}di{1}) with r′ = max{rk(A(di)), r}.

By IH(b) we have dg(di{ν}) ≤ dg(di) & õ(di{ν}) < õ(di) for ν = 0, 1, and also rk(A(di)) < dg(di).

The latter yields r′ ≤ max{dg(di)−1, r} ≤ dg(d). Hence

dg(d[0]) = max{dg(d0)−1, . . . ,dg(di{0})−1,dg(di{1})−1, . . . ,dg(dl)−1, r′} ≤
≤ max{dg(d0)−1, . . . ,dg(di)−1, . . . ,dg(dl)−1, r′} ≤ dg(d) and

õ(d[0]) = ωõ(d0)# . . .#ωõ(di{0})#ωõ(di{1}) # . . .#ωõ(dl) < ωõ(d0)# . . .#ωõ(di) # . . .#ωõ(dl) = õ(d).

5.2.2. di not critical: Then tp(d) = tp(di) and d[n] = Kr(i/di[n]).

By IH(a), dg(di[n]) ≤ dg(di) and õ(di[n]) < õ(di).

Hence dg(d[n]) = max{dg(d0)−1, . . . ,dg(di[n])−1, . . . ,dg(dl)−1, r} ≤ dg(d) and

õ(d[n]) = ωõ(d0)# . . .#ωõ(di[n]) # . . .#ωõ(dl) < ωõ(d0)# . . .#ωõ(di) # . . .#ωõ(dl) = õ(d).

Theorem 4.2.

If d is a closed Z-derivation, then o(d[n]) < o(d) for all n ∈ |tp(d)|.
Proof :

By Lemma 4.1 we have õ(d[n]) < ωdg(d)−dg(d[n])(õ(d)) and thus

o(d[n]) = ωdg(d[n])(õ(d[n])) < ωdg(d)(õ(d)) = o(d).
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§5 Treatment of atomic derivations

At several places in the preceding sections we had postponed the treatment of atomic derivations.

This will now be caught up.

The logical axioms of Z are all sequents of the following kinds:

• Γ→A with A ∈ Γ

• Γ→F (t) with ∀xF (x) ∈ Γ

• Γ→⊥ with A,¬A ∈ Γ

• Γ→A with A atomic and ¬¬A ∈ Γ

The mathematical axioms of Z are given by a set of sequents Ax(Z) satisfying the following conditions:

• Π ∈ Ax(Z) ⇒ Π(a/t) ∈ Ax(Z) and A,Π ∈ Ax(Z).

• FV(Π) = ∅ ⇒ ( Π ∈ Ax(Z)⇔ Π has endform ).

Definition of the atomic Z-derivations

0. If Π ∈ Ax(Z), then Ax0
Π ` Π.

1. If Π = Γ→C with C ∈ Γ then Ax1
Π ` Π.

2.1. If Π = Γ→F (t) with ∀xF ∈ Γ then Ax∀xF,tΠ ` Π.

2.2. If Π = Γ→⊥ with ¬A,A ∈ Γ then Ax¬A,0Π ` Π.

3. If Π = Γ→A with rk(A) = 0 & ¬¬A ∈ Γ then Ax¬¬Π ` Π.

Definition of tp(d) and d[n] for closed atomic Z-derivations d

0. d = Ax0
Γ→C : Then Γ→C has endform, and we set

tp(d) :=

{
RC if C ≈ >
L0
A if C 6≈ > and A is the first formula in Γ s.t. A ≈ ⊥

1. d = Ax1
Γ→C with C ∈ Γ:

1.1. rk(C) = 0: Then tp(d) :=

{
RC if C ≈ >
L0
C if C ≈ ⊥

1.2. rk(C) > 0: Then tp(d) := RC and d[n] := AxC,ntp(d)(Π,n).

2. d = AxC,kΠ : Then tp(d) := LkC and d[0] := Ax1
tp(d)(Π,0)

3. d = Ax¬¬Γ→A:

3.1. A ≈ >: Then tp(d) := RA.

3.2. A ≈ ⊥: Then tp(d) := L0
¬¬A and d[0] := I¬AAx

0
A,Γ→⊥.

Lemma 5.1.

If d ` Π with FV(Π) = ∅ and d atomic, then:

(a) tp(d) / Π.

(b) d[n] ` tp(d)(Π, n) for all n ∈ |tp(d)|.

Proof :

(a) Left to the reader.

(b) Abbreviation: Π′ := tp(d)(Π, n).

1.2. d = Ax1
Π with Π = Γ→C and C ∈ Γ & rk(C) > 0:

Then tp(d) = RC and Π′ =
{

Γ→F (n) if C = ∀xF (x)
A,Γ→⊥ if C = ¬A . Hence d[n] = AxC,nΠ′ ` Π′.
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2.1. d = Ax∀xF,kΠ with Π = Γ→F (k): Then tp(d) = Lk∀xF and Π′ = F (k),Γ→F (k). Hence d[0] = Ax1
Π′ ` Π′.

2.2. d = Ax¬A,0Π with Π = Γ→⊥ and A,¬A ∈ Γ: Then tp(d) = L0
¬A and Π′ = Γ→A. Hence d[0] = Ax1

Π′ ` Π′.

3.2. d = Ax¬¬Π with Π = Γ→A, A ≈ ⊥, and ¬¬A ∈ Γ:

Then d′ := Ax0
A,Γ→⊥ ` A,Γ→⊥ and thus d[0] = I¬Ad

′ ` Γ→¬A.

Further, Π′ = L0
¬¬A(Π, n) = Γ→¬A.

Definition of dg(d), õ(d), o(d) for atomic Z-derivations d

dg(d) := 0 and o(d) := ωdg(d)(õ(d)) = õ(d), where

õ(Ax0
Π) := 0, õ(Ax1

Γ→C) := 2rk(C), õ(AxC,tΠ ) := 2rk(C)− 1, õ(Ax¬¬Π ) := 2.

Lemma 5.2. If d is a closed atomic Z-derivation, then o(d[n]) < o(d) for all n ∈ |tp(d)|.

Proof: Left to the reader.

§6 Embedding of Z into an infinitary system Z∞

In this section we give an interpretation of the finitary system Z in an infinitary system Z∞ of ω-arithmetic.

This way we obtain an explanation of the reduction steps on Z-derivations and the assignment of ordinals

to Z-derivations introduced in §§3-5.

Derivable objects of Z∞ are closed sequents Π = Γ→C.

The inference symbols of Z∞ are:

RA with rk(A) > 0 or A ≈ >, LkA with rk(A) > 0 or A ≈ ⊥, and CutD for arbitrary sentences D.

We set CutD / Π for each Π, |CutD| := {0, 1}, CutD(Π, 0) := Π.D and CutD(Π, 1) := D,Π.

rk(I) :=

{
rk(D) if I = CutD
− 1 otherwise

The following definition introduces the relation d `αm Π which is short for

“ d is a Z∞-derivation of Π with ordinal height ≤ α and cutrank ≤ m”.

Inductive Definition of d `αm Π

If I is an inference symbol of Z∞ with rk(I) < m, and if

I / Π & ∀n ∈ |I|∃αn < α( dn `αnm I(Π, n) ), then I
(
dn
)
n∈|I| `

α
m Π.

Definition of last(d): If d = I
(
dn
)
n∈|I|, then last(d) := I.

Remark. If d `αm Π then last(d) / Π.

Theorem and Definition 6.1.

If
Π0 . . . Πl

Π
is a chain inference of rank r ≤ m, and if di `αim+1 Πi for i = 0, . . . , l,

then there exists a Z∞-derivation d = KrΠ(d0, . . . , dl) `αm Π with α := ωα0# . . .#ωαl .

Proof by induction on α:

Assume Π = Γ→C and Πi = Γi→Ai, and let j0 be minimal such that

Aj0 ∈ {C,⊥} & ∀i ≤ j0( Γi ⊆ Γ, A0, . . . , Ai−1 ).

1. ∀i ≤ j0(last(di) 6/ Π). By Lemma 3.1 there is the least pair (i, j) such that i < j ≤ j0, last(dj) = LkAi
(for some k), last(di) = RAi , and 0 < rk(Ai) ≤ r. Then di = RAi(din)n and dj = LkAidj0.
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Let d := CutD(e0, e1) with D :=
{
F (k) if Ai = ∀xF
A if Ai = ¬A , and

e0 := KrΠ.D

{
(i/dik) if Ai = ∀xF
(j/dj0) if Ai = ¬A and e1 := KrD,Π

{
(j/dj0) if Ai = ∀xF
(i/di0) if Ai = ¬A .

The IH yields e0 `α
′

m Π.D and e1 `α
′′

m D,Π with α′, α′′ < α.

Since rk(D) < rk(Ai) ≤ r ≤ m, it follows that d `αm Π

2. Otherwise: Let i ≤ j0 be minimal such that last(di) / Π, and let I := last(di).

2.1. I = CutD: Then di = CutD(di0, di1) with

di0 `αi0m+1 Πi.D & di1 `αi1m+1 D,Πi & αi0, αi1 < α & rk(D) ≤ m.

We set d := Kr′Π (d0, . . . , di−1, di0, di1, di+1, . . . , dl) with r′ := max{rk(D), r} ≤ m.

From di0 `αi0m+1 Πi.D & di1 `αi1m+1 D,Πi & αi0, αi1 < αi and dν `ανm+1 Πν for ν ∈ {0, . . . , l} \ {i} by IH

we obtain d `βm Π with β := ωα0# . . .#ωαi−1#ωαi0#ωαi1#ωαi+1# . . .#ωαl < α.

2.2. I 6∈ Cut: Then d := I
(
KrI(Π,n)(i/din)

)
n∈|I|, where di = I(din)n∈|I|.

Abbreviation. Z∞ `αm Π :⇔ ∃d such that d `αm Π.

Corollary 6.2. Z∞ `αm+1 Π ⇒ Z∞ `ωαm Π.

Proof: This follows from Theorem 6.1 for l = 0.

Having the operations KrΠ at hand it is now easy to embed Z into the infinitary system Z∞.

Definition of a Z∞-derivation d∞ for each closed Z-derivation d

1. For atomic d we define d∞ := tp(d)
(
d[n]∞

)
n∈|tp(d)| by recursion on o(d) < ω.

Especially, in case d = Ax¬¬Γ→A with A ≈ ⊥ we have

d∞ = L0
¬¬Ad[0]∞ = L0

¬¬A(I¬AAx
0
A,Γ→⊥)∞ = L0

¬¬AR¬Atp(Ax0
A,Γ→⊥) = L0

¬¬AR¬AL
0
A.

2. (Ia∀xF d0)∞ := R∀xF
(
d0(a/n)∞

)
n∈IN

3. (I¬Ad0)∞ := R¬Ad
∞
0

4. (Inda,kF d0d1)∞ := KrΓ→F (k)(d
∞
0 , d1(a/0)∞, . . . , d1(a/k−1)∞)

5. (KrΠd0 . . . dl)
∞ := KrΠ(d∞0 , . . . , d

∞
l )

Theorem 6.3. If d ` Π and FV(Π) = ∅, then d∞ `õ(d)
dg(d) Π.

Proof by induction on the build-up of d using Theorem 6.1:

Assume Π = Γ→C.

1. d atomic: Left to the reader.

2. d = Ia∀xF d0: Then C = ∀xF and d0(n) ` Γ→F (n). By IH, d0(n)∞ `õ(d0)
dg(d0) Γ→F (n) (∀n).

Hence d∞ = R∀xF (d0(n)∞)n∈IN `õ(d)
dg(d) Π.

3. d = I¬Ad0: Similar to 2.

4. d = Inda,kF d0d1 with d0 ` Γ→F (0), d1 ` F (a),Γ→F (Sa), and Π = Γ→F (k):

By IH, d∞0 `
õ(d0)
dg(d0) Γ→F (0) and d1(a/n)∞ `õ(d1)

dg(d1) F (n),Γ→F (Sn) (∀n).

From this by Theorem 6.1 we obtain d∞ = KrΓ→F (k)(d
∞
0 , d1(a/0)∞, . . . , d1(a/k−1)∞) `õ(d)

dg(d) Γ→F (k), since

r ≤ dg(d) and dg(d0),dg(d1) ≤ dg(d)+1 and ωõ(d0)#ωõ(d1)# . . .#ωõ(d1) < ωõ(d).

5. d = KrΠd0 . . . dl with di ` Πi (i = 0, . . . , l):
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Note that dg(d) = max{dg(d0)−1, . . . ,dg(dl)−1, r} and therefore (1) dg(di) ≤ dg(d)+1, (2) r ≤ dg(d).

By IH we have d∞i `
õ(di)
dg(di)

Πi and therefore, by (1), d∞i `
õ(di)
dg(d)+1 Πi (i = 0, . . . , l). From this by (2) and

Theorem 6.1 we conclude d∞ = KrΠ(d∞0 , . . . , d
∞
l ) `

α

dg(d) Π with α = ωõ(d0) # . . . #ωõ(dl) = õ(d).

Corollary 6.4. If d ` Π and FV(Π) = ∅, then Z∞ `o(d)
0 Π.

Theorem 6.5.

(i) If tp(d) = Rep, then d∞ =

{
CutA(d)(d{0}∞, d{1}∞) if d critical
d[0]∞ otherwise

(ii) If I := tp(d) 6= Rep, then d∞ = I
(
d[n]∞

)
n∈|I|

Proof by induction over the build-up of d, comparing definitions 3.2 and 6.1.

§7 Multisuccedent sequents

The approach of §§3,4 can easily be adapted to calculi with multisuccedent sequents by generalizing the

chain rule as follows:1

(GCR) The figure
Π0 . . . Πl

Π
is called a (generalized) chain rule inference of rank r if Π can be derived

from (weakenings of) the sequents Π0, . . . ,Πl by a finite number of cuts of rank ≤ r.

By adding this rule to the proof system of [Ge38] and taking the ordinal assignment from §4 of the present

paper a certain simplification of [Ge38] can be achieved, especially the somewhat unpleasent concept of

“Höhenlinie” can be avoided.

In the following we review the essential concepts of §§3,4 in a kind of axiomatic presentation, thereby

adjusting everthing to the multisuccedent context. The main ingredient here is Lemma 7.1 which replaces

Lemma 3.1. The above rule (GCR) will be captured by the inductively defined relation “(Π0, . . . ,Πl) r Π”.

Definitions.

A sequent is an expression Γ→∆ where Γ and ∆ are finite (possibly empty) sequences of formulas.

For Π = Γ→∆ we set

L(Π) := Γ and R(Π) := ∆;

A,Π := A,Γ→ ∆ and Π, A := Γ→ ∆, A .

Inference symbols RA, LkA, Rep and their arities are the same as in §3.

For each inference symbol I, sequent Π, and n ∈ |I| the sequent I(Π, n) is defined by

I(Π, n) :=


Π, F (n) if I = R∀xF
F (k),Π if I = Lk∀xF
A,Π if I = R¬A
Π, A if I = L0

¬A
Π otherwise

The relation I / Π is defined by:

RA / Π :⇔ A ∈ R(Π) ,

LkA / Π :⇔ A ∈ L(Π) ,

Rep / Π :⇔ 0 = 0.

1 A similar rule is used in [KB81].

15



Abbreviation. Π ⊆ Π′ :⇔ L(Π) ⊆ L(Π′) & R(Π) ⊆ R(Π′).

Inductive Definition of (Π0, . . . ,Πl) r Π

Let ~Π := (Π0, . . . ,Πl).

1. If Πi ⊆ Π for some i ≤ l, then ~Π r Π.

2. If ~Π r Π, C and ~Π r C,Π with rk(C) ≤ r, then ~Π r Π.

Lemma 7.1. (“Existence of a suitable cut”)

If ~Π = (Π0, . . . ,Πl) r Π and ∀i ≤ l(Ii / Πi & Ii 6/ Π), then there are i, j ≤ l such that

Ii = RB & Ij = LkB & rk(B) ≤ r for some B, k.

Proof by induction over the definition of ~Π r Π:

From the second premise we conclude ∀i ≤ l(Πi 6⊆ Π). Together with ~Π r Π this implies that there exists

a C of rank ≤ r such that ~Π r Π, C and ~Π r C,Π.

Case 1: ∀i ≤ l(Ii 6/ Π, C) or ∀i ≤ l(Ii 6/ C,Π). Then the claim follows immediately from the IH.

Case 2: Otherwise. Then there exist i, j ≤ l such that Ii / Π, C and Ij / C,Π.

From Ii / Π, C & Ii 6/ Π it follows that Ii = RC .

From Ij / C,Π & Ij 6/ Π it follows that Ij = LkC for some k.

Assumption 0.

D is a set of (derivation) terms, and to each d ∈ D there is assigned a sequent End(d), an inference symbol

tp(d), and, for each n ∈ |tp(d)|, a term d[n] ∈ D.

Abbreviation. d ` Π :⇔ d ∈ D & End(d) = Π

Assumption 1.

If (Π0, . . . ,Πl) r Π and d0 ` Π0, . . . , dl ` Πl then KrΠd0 . . . dl ` Π.

Definitions. Assume d = KrΠd0 . . . dl ` Π with di ` Πi and tp(di) / Πi for all i ≤ l.
• d is critical :⇔ ∀i ≤ l(tp(di) 6/ Π)

• If d is critical we take the least pair (i, j) such that

i, j ≤ l & tp(di) = RB & tp(dj) = LkB & rk(B) ≤ r for some B, k

(which exists according to Lemma 7.1), and define

A(d) :=
{
F (k) if B = ∀xF (x)
A if B = ¬A

d{0} := KrΠ,A(d)

{
(i/di[k]) if B = ∀xF
(j/dj [0]) if B = ¬A d{1} := KrA(d),Π

{
(j/dj [0]) if B = ∀xF
(i/di[0]) if B = ¬A

Assumption 2:

If d = KrΠd0 . . . dl ` Π with di ` Πi and tp(di) / Πi for all i ≤ l, then the following holds

(a) If d is critical, then tp(d) = Rep and d[0] = Kr−1
Π d{0}d{1}

(b) If d is not critical and i ≤ l is the least number s.t. tp(di) / Π, then

tp(d) =
{
Rep if di critical
tp(di) otherwise

d[n] =

{
Kr
′

Π (i/di{0}di{1}) with r′ := max{rk(A(di)), r} if di critical

Krtp(d)(Π,n)(i/di[n]) otherwise
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Assumption 3:

There are mappings dg : D → ω and õ : D → On such that such that for each d = KrΠd0 . . . dl we have

dg(d) = max{dg(d0)−1, . . . ,dg(dl)−1, r}, and õ(d) = ωõ(d0)# . . .#ωõ(dl).

Abbreviations.

For d ∈ D and Π := End(d) we set:

d ∈ D1 :⇔ tp(d) / Π & ∀n ∈ |tp(d)|
(
d[n] ` tp(d)(Π, n)

)
d ∈ D2 :⇔

{
dg(d[0]) < dg(d) if d critical
∀n ∈ |tp(d)|(dg(d[n]) ≤ dg(d)) otherwise

d ∈ D3 :⇔
{
õ(d[0]) < ωõ(d) if d critical
∀n ∈ |tp(d)|(õ(d[n]) < õ(d)) otherwise

Theorem 7.2. For ν = 1, 2, 3 the following holds:

If d = KrΠd0 . . . dl ∈ D with d0, . . . , dl ∈ Dν , then d ∈ Dν .

Proof:

Cf. the proofs of Theorem 3.4 and Lemma 4.1.

APPENDIX

In this appendix we will show how Gentzen’s original ordinal assignment [Ge36, §15] can be transformed

into the assignment which we have used in §4. This transformation consists in essentially four steps.

Step 1: We do not use exactly the same set of decimal fractions as Gentzen did. Gentzen defined his set of

Ordnungszahlen (let’s call it OG) by: OG := {n.u : n ∈ IN & u ∈ Mn} where M0 := {1, 11, 111, . . . , 2},
Mn+1 := {u00n+1u10n+1 . . . 0n+1ul : l ≥ 0 & u0, . . . , ul ∈ Mn & 0.ul <R . . . <R 0.u0}. This corresponds

to representing ordinals in base 2 Cantor normal form, while here we shall use base ω. Instead of OG we

define the set O := {n.u : n ∈ IN & u ∈ Mn}, where M0 := {1}, Mn+1 := {u00n+1u10n+1 . . . 0n+1ul : l ≥
0 & u0, . . . , ul ∈Mn & 0.ul ≤R . . . ≤R 0.u0}.

Step 2: We define an embedding of (O, <R) into the set theoretic ordinals, namely for each ‘Ordnungszahl’

n.u ∈ O we define an ordinal |n.u| ∈ On such that ∀n.u,m.v ∈ O(n.u <R m.v ⇒ |n.u| < |m.v|) (Lemma 3).

Step 3: We modify Gentzen’s assignment of ‘Ordnungszahlen’ to derivations ([Ge36, §15.2]) according to the

alterations made in step 1. For each derivation d we define its numerus ρ(d) ∈ IN, mantissa µ(d) ∈
⋃
n∈INMn,

and ‘Ordnungszahl’ Ord(d) := ρ(d).µ(d) ∈ O. Actually we only consider the crucial case where d ends with

a chain rule inference.

Step 4: We show how the ordinal |Ord(d)| can be defined directly by recursion on the build-up of d,

without referring to the decimal fraction Ord(d). Then we compare the involved recursion equations with

the corresponding equations in the definition of õ(d), o(d) in §4.

Step 1.

Let {0, 1}+ denote the set of all finite nonempty words u over the alphabet {0, 1}, and let

{0, 1}(+) := {u ∈ {0, 1}+ : the first and the last letter of u is 1}.

Further, let 0n denote the word consisting of n zeros. Each expression n.u (with n ∈ IN and u ∈ {0, 1}(+))

will be identified with the real number denoted by it in the usual way.
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Definition of Mn ⊆ {0, 1}(+)

1. M0 := {1};
2. Mn+1 := {u00n+1u10n+1 . . . 0n+1ul : l ≥ 0 & u0, . . . , ul ∈Mn & 0.ul ≤R . . . ≤R 0.u0}.

Further we set M :=
⋃
n∈INMn. The elements of M are called mantissas.

Definition. h : M → IN, h(u) := min{n : u ∈Mn}.

Remark. Mn ⊆Mn+1, and h(u) is the maximal number of consecutive zeros in u.

Lemma 1.

If u = u00n+1 . . . 0n+1ul ∈ Mn+1 and v = v00n+1 . . . 0n+1vk ∈ Mn+1 with u0, . . . , ul, v0, . . . , vk ∈ Mn, then

0.u <R 0.v if, and only if, l < k & ∀i ≤ l(ui = vi) or ∃j ≤ min{l, k}
(
∀i < j(ui = vi) & 0.uj <R 0.vj

)
.

Proof: Straightforeward.

Definition. O := {n.u : n < ω & u ∈Mn} (Ordnungszahlen)

Step 2.

Definition of |u|n ∈ On for u ∈Mn

1. |1|0 := 0. 2. If u = u00n+1 . . . 0n+1ul ∈Mn+1 then |u|n+1 := ω|u0|n + . . .+ ω|ul|n .

As usual we set ω0(α) := α, ωn+1(α) := ωωn(α).

Lemma 2. For u ∈Mn the following holds:

(a) |u|n+k = ωk(|u|n),

(b) ωn(0) ≤ |u|n < ωn+1(0).

Definition. For n.u ∈ O let |n.u| := |u|n ∈ On.

Lemma 3. n.u ∈ O & m.v ∈ O & n.u <R m.v ⇒ |n.u| < |m.v|.

Proof by induction on the length of u:

Case n < m: Then |n.u| = |u|n < ωn+1(0) ≤ ωm(0) ≤ |v|m = |m.v|.
Case n = m: Then 0.u <R 0.v and u, v ∈ Mn with n > 0. Hence u = u00n . . . 0nul ∈ Mn and v =

v00n . . . 0nvk ∈Mn with u0, . . . , ul, v0, . . . , vk ∈Mn−1. By Lemma 1 it follows that one of the following two

cases applies:

(i) l < k & ∀i ≤ l(ui = vi): Then trivially |u|n < |v|n.

(ii) ∀i < j(ui = vi) & 0.uj <R 0.vj for some j ≤ min{l, k}:
Then ∀i ∈ {j, . . . , l}(0.ui <R 0.vj) and therefore, by IH, ∀i ∈ {j, . . . , l}(|ui|n−1 < |vj |n−1).

Hence |u|n = ω|v0|n−1 + . . .+ ω|vj−1|n−1 + ω|uj |n−1 + . . .+ ω|ul|n−1 < ω|v0|n−1 + . . .+ ω|vj |n−1 ≤ |v|n.

Step 3.

The following are more or less Gentzen’s own words (in [Ge36, 15.2]) — of course with some alterations

enforced by the modifications made in step 1.

To each given derivation d we assign an ‘Ordnungszahl’ Ord(d) := ρ(d).µ(d) ∈ O according to the following

recursive rule: (. . .) If the endsequent of d is the conclusion of a ‘chain rule’ inference (i.e., if d = KrΠd0 . . . dl)

we consider the mantissas ui = µ(di) of the ‘Ordnungszahlen’ of the derivations di; suppose that ν is the

maximum number of consecutive zeros in all of these mantissas (i.e., ν = maxi≤l h(ui)). The mantissas are

written down from left to right according to their size (the largest one first) and any two successive mantissas

are seperated by ν+1 zeros. (It may well be that several successive mantissas are equal.) The result is the

mantissa µ(d) of the ordinal number for the whole derivation; i.e., µ(d) := uσ(0)0
ν+1uσ(1)0

ν+1 . . . 0ν+1uσ(l)
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where σ is an appropriate permutation of {0, . . . , l}, and ui = µ(di). As the numerus ρ(d) we take the

least natural number ρ whose excess over the maximum number of consecutive zeros in the mantissa is ≥ 0

and, firstly, is not more than 1 less than the corresponding excess in any of the ordinal numbers for the

derivations of the premises and, secondly, is not less than the rank of the succedent formula of any one of

the premises preceding the major premise (14.25). W.l.o.g. we may assume here that l ≥ 1 and therefore

h(µ(d)) = ν+1. So ρ(d) is the least number ρ such that (i) ρ − (ν+1) ≥ ρ(di) − h(ui) − 1 for i = 0, . . . , l,

and (ii) ρ− (ν+1) ≥ r, which amounts to: ρ(d)− h(µ(d)) = max({ρ(di)− h(µ(di))− 1 : i ≤ l} ∪ {r}).

Step 4:

Let h(d) := h(µ(d)), exc(d) := ρ(d)− h(d), and ô(d) := |µ(d)|h(d)

Then

(1) |Ord(d)| = ωexc(d)(ô(d)),

and for d = KrΠd0 . . . dl we have the recursion equations

(2) h(d) = maxi≤l h(di) + 1, and

(3) exc(d) = max({exc(di)− 1 : i ≤ l} ∪ {r}).
(4) ô(d) = ωα0 # . . . #ωαl with αi := ων−h(di)(ô(di)) and ν := maxi≤l h(di).

Proof of (1) and (4):

(1) |Ord(d)| = |ρ(d).µ(d)| = |µ(d)|ρ(d) = ωρ(d)−h(d)(ô(d)) = ωexc(d)(ô(d)).

(4) By definition, µ(d) = uσ(0)0
ν+1 . . . 0ν+1uσ(l) with ui = µ(di) and ν = maxi≤l h(di). Hence ν+1 =

h(µ(d)) = h(d), ô(d) = |µ(d)|ν+1 = ω|u0|ν # . . . #ω|ul|ν , and |ui|ν = |µ(di)|ν
L.2a
= ων−h(di)(|µ(di)|h(di)).

Observation: In case that h(µ(d0)) = . . . = h(µ(dl)) we have

(5) ô(d) = ωô(d0) # . . . #ωô(dl).

Now compare (1), (3), (5) with the corresponding clauses in the definitions of o(d), dg(d), õ(d) in §4:

(1)’ o(d) = ωdg(d)(õ(d))

(3)’ dg(d) = max({dg(di)−1 : i ≤ l} ∪ {r})
(5)’ õ(d) = ωõ(d0)# . . .#ωõ(dl)
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